Handwriting fonts, METAFONT and OpenType

Karel Piska

Institute of Physics, Academy of Sciences
Prague, Czech Republic

4 September 2009

EuroTEX 2009 NLDA: NDC/IDL, Den Haag, 31 Aug. — 4 Sep. 2009

Introduction

In my presentation under handwriting we will understand
a writing system taught in primary schools in the Czech Republic,
Armenia and Georgia, approx. in the last 2040 years.

Two educational aspects in my presentation:

» writing is closely connected with primary school education

» my comparative study of “advanced” typography with
METAFONT(and TgX) and OpenType may be considered
educational

i.e. features of school handwriting and corresponding solutions
with computer typography.

Introduction (cont.)

| will demonstrate

» traditional principles and peculiarities of contemporary Czech,
Georgian and Armenian handwriting

» a short general introduction to “advanced” typography with
METAFONT and OpenType

» examples of computer realization for handwriting fonts
» summary of my experiences

The Czech handwriting font slabikar was designed and
created in METAFONT by Petr OISak.

Contents

Introduction

Handwritten scripts
Czech handwriting
Georgian handwriting
Armenian handwriting

Advanced typography with
METAFONT and TpX

Advanced typography with
OpenType
Tools for OpenType tables

Substitutions
Simple substitutions
Complex substitutions

Contents (cont.)

Solutions

Usage
METAFONT
OpenType

XgTeX
LuaTeX

Conclusions
Comparisons
Some final remarks
TODO

Handwritten scripts — Czech handwriting
Usichmis Lider av nodis svobodnis o aott rovnds
coo doo W/La]/m/bz/ @ W W m@dﬂ/m/

v duwchw Aadndois

[from Universal Declaration of Human rights]

Today's “ordinary” Czech school handwriting has far to calligraphy
and also to a special school subject called penmanship [krasopis]
taught earlier and disappearing tens years ago. In the 19th century
in Austria-Hungary and before typewriters a nice hand-writing was
very important, for example, in state administration, offices, etc.
Characteristics of Czech handwriting may differ from Britain,
France, etc. using also Latin script (majuscule and minuscule are
common): slanted; all letters in the word connected together,
written on one go.

Czech handwriting alphabet

Lo g 0

bir b Cp s
B4 Ji Gg i
Co Ji ®n Vnm
o Vi 0w W
9 Kok Lo Lw
10 20 Y& Yy
Cv m TH iy

Eb m JA Tn

Eo Ui bw i
57 0

Czech handwriting (cont.)

I will show some “special” conventions in examples.

accent line
upper line

,4 ,4 - ,4 m ,E/ v mean line
LN L UL LS baseline

lower line

accent line

[0 (o upper line

mean line

LU I 0TI

baseline

lower line

The Czech letters (Latin letters without and with accents) in the
fonts corresponding to Unicode numbers are in the medial form
and then may be contextually modified.

Czech handwriting (cont.)

accent line
upper line

) : / / mean line
JV JL %ﬁ L VL AL e

lower line

3 different “s”

Georgian handwriting alphabet

=5

©p C0p L 63

Georgian handwriting

Modern Georgian script (contemporary Mkhedruli) does not
distinguish capital and small letters; (taught) handwriting is
traditionally upright.

Q
N) N 30633Q0
- 0 - Jeobo
N Y A
(The first
year)
5] 9
!
SN A

In the font, the primary glyph form is isolated.

Georgian handwriting (cont.)

In advanced Georgian handwriting are letters in the word joined
together, but not all the pairs of the adjacent letters.
e
17)
OOAD(\) ONSLOJLOOL %I %I 00
U (

000, .. OQ«Y% QOOO')O,

q
OSN=0SFZonNorR0

507
')FQWOC)
VRN

rnNo

D)
QA3YONO.

N A

00
A

Georgian handwriting (cont.)

Depending of context, some letters may be joined be special
strokes, some letters may be additionally modified.

O

O

9
O

NS 2
O

NS 28
O

Armenian handwriting alphabet

72@ o % %7@
el
ds Lh £, 7
Tp 08 T ln
Lb 4y & opp
By wh Ty L
s ge L
/Z /L 0

Wid/s
55 e gt

Armenian handwriting

Armenian (like a Latin-based) script distinguish capital and small
letters; and handwriting is slanted. There are no special
sophisticated joiners between letters, but we have another problem
— to split words into letters — a solution could be gaps between
letters.

