
Bijlage P Standard dtd’s and Scientific Publishing 69

Standard dtd’s and Scientific Publishing�

N.A.F.M. Poppeliery

and

E. van Herwijnenz

and

C.A. Rowleyx

August 1992

Abstract

This paper has two parts. In the first part we argue that scientific publishing needs one standard dtd
for each class of documents that is published, for example one for all research papers and one for all
books. In the second part we apply this reasoning to mathematical formulas, and we outline some
design requirements for a document type definition for mathematical formulas. In the appendices we
discuss and compare existing document type definitions for mathematical formulas.

1 Introduction
In the preface to [1] Charles Goldfarb wrote that the
Standard Generalized Markup Language can be de-
scribed as many things, and that SGML is all that –
and more. In the introduction to [1] Yuri Rubinsky
wrote:

ISO 8879 never describes SGML as a
meta-language, but everything about its
system of declarations and notations im-
plies that a developer has the tools to
build exactly what is required to indicate
the internal structure of any type of in-
formation in a common tool-independent
manner.

Indeed, a strong point of SGML is that it can be re-
garded as a meta-language, a tool with which one can
define the syntax of many languages, very much sim-
ilar to context-free grammars. In SGML terminology
these ‘languages’ are called document type definitions,
called dtd’s for short. Dtd’s can be written for any type
of information, e.g. research papers, books and music.
A dtd can be used for many purposes, of which two im-
portant ones are storage and exchange of information
coded according to this dtd.

The premise of this paper is that the exchange of inform-
ation, if it is based on SGML, needs a single common

dtd, agreed upon by all parties involved, for each class
of documents that is exchanged.

Suppose two parties, A and B, exchange information in
the form of one class of documents, and that they each
have a dtd, D(A) and D(B), with D(A) not identical to
D(B). If A sends a document to B then A can include the
document type definition, D(A), for that document (in-
stance) at the beginning of the document. This enables
B to use an SGML parser to check the validity of the
document he received. However, there is nothing more
B can do with the document: the dtd D(A) contains no
information about the meaning of the coding scheme
that D(A) defines, and a mapping of the document from
D(A) to D(B) is a procedure that cannot be automated.
The problem becomes even more difficult when a third
party, C, is introduced, who accepts material from both
A and B. How is C going to handle material with two
different coding schemes?

This is where we encounter one of the weaknesses of
SGML as it is being used currently, namely that it en-
ables every party involved in this process to define and
use a different dtd.

2 Scientific publishing
In the rest of this paper we concentrate on the exchange
of information that occurs in scientific publishing, in
particular on the exchange of papers that contain math-

�Presented at the 9e NTG meeting, June 4, 1992, Amsterdam. To be published in EPSIG news.
yElsevier Science Publishers, P.O. Box 2400, 1000 CK Amsterdam, the Netherlands.
zCERN, 1211-CH Geneva 23, Switzerland.
xOpen University, 527 Finchley Road, London NW3 7BG, UK.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

70 Standard dtd’s and Scientific Publishing Bijlage P

ematical formulas and are published in research journ-
als. Recent developments in this area formed the main
reason for writing this paper.

A few standards for encoding of mathematical formulas
have already emerged, of which a well-known one is
the AAP Standard or Electronic Manuscript Standard
[2]. A dtd for mathematical formulas accompanies this

standard, but it is not part of it. Another standard for
mathematical formulas is the one adopted by CALS [3],
and others are under development [4, 5].

The handling of mathematical formulas in scientific
publishing is part of the bigger whole of information
exchange within a (the) scientific community, with the
publisher as intermediary, as is shown in figure 1.

'

&

$

%

'
&

$
%

'
&

$
%

C
C
C

C
C
C

C
C
C

C
CCO

�
�
�
�

�
�
�

�
�

�
���

C

P

G

Figuur 1: Information exchange within a (the) scientific community.

The authors of research papers are the providers, P .
The publishers are the gatherers of information, G.
They accept information from many providers, gather
this in the form of a journal issue, and distribute this.
In this process, the publisher provides a quality check
via the system of peer reviewing, makes notation con-
sistent, and in some cases improves the prose. The
information is distributed to a group of consumers, C,
with the set C a superset of the set P . In this process,
two sorts of information can be exchanged:
� material that is structured in the sense of being

encoded according to, and checked against, some
formal structural specification such as a dtd;

� material that is not structured.

At present most of the material exchanged in the pro-
cess of scientific publishing is of the unstructured type.
We expect that this will remain the situation in the near
future. As soon as authors get the possibility of using
more sophisticated tools, we expect that publishers will
receive increasing numbers of papers of the structured
type.