Pryrpe sty Slfrus)” b gy e hassfussssgo iy
wipdudussguplrigpud MMWWW%W
W mew sl gl £ by

(The Armenian part of my fonts has bugs and has not been
finished.)

Armenian handwriting (cont.)

upper line

mean line
baseline

lower line

Advanced typography with METAFONT and TEX

METAFONT contains powerful tools, exploited in METAFONT
fonts rarely.
“Advanced” (generalized) ligatures in METAFONT

ligtable

a: b |=:]|
a: b |=:1>
a: b |=:]>>
a: b =:|
a: b =:]>
a: b |=

a: b |=:>
a: b =

c;
¢
c;
¢
c;
c;
¢
c;

A

% produces

acb
acb
acb
cb
cb
ac
ac
c

Advanced typography with METAFONT and TgX(cont.)

“Advanced” (generalized) ligatures in METAFONT
.mf .tfm/.pl

|=: /LIG/ % retains both a and b, inserts ¢ between: ach
|=:1> /LIG/> % retains both a and b, inserts ¢ between; the
processing continues after a: acb

|=:1>> /LIG/>> % retains both a and b, inserts ¢ between; the
processing continues after c¢: acb

=:| LIG/ % retains b, inserts ¢ before b: cb

=:|> LIG/> % retains b, inserts ¢ before b; the processing
continues after c: cb

|=: /LIG % retains a, inserts c after a: ac

[=:> /LIG> % retains a, inserts c after a; the processing

continues after a: ac
=: LIG % substitutes both a and b by c.

Advanced typography with METAFONT and TgX(cont.)

Boundary characters

The METAFONT and TEX concept of the “word boundary” (the
left and right boundary characters) allows to “implicit” processing
of the beginning and the end of the word, i.e. a substitution or
adjustment of the letters in the “initial” and the “final” position of
the word. In METAFONT sources the left boundary characters is
denoted by "||:", the right boundary character must be
introduced as the “real” character using the "boundarychar
code" ;" assignment.

Advanced typography with OpenType

“Old TrueType fonts” can be “enriched” by adding “Advanced
OpenType Typographic Tables” to produce fonts in OpenType
format. (Now we will not discuss two different format versions:
“new” TTF and OTF, because the "Advanced ... tables” are

common.)

OpenType introduces substitution (GSUB), positioning (GPOS),
and several other tables.

These tables define the set of rules of several types specifying
[from OpenType specification]:

Glyph substitution (GSUB) rules

Single substitution, Multiple substitution, Alternate substitution,

Ligature substitution, Contextual substitution, Chaining contextual

substitution (with specifying a Chain Sub rule and marking
sub-runs and specifying exceptions to the Chain Sub rule),
Extension substitution, Reverse Chaining Single Substitution;

Advanced typography with OpenType (cont.)

Glyph positioning (GPOS) rules

Single adjustment positioning, Pair adjustment positioning (with
Specific and class pair kerning, Enumerating pairs, and Subtable
breaks), Cursive attachment positioning, Mark-to-Base attachment
positioning, Mark-to-Ligature attachment positioning,
Mark-to-Mark attachment positioning, Contextual positioning,
Chaining contextual positioning (with Specifying a Chain Pos rule
and marking sub-runs, Specifying Contextual Positioning with
explicit lookup references, Specifying Contextual Positioning with
with in-line single positioning rules, Specifying Contextual
Positioning with with in-line cursive positioning rules, Specifying
Contextual Positioning with with in-line in-line mark attachment
positioning rules, and Specifying exceptions to the Chain Pos rule),
Extension positioning.

Advanced typography with OpenType (cont.)

Each feature is defined as a system of subsystems called lookups.
Any lookup is described as a subsystem consisted of substitution
and positioning rules. Depending on script and language, a feature
may be enabled or disabled. If the feature is enabled and some
lookup, contained in this feature, fulfil the given conditions, then
the execution of corresponding operations should be invoked. It is a
signal and the real application must be executed by an application
program or operating system, e.g. by means of a special library.

At first, we have to create an OpenType font properly, using some
suitable tools. And, at second, the font must be in agreement with
corresponding software to execute adequate operations according
the rules (instruction) defined in the font.

Tools for OpenType tables

» VOLT [Microsoft]
Visual OpenType Layout Tool
VOLT adds OpenType tables and proofs the features and
lookups; accepts only the fonts with OpenType tables
produced by VOLT, other OpenType tables deletes. Moreover,
before the tests in the proofing window we must run always
(re)compilation even for opened fonts from VOLT.