Several scientific publishers, among whom Elsevier
Science Publishers, have adopted SGML as the future
main tool for the process of publishing scientific art-
icles [6], and several other publishers have made, or
are expected to make, the same choice. The European
Laboratory for Particle Physics (CERN), a large com-
munity of information providers, are using SGML to

automate the loading of bibliographic information in
their library’s database [7]. For both authors and pub-
lishers it would be advantageous to agree on one dtd
for the encoding of research papers. There are several
reasons for this:
� Most authors do not submit all their articles to one

and the same publisher every time. At present they
are confronted with ‘Instructions to Authors’ that
differ significantly from publisher to publisher.

� A recent trend is that authors prepare their papers
with text-processing software on some computer.
This enables them to send the paper in electronic
form (electronic manuscript or ‘compuscript’) to the
publisher. Publishers are confronted with a variety
of text-processing software on a variety of computer
systems [8, 9]. Moreover, every field of science ap-
pears to have its own ‘Top Ten’ of most used text
processing packages.

� Bibliographic information about all research papers
in all (or most) scientific journals is stored in bibli-
ographic databases.

In an ideal world, authors would still be able to use their
favourite text-processing system, which would generate
SGML ‘behind the screens’, so to speak. All publishers
would accept one standard dtd, and all text-processing
systems would be able to generate documents prepared
according to this dtd, and all bibliographic databases
would be able to store this material.

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage P Standard dtd’s and Scientific Publishing 71

An example of activities towards achieving this ideal
situation: the European Working Group on SGML
(EWS) and the European Physical Society (EPS) have
taken the Electronic Manuscript Standard and are try-
ing to develop it into a complete dtd, which should
be acceptable to information providers, information
gatherers and information consumers. The Electronic
Manuscript Standard is now a Draft International Stand-
ard, ISO/DIS 12083. The EWS and EPS hope that the
final standard will include their work.

3 Encoding of mathematical formulas
In Annex A of ISO 8879 [10] we find the following:

Generalized markup is based on two
novel postulates:
1. Markup should describe a docu-

ment’s structure and other attributes
rather than specify processing to
be performed on it, as descriptive
markup need be done only once and
will suffice for all future processing.

2. Markup should be rigorous so that the
techniques available for processing
rigorously-defined objects like pro-
grams and databases can be used for
processing documents as well.

There is no reason why this should not be valid for
mathematical formulas. We need to delimit the kind
of mathematical formulas we are trying to describe if
we want an unambiguous structure. The field of math-
ematics is so vast, that it may be impossible to design
a single dtd that covers every kind of mathematical
formula. If we concentrate on those sciences which
use mathematics as a tool, for example physics, we
see that the mathematics used in many physics papers
can be described as “advanced calculus”. This defin-
ition can be made more precise by referring to some
standard textbooks containing these types of formulas,
e.g. Handbook of Mathematical Functions [11] and the
Table of integrals, series and products [12].

If we aim for rigorousencoding of mathematical formu-
las (the second postulate), we must develop a system
of descriptive markup of mathematical formulas that
enables us to:
� convert the formulas between different word pro-

cessors;
� store the formulas in and extract them from a data-

base;
� allow programs to input or output formulas in de-

scriptive markup.

An example of the first application would be the con-
version of mathematical formulas coded in LATEX to,

say, Word1 via SGML. The benefits of using SGML as
an intermediate language for conversion are described
in [13]. Note, for example, that the number of programs
required for pairwise conversion between n languages
is proportional to n2 � n without an intermediate lan-
guage, but to 2n with an intermediate language.

An example of the second application would be encod-
ing and storing the complete contents of the above men-
tioned Handbook of Mathematical Functions [11] and
Table of integrals, series and products [12] in a data-
base, so that this information can be accessed on-line
by, say, mathematicians and physicists. Many articles
have mathematical formulas in their titles, so any pro-
gram that extracts bibliographic data should be able to
handle mathematics as well.

An example of the third application would be the ex-
traction and subsequent use in a computer program,
written in an ordinary programming language or, for
example, in Mathematica.2

At this point we come back to the ideal world for sci-
entific publishing we sketched earlier. In this world,
publishers would use one standard dtd for scientific
papers, which enables them to prepare a primary pub-
lication – in paper and (or) in some electronic form –
and to store the information in databases for various
secondary purposes.

The question now is: what should a dtd for mathemat-
ical formulas look like, if it is going to be used for these
purposes?

There are two choices for a dtd for mathematics:
� P-type: the dtd reflects the Presentation or visual

structure, Examples of this type are discussed in the
appendices.

� S-type: the dtd reflects the Semantics or logical
structure At present no dtd’s of this type exist.

The quotation from Annex A of ISO 8879 [10] indic-
ates the preference of the creator(s) of SGML: markup
of a formula should be of S-type, it should describe the
logical structure of the formula, rather than the way it
is represented on a certain medium, say the page of a
traditional (non-electronic) book.

Let us suppose, for the sake of the argument, that an in-
formation gatherer, a publisher, chooses a dtd of S-type.
This raises two further questions:
1. Is descriptive markup of mathematical material pos-

sible?
2. If it is possible, who can use it and for which pur-

poses?

The second question needs some explanation. As dis-
cussed in section 2, in the process of scientific pub-
lishing two sorts of information can be exchanged:
mathematical material that is structured according to

1Word is a registered trademark of MicroSoft.
2Mathematica is a registered trademark of Wolfram Research, Inc.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

72 Standard dtd’s and Scientific Publishing Bijlage P

a formal structural specification, and material that is
not structured. This means that there are two possible
scenarios.

Scenario 1: an author submits a paper in the form of
a manuscript (paper), i.e. with unstructured formulas,
or a compuscript with mathematical formulas in P-type
notation (TEX, WordPerfect, : : :).

Scenario 2: an author submits a paper with mathemat-
ical formulas in S-type notation.

In scenario 1 it is the task of the publisher to convert
from paper or P-type notation to S-type notation. Be-
fore we discuss the feasibility of this conversion, we
will first look at some characteristics of mathematical
notation.

3.1 Characteristics of mathematical notation
Mathematical notation is designed to create the cor-
rect ideas in the mind of the reader. It is deliberately
ambiguous and incomplete: indeed, it is almost mean-
ingless to all other readers. Or, more technically: the
intrinsic information content of any mathematical for-
mula is very low. A formula gets its meaning, i.e. its
information content, only when used to communicate
between two minds which share a large collection of
concepts and assumptions, together with an agreed lan-
guage for communicating the associated ideas.

The ambiguity encountered in mathematical notation
can be of two types [14]:
1. A generic notation uses the same symbols to rep-

resent similar but different functions, for example
‘+’ or ‘�’. In the case of addition this is not really
a problem, but multiplication is a problem since,
multiplication of numbers is commutative, whereas
matrix multiplication is non-commutative!

2. A more fundamental ambiguity is posed by the same
notation being used in different fields in different
ways. For example: f 0 stands for the first derivat-
ive of f in calculus, but can mean ‘any other entity
different from f’ in other areas.

More examples of ambiguity are:
� Does �x represent a mean, a conjugation or a nega-

tion?
� Is i an integer variable, e.g. the index of a matrix,

or is it
p�1?

� The other way around: is
p�1 denoted by i or by

j?3

� What is the function of the 2 in SU2, log2 x, x2, x2,
T 2
2 ?4

� Is jXj the absolute value of a real (complex) num-
ber X or the polyhedron of a simplicial complex X
[15]?

The inverse problem, which is equally common, arises
when different typographical constructs have the same
mathematical meaning. For example, the meanings of
both the following two lines would be coded identically

3 + 4 (mod 5)

3 +5 4

and this would lead to great difficulty if an author
wanted to write:

We shall often write, for example, 3 + 4

(mod 5) in the shorter form 3 +5 4, or
even as simply 3 + 4 when this will not
lead to confusion.

Of course, natural languages are similarly ambiguous
and incomplete, but no one we know is suggesting that
in an SGML document each word should be coded such
that it reflects the full dictionary definition of the mean-
ing which that particular use of the word is intended to
have!

3.2 Who performs the markup of math?
How does one convert P-type mathematical material,
which an author has produced, to S-type notation,
which the publisher uses?

In [1, p. 9] Goldfarb gives a three-step model for docu-
ment processing:
1. recognition of part of a document (adding a generic

identifier for the appropriate element);
2. mapping (associating a processing function with

each element);
3. processing (e.g. translating elements into word pro-

cessor commands).

In the publishing of scientific papers and books steps
2 and 3 are the responsibility of the publisher. Tradi-
tionally, step 1 was also their responsibility: the tech-
nical editor adds markup signs in the margin of the
manuscript, depending on the text and the visual rep-
resentation that the house style dictates. It is, however,
unlikely that a technical editor is capable of identifying
the precise function of every part of a mathematical for-
mula, for several reasons, most of which were discussed
in the previous subsection, namely that mathematical
notation:
� is not unambiguous,
� is not completely standardized,
� is not a closed system.

Even if the technical editor were capable of identify-
ing every part of a formula, this would be too time-
consuming – and therefore too costly. However, un-
der certain conditions [16], automatic translation from

3There are examples of authors actually writing something like [Li; Lj] =
i

2
Lk , where the first i is an index, and the second

i stands for
p
�1.

4In SU2 it is the number of dimensions of the Lie group; in log
2
x it is the base of the logarithm; if x is a vector, the 2 in x2

is an index; the 2 in x2 could be a power, but if T is a tensor, the 2 in T 2

2 is a contravariant tensor index.

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage P Standard dtd’s and Scientific Publishing 73

visual structure to logical structure of mathematical ma-
terial is simplified greatly.

This, and what we discussed in section 3.1, leads us to
conclude the following. A publisher has no choice but
to use a P-type dtd for mathematical material that is sub-
mitted in unstructured form or in P-type notation. Even
if S-type markup of a mathematical formula would be
possible, conversion from P-type to S-type would be
difficult or even impossible. Conclusion: the tags for
S-type markup should not be added by the information
gatherer, but by the information providers, i.e. the au-
thors, who should be able to identify each part of their
formulas.