» FontForge [G. Williams]

» AFDKO [Adobe]
Adobe Font Development Kit for OpenType

» (FontLab Studio [FontLab] — commercial, | do not have it)

Comment
| did not investigate AAT tables (Apple Advanced Typography).

Substitutions — Simple substitutions

We can skip such non-complex substitutions; only several small
examples. ..

Non-contextual substitutions

In METAFONT& TEX/IATEX usually solved by macros (to switch
fonts, typeset math, ...)

Single non-contextual substitutions

IATEX macro OpenType feature

\textsc{} smcp
\oldstylenums{} onum

SMALLCAPS

0123456789

Multiple non-contextual substitutions

TEX and its children have powerful facilities to typeset math and
can exist without delegations of similar actions on fonts
\frac{}{} Z; the OpenType feature is also frac

Complex substitutions - contextual in METAFONT

ligtable "b":
"m" bnarrow,
"n" bnarrow, ncaron =:| bnarrow,
"y bnarrow, "w" =:| bnarrow,
"y bnarrow, yacute =:| bnarrow,
rightboundaries;
ligtable "o":
"m" =:| onarrow,
"n" =:| onarrow, ncaron =:| onarrow,
"yt | onarrow, "w" | onarrow,
"y" =:| onarrow, yacute =:| onarrow,
rightboundaries;
ligtable oacute:
"m" =:| oacutenarrow,
n" =:| oacutenarrow, ncaron | oacutenarrow,
"y" =:| oacutenarrow, "w" oacutenarrow,
"y" =:| oacutenarrow, yacute =:| oacutenarrow,
rightboundaries;
ligtable "v":
"m" =:| vnarrow,
"n" =:| vnarrow, ncaron =:| vnarrow,
"y" =:| vnarrow, "w" | vnarrow,
"y" =:| vnarrow, yacute =:| vnarrow,
rightboundaries;
ligtable "w":
"m" | wnarrow,
"n" =:| wnarrow, ncaron | wnarrow,
"y" =:| wnarrow, "w" =:| wnarrow,
"y" =:| wnarrow, yacute =:| wnarrow,

rightboundaries;

Complex substitutions - contextual in VOLT

METAFONT-VOLT—FEA
The example with narrower b,o,v,w
Rules structured and ordered in significantly different ways.

DEF_LOOKUP "CZEbmnvwy" PROCESS_BASE PROCESS_MARKS ALL DIRECTION LTR
IN_CONTEXT
RIGHT ENUM GLYPH "m" GLYPH "n" GLYPH "ncaron" GLYPH "v" GLYPH "w"
GLYPH "y" GLYPH "yacute" END_ENUM
END_CONTEXT
AS_SUBSTITUTION
SUB GLYPH "b" WITH GLYPH "bnarrow" END_SUB
SUB GLYPH "o" WITH GLYPH "onarrow" END_SUB
SUB GLYPH "oacute" WITH GLYPH "oacutenarrow" END_SUB
SUB GLYPH "v" WITH GLYPH "vnarrow" END_SUB
SUB GLYPH "w" WITH GLYPH "wnarrow" END_SUB
END_SUBSTITUTION

Complex substitutions - contextual in VOLT

DEF_SCRIPT NAME "Latin" TAG "latn"
DEF_LANGSYS TAG "CZE "

DEF_FEATURE NAME "Standard Ligature Set 1" TAG "liga"
LOOKUP "CZEliga"

END_FEATURE

DEF_FEATURE NAME "Stylistic Set 1" TAG "ssO01"
LOOKUP "CZEjoinc" LOOKUP "CZEjoinl" LOOKUP "CZEjoinc_s" LOOKUP "CZEjoins_s" LOOKUP "CZEbmnvwy"
END_FEATURE

DEF_FEATURE NAME "Stylistic Set 2" TAG "ss02"
LOOKUP "CZEbmnvwy"

END_FEATURE

DEF_FEATURE NAME "Stylistic Set 3" TAG "ss03"
LOOKUP "CZEgjqy"

END_FEATURE

DEF_FEATURE NAME "Stylistic Set 4" TAG "ss04"
LOOKUP "CZErbound"

END_FEATURE

DEF_FEATURE NAME "Stylistic Set 5" TAG "ss05"
LOOKUP "CZEbeg"