3.3 Feasibility of S-type notation
In our second scenario, authors would submit papers
with mathematical formulas in S-type notation. This
would enable the publisher to ‘down translate’5 to any
mathematics typesetting language (P-type notation).
However, the same reasoning as in section 3.1 leads
us to the following conjecture:

Conjecture. It is impossible to create an S-type dtd for
all of mathematics.

Representing the “full meaning” of a mathematical for-
mula, if such a notion exists, will almost certainly lead
to attempts to pack more and more unnecessary inform-
ation into the representation until it becomes useless for
any purpose. This is rather like Russell and Whitehead
reducing “simple arithmetic” to logic and taking sev-
eral pages of symbols to represent the “true meaning of
2 + 2 = 4”.

Even if it were possible to define an S-type dtd for
a certain branch of mathematics, this still gives prob-
lems. Supposing an S-type dtd contains an element for
a “derivative” of a function. Since the S-type dtd will
not contain any presentational attributes, a decision will
have to be made to represent the derivative of f(x) on

paper as f 0(x) or df(x)
dx . There are, however, times

(such as in this article) that both representations are re-
quired for the same semantic object, and that the author
will need other notation in addition to that defined by
the S-type dtd.

A likely reason for the belief that an S-type dtd is pos-
sible, is that many people in the worlds of document
processing or computer science are convinced that each
symbol has at most a few possible uses and that math-
ematical notation is as straightforward to analyse as, for
example, a piece of code for a somewhat complicated
programming language. The reality is that mathem-
atical notation is more akin to natural language: it is
ambiguous and incomplete, as we pointed out earlier.

3.4 Some problems with existing languages
To show that it is not obvious to capture mathematical
syntax in a dtd, let alone its semantics, consider the
example of a limit

lim
x!a

f(x):

The syntactical structure of a limit is:
� The limit operator
� The part containing the variable and its limit value
� The expression of which the limit is to be taken

The first part could:
� always be “lim”, in which case it is just a part of

the presentation of the formula and it should be left
out.

� be one of a finite list of alternatives, indicating the
type of limit (lim inf, sup, max etc.). In this case it
should be an attribute.

� be any expression.
� be any text.

We think the second possibility comes closest to the
syntax of the limit construct. The second and third
parts can be any mathematical expression.

Now let’s look at the way this formula is coded with
the dtd’s from ISO TR 9573, AAP math and Euromath
respectively. Using the mathematics dtd from ISO TR
9573 there are three possibilities:
� lim _{x → a} f(x)
� <plex><operator>lim</operator><from>x ↓
a</from> <of>f(x)</of></plex>

� <mfn name=lim><sub pos=mid>x →
a</sub><of>f(x)</of></mfn>

The AAP math dtd strongly suggests the following rep-
resentation:

<lim><op><rf>lim</rf></op><ll>x \→
a</ll><opd>f(x)</opd></lim>

whereas with the Euromath dtd we would have:

<lim.cst><l.part.c limitop=limm><range>
<relation>x \→ a

</relation></range></l.part.c><r.part.c>
<textual>f(x)</textual>

We see that the AAP and Euromath expressions are
closest to the limit syntax. The best solution from
ISO TR 9573 involves a more general “plex” construct,
which can be used for integrals, sums, products, set
unions, limits and others. When the plex construct
contains the actual lower and upper bounds it may even
give semantic information.

Some mathematicians, however, are not satisfied with
this solution [17]. The plex operation is probably a
notation for an iterated application of a binary oper-
ation (e.g. sums and products), while limits are of a

5‘Down’ because information is lost in the process; we borrowed the terminology of translating ‘up’ and ‘down’ from
Exoterica OmniMark.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

74 Standard dtd’s and Scientific Publishing Bijlage P

different nature. In many cases only the from part will
be used, and there the whole range of the bound variable
will be indicated, as an interval or a more general set.
How does one go about extracting the bound variable?

This supports our conjecture from the previous section,
namely that it is very hard to capture the semantics for
all mathematics. It also suggests that some redund-
ancy is required to select whichever notation is most
appropriate in a certain context.

4 Re-using mathematical formulas
There are two important uses for a generically coded
mathematical formula. The first one is in a mathem-
atical manipulation – or computer algebra – system
(MMS), such as Mathematica [18] or Maple [19]. Com-
puter programs for the numerical evaluation of formu-
las, for example written in FORTRAN or Modula-2,
can also be regarded as mathematical manipulation pro-
grams.

The second form of re-usage is in a mathematical type-
setting system, for formatting the formula on paper or
on screen; examples of this are TEX [20] and eqn/troff
[21, 22].

For computer algebra systems the notation for the for-
mula should be such that a particular type of manipu-
lation on a particular system is possible, given a ‘back-
ground’ of concepts and assumptions that enables the
system to interpret the input as a mathematical state-
ment.