END_FEATURE

DEF_FEATURE NAME "Stylistic Set 6" TAG "ss06"
LOOKUP "CZEbegpos"

END_FEATURE

END_LANGSYS

DEF_LANGSYS NAME "Default" TAG "dflt"

END_LANGSYS
END_SCRIPT

Complex substitutions - contextual in FEA

Q@CZEbmnvwy = [m n ncaron v w y yacute];

lookup CZEbmnvwy {
sub b’ @CZEbmnvwy by bnarrow;
sub o’ @CZEbmnvwy by onarrow;
sub oacute’ @CZEbmnvwy by oacutenarrow;
sub v’ @CZEbmnvwy by vnarrow;
sub w’ QCZEbmnvwy by wnarrow;
} CZEbmnvwy;
feature ss02 { # "Stylistic Set 2"
script latn;
language dflt;
lookup CZEjoincini;
lookup CZEjoinP;
lookup CZEjoinc_sc;
lookup CZEjoins_ss;
lookup CZEbmnvwy;
} ss02;

feature ss03 { # "Stylistic Set 3"
script latn;
language dflt;
lookup CZEjoinc;
lookup CZEjoinl;
lookup CZEjoinc_s;
lookup CZEjoins_s;
lookup CZEbmnvwy;

Complex substitutions — insertion with METAFONT

ligtable
g
npn
wen
ngn
et
wen
g
i
win
ng
e
wyn
o
g

NS < aaEn g o

|Il: clgqq: dash: slash: "(": "[": "&": "+": leftboundary::
kern kk#, aacute kern kk#,

I=:1> 3,

kern kk#, ccaron kern kk#,

kern kk#, dcaron kern kk#,

|=:1> 3, eacute |=:|> 3, ecaron |=:[|> 3,
|=:1> 3,

kern kki#,

|=:1> 3,

|=:1> 3, iacute [|=:[|> 3,

|=:1> 3,

|=:1> 3,

I=:1> 3,

|=:1> 2,

|=:1> 2, mncaron |=:]> 2,

kern kk#, oacute kern kk#,

|=:1> 3, "q" kern kk#,

|=:1> 3, rcaron |=:]> 3,

|=:> sleft, scaron |=:> scaronleft,
|=:1> 3, wuring |=:1> 3, uacute |=:]> 3,
|=:1> 3, tcaron |=:|> 3,

|=:1> 2, "w" |=:1>2,

|=:1> 7,

|=:1> 2, yacute |=:]> 2,

|=:1> 2, zcaron |=:|> 2;

Complex substitutions — insertion with VOLT

DEF_GROUP "acccap"

ENUM GLYPH "Aacute" GLYPH "Ccaron" GLYPH "Dcaron" GLYPH "Eacute" (
GLYPH "Iacute" GLYPH "Ncaron" GLYPH "Oacute" GLYPH "Rcaron" GLYPH
GLYPH "Tcaron" GLYPH "Uacute" GLYPH "Uring" GLYPH "Yacute" GLYPH
END_GROUP

DEF_GROUP "accver"

ENUM GLYPH "aacute" GLYPH "ccaron" GLYPH "dcaron" GLYPH "eacute" (
GLYPH "iacute" GLYPH "ncaron" GLYPH "oacute" GLYPH "rcaron" GLYPH
GLYPH "tcaron" GLYPH "uacute" GLYPH "uring" GLYPH "yacute" GLYPH
END_GROUP

DEF_GROUP "czebeg"

ENUM GROUP "czelet" GROUP "czemod" GLYPH "joinc" GLYPH "joinl" GL}
END_GROUP

DEF_GROUP "czelet"

ENUM RANGE "A" TO "Z" GROUP "acccap" GROUP "czever" END_ENUM
END_GROUP

DEF_GROUP "czemid"

ENUM GROUP "czever" GROUP "czemod" END_ENUM

END_GROUP

DEF_GROUP "czemod"

ENUM GLYPH "bnarrow" GLYPH "vnarrow" GLYPH "wnarrow"

GLYPH "onarrow" GLYPH "oacutenarrow" END_ENUM

END_GROUP

DEF_GROUP "czever"

ENUM RANGE "a" TO "z" GROUP "accver" END_ENUM

END_GROUP

Complex substitutions — insertion with VOLT

DEF_LOOKUP "CZEbeg" PROCESS_BASE PROCESS_MARKS ALL DIRECTION LTR
EXCEPT_CONTEXT

LEFT GROUP "czebeg"

END_CONTEXT

AS_SUBSTITUTION

SUB GLYPH "b" WITH GLYPH "lbounda" GLYPH "b" END_SUB

SUB GLYPH "bnarrow" WITH GLYPH "lbounda" GLYPH "bnarrow" END_SUB
SUB GLYPH "e" WITH GLYPH "lbounda" GLYPH "e" END_SUB

SUB GLYPH "eacute" WITH GLYPH "lbounda" GLYPH "eacute" END_SUB
SUB GLYPH "ecaron" WITH GLYPH "lbounda" GLYPH "ecaron" END_SUB
SUB GLYPH "f" WITH GLYPH "lbounda" GLYPH "f" END_SUB

SUB GLYPH "h" WITH GLYPH "lbounda" GLYPH "h" END_SUB

SUB GLYPH "i" WITH GLYPH "lbounda" GLYPH "i" END_SUB

SUB GLYPH "iacute" WITH GLYPH "lbounda" GLYPH "iacute" END_SUB
SUB GLYPH "j" WITH GLYPH "lbounda" GLYPH "j" END_SUB
SUB GLYPH "k" WITH GLYPH "lbounda" GLYPH "k" END_SUB
GLYPH "lbounda" GLYPH "1" END_SUB
GLYPH "lbound" GLYPH "m" END_SUB
PH "lbound" GLYPH "n" END_SUB

GLYI S
WITH GLYPH "lbound" GLYPH "ncaron" END_SUB
GLYPH "lbounda" GLYPH "p" END_SUB

GLYPH "lbounda" GLYPH "r" END_SUB

SUB GLYPH "rcaron" WITH GLYPH "lbounda" GLYPH "rcaron" END_SUB
"s" WITH GLYPH "sleft" END_SUB

SUB GLYPH WITH GLYPH "scaronleft" END_SUB

SUB GLYPH GLYPH "lbounda" GLYPH "t" END_SUB

SUB GLYPH WITH GLYPH "lbounda" GLYPH "tcaron" END_SUB
SUB GLYPH GLYPH "lbounda" GLYPH "u" END_SUB

SUB GLYPH "uring" WITH GLYPH "lbounda" GLYPH "uring" END_SUB
SUB GLYPH "uacute" WITH GLYPH "lbounda" GLYPH "uacute" END_SUB
SUB GLYPH "v" WITH GLYPH "lbound" GLYPH "v" END_SUB

SUB GLYPH "vnarrow" WITH GLYPH "lbound" GLYPH "vnarrow" END_SUB
SUB GLYPH "w" WITH GLYPH "lbound" GLYPH "w" END_SUB

SUB GLYPH "wnarrow" WITH GLYPH "lbound" GLYPH "wnarrow" END_SUB
SUB GLYPH "x" WITH GLYPH "joinx" GLYPH "x" END_SUB

SUB GLYPH "y" WITH GLYPH "lbound" GLYPH "y" END_SUB

SUB GLYPH "yacute" WITH GLYPH "lbound" GLYPH "yacute" END_SUB
SUB GLYPH "z" WITH GLYPH "lbound" GLYPH "z" END_SUB

SUB GLYPH "zcaron" WITH GLYPH "lbound" GLYPH "zcaron" END_SUB
END_SUBSTITUTION

Complex substitutions — insertion with FEA

Qacccap = [Aacute Ccaron Dcaron Eacute Ecaron Iacute Ncaron Dacute Rcaron Scaron Tcaron
Uacute Uring Yacute Zcaron];
Qaccver = [aacute ccaron dcaron eacute ecaron iacute ncaron oacute rcaron scaron tcaron
uacute uring yacute zcaron];
@czever = [a - z Qaccver];
Q@czelet [A - Z @acccap Qczever];
@czemod = [bnarrow vnarrow wnarrow onarrow oacutenarrow];
@czemid = [Q@czever @czemod];
@czefin = [a aacute A Aacute b bnarrow c ccaron C Ccaron d dcaron e eacute ecaron
E Eacute Ecaron f g G h H i iacute j J k K1 L m M n ncaron N Ncaron o oacute
onarrow oacutenarrow p q Q r rcaron R Rcaron t tcaron u uring uacute U Uacute Uring

v vnarrow w wnarrow x X y yacute z zcaron Z Zcaron];