The coding of a formula that is adequate for doc-
ument formatting, for example the TEX notation
fˆ{(2)} (x), is very unlikely to contain much of
the information required for a manipulation system to
make use of it. However, for a limited field of discourse
it is feasible to use the same coding for both types of
system [16].

Some examples: the square of sinx is typographically
represented as sin2 x, but a system like Mathematica or
Maple would probably prefer something like (sinx)2

as input. Typesetting the inverse of sinx as sin
�1 x,

however, could be confusing: does it mean 1=(sinx)

or arcsinx?

An MMS would probably require the second derivat-
ive of a function f with respect to its argument x to be
coded as (D;x)((D;x) f(x))), but on paper this would
be represented as f 00(x), or f (2)(x), or

d2f(x)
dx2

:

On the output side of a MMS there are other problems
since some of the coding necessary for typographically
acceptable output cannot be automatically derived by
the system from the coding used by the MMS.

The Euromath view [17] is that a common interface
should be designed together with the manufacturer of a

MMS. Perhaps an MMS-type dtd will be required.

5 Related problems
Another problem is, of course, that mathematics is by
its nature extensible, so there will always be new types
of manipulations to be done. Notations are changed
or new notations are invented almost every day, fig-
uratively speaking. Normally these new subjects will
use existing typographic representations, but the com-
puter algebra system will not know what formatting
to use! Occasionally a new typographic convention
will be needed. And although there is agreement on
the notation for most mathematical concepts, authors
of books on mathematics tend to introduce alternative
notations, for instance when they feel this is neces-
sary for didactic reasons. Mathematical notation is not
standardized, and it is open—anyone can use it, and
add to it, in any way they wish.

If we consider a given dtd at any time, we have to
ask ourselves: can an author add elements when the
need for this arises? Theoretically the answer is ‘Yes,
he can’ [23, p. 71], although it is not straightforward
to include the new elements in the content models of
existing elements.

Are such modifications by the author desirable? A dtd
which is locally modified by an author will quickly give
rise to the situation described in the introduction to this
paper, and this should therefore probably be discour-
aged. Others, however, have also noticed a need for
private elements, as described in EPSIG News 3, #4:
one of the challenging aspects of using SGML being
encountered by the TEI is that the guidelines need to
be extensible by researchers. They need to be able to
extend the dtd’s in some disciplined way [24].

This problem, however, may not be a serious one. The
collection of style elements is almost a closed set, since
the number of fonts, symbols and ways to combine
them is limited. In fact, most notation is not syntactic-
ally new, since the limited number of constructs works
well as a notation. The multitude of notations is ob-
tained by combinations of fonts, symbols and positions
(left or right subscript, left or right superscript, atop,
below, : : :), and by giving one notation more than one
meaning. This again seems to support our view that
only a P-type dtd can be constructed for all of mathem-
atics.

An SGML dtd, of whatever type, also doesn’t solve the
problems of new atomic or composite symbols, which
occur frequently in mathematics. As with new ele-
ments, an author can add entities for these new symbols.
There is no method to add the name of a new symbol,
whether atomic or composite, to an existing set of entity
definitions for symbols, other than to contact the owner
of the set and wait for an update.

Although there is now a standard method to describe
that symbol’s glyph (shape) [25], it is not practical for

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage P Standard dtd’s and Scientific Publishing 75

an author to include it. A compromise solution seems
to be to extend an existing set, such as the one from
ISO [26], as much as possible, and try to standardize
its use.

6 Conclusions
We have argued as follows:
� That a logical dtd in the sense of describing the

structure of the mathematical meaning is as im-
possible for maths as it is for natural language, and
also it is useless for formatting since the same math-
ematical structure can be visually represented in
many different ways. The correct one for any given
occurrence of that structure cannot be determined
automatically, but must be specified by the author.

� That what needs to be encoded for formatting pur-
poses, is information that enables a particular set of
detailed rules for maths typesetting to be applied.
This could be described as a ‘generic-visual encod-
ing’ or ‘encoding the logic of the visual structure’.
To establish exactly what these codes should be will
require an expert analysis (probably involving ex-
pertise from mathematicians, particularly editors,
and from typographers aware of the traditions of
mathematical typesetting).

� That this is different to what needs to be encoded for
use in mathematical manipulation software. Since
neither of these encodings can be deduced automat-
ically from the other, a useful database will need to
store both. Perhaps a separate dtd will be required
to enable this communication.

Possible solutions are
� A dtd based on a hybrid of visual structure and

logical structure
� Two dtd’s, one for visual structure and one for lo-

gical structure, that are linked in some fashion
� Two concurrent dtd’s, one for visual structure and

one for logical structure.

The simplest solution is probably to have a basic visual
structure which is described as an SGML entity, supple-
mented with a (redundant) logical structure, described
by a second SGML entity. This solution avoids any
special SGML features and gives the user all flexibility
for mixing and matching as required.

We believe that similar reasoning can be applied to
tables and chemical formulas, where the problem of
separation form from content is just as complex, or
even more.

A Existing mathematical notations
A.1 Comparison of existing dtd’s
In making comparisons between existing dtd’s we shall
refer often to what is probably the best-known system
for coding mathematical notation in documents. This
is the version of TEX coding used in LATEX [27] (which
differs little from Knuth’s Plain TEX notation described

in [20]), now a de facto standard in many areas. It is
a mixture of visual and logical tagging, with a bias to-
wards the visual which probably results from reasoning
similar to that in this paper.

The following document type definitions for mathem-
atical formulas were investigated for this paper: AAP
[28], ISO [29] and Euromath [5].

We will try to give a few general characteristics of each
of them:

AAP This dtd shows a hybrid of visual and logical
tagging. It is quite similar to the mathematical notation
of TEX [20].

Integrals, sums and similar constructions have sub-
elements tagged explicitly as lower limit, upper limit
and integrand (summand, : : :).

The same goes for fractions, roots, and limit-like con-
structions.

All rectangular schemes of mathematical expressions,
e.g. matrices and determinants, are tagged as ‘array’ in
this dtd. The delimiters are not part of the construction,
although matrices are usually indicated by (�) or as [�],
and determinants as j � j Alignment of rows, columns
and cells is indicated by attributes, even though they
have nothing to do with function, but are in fact pro-
cessing information. This idea also appears in the array
notation of LATEX [27].

A subscripts or superscript is indicated as such, and not
as power, index, : : :Greek letters, italics, emphasized
letters are all specifically marked up, which could cause
ambiguity as regards the semantics of a given symbol.

It contains tags of a non-presentational nature, for ex-
ample for vectors, dyads and tensors. It is possible,
however, to use font or style commands to obtain the
same result. Therefore, these tags, and similar ones,
appear to be superfluous.

For advanced calculus, this dtd is as complete as is re-
quired by many papers. To capture the semantics of
calculus, some modifications are required.

Euromath This dtd evolved from a earlier dtd in
the Grif [30] system and provides a hybrid of visual
and logical markup. One of the design principles was
the possibility of conversion to and from mathematical
notation in LATEX [27]. This could be dangerous, since
the design of a dtd is a modelling activity, and the data
being modelled is mathematics, not a text formatter.
An immediate consequence is that the semantics that
can be associated to a formula is that which is present
in LATEX (which excludes tensors). It does, however,
show the importance of LATEX for scientific publishing.
Another consequence is that the Euromath dtd bears a
strong similarity to the AAP dtd.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

76 Standard dtd’s and Scientific Publishing Bijlage P

Alignment of rows, columns and cells is not indicated
at all. However, every expression or sub-expression
carries an attribute that expresses the ‘style’ of the ex-
pression, a concept borrowed from TEX [20]. This
style specifies, among others, the placement of limits
of integrals and sums, and the position and size of su-
perscripts and subscripts. The reason for adding this
attribute is unclear, since it can be derived from the
context.6

In the Euromath dtd, a formula is considered as a se-
quence of parts or constructions that are arranged ho-
rizontally one after the other, and aligned along their
reference axes. This reflects the fact that most formu-
las can be read aloud, e.g. over the phone, and in that
sense are almost one-dimensional. Modes of math-
ematical expression that are clearly two-dimensional,
such as commutative diagrams – see [31, p. 125] or
[15, p. 312], are not covered by this dtd. These are
tacitly assumed to be part of a higher level dtd.

ISO This dtd is designed for logical tagging, cover-
ing mathematical formulas from advanced calculus.

There is redundancy in its notation. For example, ele-
ments exist for tensors and their indices, but also for
superscripts and subscripts. A good WYSIWYG formula

editor should help authors to unambiguously markup
their mathematics and to preserve its semantics.

There are tags of a non-presentational nature, for ex-
ample for vectors and tensors. However, the vector tag
can only be used for the object as a whole, and it is not
clear how an individual component should be coded.
Furthermore, this dtd contains tags for superscripts and
subscripts, thus allowing – but not forcing! – a user of
this dtd to write ‘the square of x’ as x²
instead of <power>2<of>x</power>.

The ISO dtd has a large overlap with the AAP dtd,
as is shown in appendix B. Both dtds can be used as
an intermediate language for conversion between word
processors. To capture the semantics of a an arbitrary
calculus formula, more is required.

B Comparison between ISO TR 9573 and
AAP math dtd’s

B.1 Formula and formula reference
Note: ISO assume spaces are ignored by the text
formatter and that positioning is done by according
to the rules of mathematical typesetting. AAP have a
NOTATION attribute on their formula that would al-
low blanks etc. to be ignored, and various characters
recognized as operators.