@czeini = [b bnarrow e eacute ecaron f h i iacute j k 1 m n ncaron p r rcaron s scaron

t tcaron u uring uacute v vnarrow w wnarrow X y yacute z zcaron J;

@czefintmp = [a.fin aacute.fin A.fin Aacute.fin b.fin bnarrow.fin c.fin ccaron.fin

C.fin Ccaron.fin d.fin dcaron.fin e.fin eacute.fin ecaron.fin E.fin Eacute.fin Ecaron.fin

fin g.fin G.fin h.fin H.fin i.fin iacute.fin j.fin J.fin k.fin K.fin 1.fin L.fin

fin M.fin n.fin ncaron.fin N.fin Ncaron.fin o.fin oacute.fin onarrow.fin oacutenarrow.fin

fin q.fin Q.fin r.fin rcaron.fin R.fin Rcaron.fin t.fin tcaron.fin u.fin uring.fin uacute.fin

[SECI-IY

fin Uacute.fin Uring.fin v.fin vnarrow.fin w.fin wnarrow.fin x.fin X.fin y.fin yacute.fin

fin zcaron.fin Z.fin Zcaron.fin];

@czeinitmp = [b.ini bnarrow.ini e.ini eacute.ini ecaron.ini f.ini h.ini
k.ini 1.ini m.ini n.ini ncaron.ini p.ini r.ini rcaron.ini s.ini scaron.ini t.ini tcaron.ini u.ini
uring.ini uacute.ini v.ini vnarrow.ini w.ini wnarrow.ini x.ini y.ini yacute.ini z.ini zcaron.ini];

Q@czebeg = [Qczelet Qczemod @czeinitmp joinc joinl joins 1;

@CZEjoin = [a aacute b c¢ ccaron d dcaron e eacute ecaron f g h i iacute j k 1 m n ncaron
0 oacute p q r rcaron s scaron u uring uacute t tcaron v w X y yacute z zcaron];

@CZEjoinc = [a aacute b ¢ ccaron d dcaron e eacute ecaron f g h i iacute j k 1 o oacute p q
r rcaron s scaron u uring uacute x];

@CZEjoins = [m n ncaron t tcaron v w y yacute z zcaron];

@CZEbmnvwy = [m n ncaron v w y yacute];

@CZEgjqy = [g G j J q Q y yacute Y Yacute];

N

ni iacute.ini j.ini

Complex substitutions — insertion

lookup CZEjoincini {

B’ QCZEjoin by B.ini;
D’ @CZEjoin by D.ini;
Dcaron’ @CZEjoin by Dcaron.ini;
F’ @CZEjoin by F.ini;
I’ @CZEjoin by I.ini;
Tacute’ GCZEjoin by Tacute.ini;
0’ @CZEjoin by 0.ini;
Oacute’ @CZEjoin by Oacute.ini;
S’ @CZEjoin by S.ini;
Scaron’ @CZEjoin by Scaron.ini;
T’ @CZEjoin by T.ini;
Tcaron’ @CZEjoin by Tcaron.ini;
Vv’ @CZEjoin by V.ini;
W’ @CZEjoin by W.ini;

} CZEjoincini;
lookup CZEjoinc {

B.ini by B joinc;
D.ini by D joinc;
Dcaron.ini by Dcaron joinc;
F.ini by F joinc;
I.ini by I joinc;
Tacute.ini by Iacute joinc;
0.ini by 0 joinc;
Oacute.ini by Oacute joinc;
S.ini by S joinc;
Scaron.ini by Scaron joinc;
T.ini by T joinc;
Tcaron.ini by Tcaron joinc;
V.ini by V joinc;
W.ini by W joinc;

} CZEjoinc;
lookup CZEjoinP {

sub

P’ @CZEjoin by P.ini;

} CZEjoinP;
lookup CZEjoinl {

sub

P.ini by P joinl;

} CZEjoinl;

with FEA

Complex substitutions (cont.)

lookup CZEbegtmp {

ignore sub Qczebeg Oczeini’;

sub @czeini’ by @czeinitmp;

} CZEbegtmp;

lookup CZEbeg {
sub Qczeinitmp by lbounda @czeini;
sub b.ini by lbounda b;

sub bnarrow.ini by lbounda bnarrow;
sub e.ini by lbounda e;

sub eacute.ini by lbounda eacute;
sub ecaron.ini by lbounda ecaron;
sub f.ini by lbounda f;

sub h.ini by lbounda h;

sub i.ini by lbounda i;

sub iacute.ini by lbounda iacute;

sub j.ini by lbounda j;
sub k.ini by lbounda k;
1

.ini by lbounda m;