ISO AAP equivalent Difference

Inline formula

f f geo.form NOTATION (AAP)

Display formula

df fd geo.form NOTATION (AAP)

df id= la

df
align=(left|right|center)

la pre post 1. align=center (ISO)

2. la element (AAP) allows
multiple numbers

df num= contents of la
element

Display formula group

dfg AAP has no

dfg id= display formula groups

dfg
align=(left|right|center)

dfg num=

Formula reference

dfref refid= lar lar element has content;
dfref is empty

dfref page= the page attribute (ISO) adds
the page number

6TEX does this too, but the user of TEX can override the program’s automatic choice.

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage P Standard dtd’s and Scientific Publishing 77

B.2 Formula content
ISO AAP equivalent Difference

Horizontal and vertical alignment

mark id= hmk id= identical

markref refid= hmkr rid=

vmk id= vertical alignment

vmkr rid= is absent in ISO

Division points in a formula

break type= tu Both elements are empty.
type= indicates optionality.
tu is excluded from various
constructs.

Superscripts and subscripts

sub inf

sub pos=(pre|mid|post) inf
loc=(pre|post)

mid value (ISO) missing in
AAP

sup sup

sup pos=(pre|mid|post) sup
pos=(pre|post)

mid value (ISO) missing in
AAP

Boxes

box box style= style atribute (AAP) to to
change rule type missing in
ISO

Over embellishments

ov a

ov pos= a valign=

ov type= ac ac element (AAP) allows
simultaneous embellishments

ov style= ac style attribute (ISO) can be
achieved with ac

Tensors

tensor the tensor element(ISO)

tensor suffix= is absent in AAP.

tensor posf= can be visually achieved with
sup, inf and zw (zero width
character, absent in ISO)

Functions

mfn name= rf name attribute (ISO) has a
finite list of values.

fname fname (ISO) indicates

of arbitrary roman function; of
the argument; rf (AAP) only
marks up the function name

Roman and italic fonts

roman rm equivalent

italic it

Vectors

vec v equivalent

Fractions

frac fr equivalent

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

78 Standard dtd’s and Scientific Publishing Bijlage P

numer nu

over de

frac
align=(left|right|center)

fr align=(r|l|c) equivalent

AAP has shape attribute, fr
shape=(case|built|sol),
to indicate shape of fraction;
missing in ISO

Derivatives

diff inc The inc (AAP) element

diffof is for increments. The type

by is given in the content,

diff type=partial but it is not marked up

General plex (limits)

plex lim equivalent

operator op

from ll

to up

of opd

sum sum equivalent

integral in

product pr

Piles

pile stk equivalent

above1 lyr the role of above1 (ISO) is
not clear

above

pile
align=(left|right|center)

align=(l|r|c) equivalent

Matrices

matrix ar ISO marks up rows

col arc inside columns via

above arr above. AAP has elements

for both.

ar cs AAP allows various

ar rs column and row

separators.

ar ca AAP allows overall

column alignment

col
align=(left|right|center)

arc
align=(l|r|c|d|e)

d and e for alignment on
exponents and decimal points

Square root and square

sqrt rad, rdx 2 no separate elements

square sup 2 for square roots and squares in
AAP

Root and power

root rad The content of root

degree radix is the content of rad

of in AAP;

of element not required.

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage P Standard dtd’s and Scientific Publishing 79

power sup No general power

degree element in AAP

of

Open and close brackets, fences and posts

fence fen equivalent

fence style= fen style=

fence open= fen lp=

fence type= fen post=

fence close= rp

rp style=

rp post=

middle cp

middle style= cp style=

cp post=

B.2.1 Short references

Note: short reference maps are defined for fences in
both applications. In addition, AAP has maps for start-
ing rows and columns in arrays, and for certain accented
characters.

B.3 Facilities in AAP not available in ISO
B.3.1 Phrases in formulas

The phr element changes to roman font inside a for-
mula. The ISO application uses the roman element for
this.

B.3.2 Type style tags

By introducing elements that represent type styles
(e.g. Greek, bold, sans serif), some redundancy is built
into the AAP dtd. They are: bold (b), bold German
(bge), bold Greek (bg), bold italic (bi), bold italic
sans serif (bsf), bold script (bsc), Greek (g), italic
(it), italic sans serif (isf), monospace (ty), open-
face (op – note that this element already exists for op-
erator), roman (rm), sans serif (ssf), script (sc), and
small capitals (scp). It is our opinion that one should
differentiate between alphabets and presentation prop-
erties:
� Alphabets are: Latin, Greek, Hebrew and Cyrillic

(sufficient for math)
Properties are: roman, bold, italic, slant, sans-serif,
script, fraktur, openface,: : :

� All, or most, properties can be applied to the Latin
alphabet, as transformations.

Cyrillic is not a transformation of Latin, wheras bold
Latin is! Some combinations of properties are also al-
lowed, but there is, for example, no sans-serif fraktur or
fraktur Cyrillic, so some combinations are meaningless.

B.3.3 Some maths objects

AAP has tags for dyadics (dy), and fields (fi).