.ini by lbounda n;

sub ncaron.ini by lbounda ncaron;
sub p.ini by lbounda p;

sub r.ini by lbounda r;

sub rcaron.ini by lbounda rcaron;
sub s.ini by lbounda s;

sub scaron.ini by lbounda scaron;
sub t.ini by lbounda t;

sub tcaron.ini by lbounda tcaron;
sub u.ini by lbounda u;

sub uring.ini by lbounda uring;
sub uacute.ini by lbounda uacute;
sub v.ini by lbounda v;

sub vnarrow.ini by lbounda vnarrow;
sub w.ini by lbounda w;

sub wnarrow.ini by lbounda wnarrow;
sub x.ini by lbounda x;

sub y.ini by lbounda y;

sub yacute.ini by lbounda yacute;
sub z.ini by lbounda z;

sub zcaron.ini by lbounda zcaron;
} CZEbeg;

]
k
sub 1.ini by lbounda
m
n

Solutions

Structure of features and lookups
METAFONT

[Czech ligtables]

[Georgian ligtables]

[Georgian scripts, TUGboat (1998 — 19:3)]
OpenType

[VOLT project] (interchange textual form)
[Feature file] (textual form)

Usage

METAFONT
The Czech and Georgian METAFONT fonts with the special effects
work properly, of course only with the TEX engine and TFM.
OpenType
XITeX
| have still errors in OpenType, different of VOLT and Feature
language, and | was not able to find my errors to fix them.
Moreover, | cannot still confirm that easy solutions are possible.
Anyway, processing of OpenType features with X3TEX works
properly and corresponds to my expectations.
ConTgXt/LuaTeX
The use of CONTEXT/ LuaTEX was not successful (probably, there
are some other, maybe, technical problems). And | only plan to
continue with tracing of OpenType fonts demonstrated by Hans
Hagen — because | spent several weeks with rewriting
METAFONT ligtables into VOLT project language and testing, and
then transforming into feature language and tests with FontForge.

Solutions — Comparisons — Conclusions

We have 3 versions of substitution and positioning tables
(all in source and production representations):
external interchange internal binary
1. METAFONT source TFM (TEX font metrics)
2. MS VOLT project file TTF flavored OpenType MS VOLT font

3. Adobe feature file TTF or OTF Adobe font
different syntax, different structure, different errors (in my font
instances)

METAFONT supports /.mf MS VOLT /.vtp Adobe AFDKO,FF/.fea

ab -> acb error error

(leftboundary) a -> ca allowed unsupported

a (rightboundary) -> ad allowed unsupported

.fea: more paths and features, 2 steps and additional real glyphs,
not efficient (or even not effective)

In some aspects, like substitution with insertion: OpenType is not
more wider, powerful and reliable than METAFONT& TEX.

Solutions — Comparisons — Conclusions (cont.)

METAFONT one path processing with ambiguity,

limitations: only pair of adjacent chars,impossible look-ahead 3
chars, max. 256 glyphs in one font.

OpenType (VOLT or Adobe, TTF or OTF): generally more rich set
of rules, but still errors in my fonts, difficult to find them and then
to fix; possible interferences and collisions between features and
lookups.

MS VOLT: works only on MS Windows; read and writes only TTF;
has templates for GSUB and GPOS, no tools for MATH tables;
VOLT can test only VOLT fonts.

Adobe AFDKO works only on MS Windows, FontForge (also
Linux) cannot read .vtp, only .fea, sometimes crashes on VOLT
fonts.

OpenType fonts (their correct rules) can be processed with X3TEX
and CONTEXT/LuaTEX— now on Hans computer, not yet on my
Linux (upgrade of context is needed).

TODO

glyph repository: continue the development
OpenType tables: debug, corrections
LuaTEX: testing and tracing tools

Support: spacing, ...

(Demo of FontForge 7)

	Introduction
	Contents
	Handwritten scripts
	Czech handwriting
	Georgian handwriting
	Armenian handwriting

	Advanced typography with Metafont and TeX
	Advanced typography with OpenType
	Tools for OpenType tables

	Substitutions
	Simple substitutions
	Complex substitutions

	Solutions
	Usage
	Metafont
	OpenType

	Conclusions
	Comparisons
	Some final remarks
	TODO