B.3.4 Horizontal and vertical spacing

AAP has tags for horizontal space (hsp) and vertical
space (vsp), for use in cases where space needs to be
explicitly indicated by the author.

B.3.5 Atom change tags

Mathematical formulae are composed of atoms. There
are 7 types, adapted from TEX [20]: Ord (ordinary),
Op (operators), Bin (binary operation, Rel (relation),
Open, Close, and Punct (punctuation). The ach (atom
change) tag changes a character’s atom type.

B.4 Future developments
There is a large overlap between the ISO and AAP (and
hence Euromath) dtd’s. It should be possible to make
a single dtd that contains ‘the best of both’. Indeed, a
working group is now studying this problem under the
auspices of the AAP, and a dtd designed along the lines
sketched in this article is under development.

References
[1] Charles Goldfarb. The SGML Handbook. Oxford

University Press, Oxford, 1990.
[2] Standard for electronic manuscript preparation

and markup version 2.0. Technical report, EPSIG,
Dublin (Ohio), 1987. ANSI/NISO Z39.59-1988.

[3] Techniques for using SGML. ISO Technical Re-
port 9573, 1988.

[4] American Chemical Society. ACS journal dtd.
(unpublished draft version).

[5] Björn von Sydow. On themath type in Euromath.
(preprint).

[6] N.A.F.M. Poppelier. SGML and TEX in scientific
publishing. TUGboat, 12:105–109, 1991.

[7] E. van Herwijnen, N.A.F.M. Poppelier, and J.C.
Sens. Using the electronic manuscript standard
for document conversion. EPSIG News, 1:14,
1992.

[8] E. van Herwijnen. The use of text interchange
standards for submitting physics articles to journ-
als. Comp. Phys. Comm., 57:244–250, 1989.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

80 Standard dtd’s and Scientific Publishing Bijlage P

[9] E. van Herwijnen and J.C. Sens. Streamlining
publishing procedures. Europhysics News, pages
171–174, November 1989.

[10] International standard ISO 8879: Standard gen-
eralized markup language (SGML). Technical
report, ISO, Geneva, 1986.

[11] M. Abramovitz and I. Stegun. Handbook of math-
ematical functions. Dover, New York, 1972.

[12] I.S. Gradshteyn and I.M. Ryzhik. Tables of integ-
rals, series, and products. Academic Press, New
York, 1980.

[13] S.A. Mamrak, C.S. O’Connell, and J. Barnes.
Technical documentation for the integrated
chameleon architecture. Technical report, March
1992. (Part of the documentation of the ICA soft-
ware).

[14] Neil M. Soiffer. The design of a user interface for
computer algebra systems. PhD thesis, Computer
Science Division (EECS), University of Califor-
nia, Berkeley, 1991. Report UCB/USD 91/626.

[15] M. Nakahara. Geometry, Topology and Physics.
Adam Hilger, Bristol, 1990.

[16] Dennis S. Arnon and Sandra A. Mamrak. On the
logical structure of mathematical notation. TUG-
boat, 12:479–484, 1991.

[17] Björn von Sydow. private communication to one
of us (EvH).

[18] Stephen Wolfram. Mathematica: a system for do-
ing mathematics by computer. Addison-Wesley,
Reading, 1991.

[19] Bruce W. Char, Keith O. Geddes, Gaston H. Gon-
net, and Stephen M. Watt. Maple User’s Guide.
WATCOM Publications Ltd., 1985.

[20] Donald E. Knuth. The TEX book. Addison-Wesley,
Reading, 1984.

[21] Joseph F. Osanna. UNIX Programmer’s Manual
(2b), chapter Nroff/troff. Bell Laboratories, 1978.

[22] Brian W. Kernighan and Linda Cherry. UNIX
Programmer’s Manual (2b), chapter Typesetting
mathematics. Bell Laboratories, 1978.

[23] E. van Herwijnen. Practical SGML. Kluwer Aca-
demic Publishers, Dordrecht, 1990.

[24] SGML’90 report. EPSIG News, 3(4):4, 1990.
[25] International standard ISO 9541: Font informa-

tion interchange. Technical report, ISO, Geneva,
1991.

[26] Information processing – SGML support facilities
– techniques for using SGML – part 13. Proposed
Draft Technical Report ISO 9573, 1991.

[27] Leslie Lamport. LATEX: a document preparation
system. Addison-Wesley, Reading, 1985.

[28] Markup of mathematical formulas. Technical re-
port, EPSIG, Dublin (Ohio), 1989.

[29] Information processing – SGML support facilities
– techniques for using SGML – part 11. Proposed
Draft Technical Report 9573, 1991.

[30] Grif SGML editor 2.1, December 1991.
[31] Yvonne Choquet-Bruhat and Cécile DeWitt-

Morette. Analysis, manifolds and physics. North-
Holland, Amsterdam, revised edition, 1987.

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

