BijlageW

Just give me a Lollipop (it makes my heart go giddy-up) 105

Just give me a Lollipop (it makes my heart go giddy-up)*

Victor Eijkhout

Department of Computer Science
University of Tennessee at Knoxville
KnoxvilleTN 37996-1301

ei j khout @s. ut k. edu

Abstract

The Lollipop format is a meta-format: it does not define user macros, but it contains the tools with
which a style designer can easily implement such user macros. This article will show some of the
capabilitiesof Lollipopand will givethereader asmall peek behind the scenes of theimplementation.

TeX is intended to support higher-level
languages for composition

Donald Knuth

1 Introduction

One of the reasons that TEX is not widely accepted
outside the scientific world is that the effort needed to
create new visual designs, or even to make minimal
modifications of a given design (“this article is a bit
too long, but since we have rather generous margins,
why don’'t we put the title in the margin next to the
abstract, instead of over it") is disproportionally large.
In Eijkhout and Lenstra (1991) it was argued that one
way of solving this problem would be to implement
powerful tools that a style designer could use to pro-
gram macros without ever programming in TEX itself.
In effect, the style designer “needs only say what she
wishes done”’ (Perlis) and the meta-format creates the
macros that do this. Thisarticle describes such a meta-
format: Lollipop!.

Now, for those who wondered at thetitleof thisarticle,
thefirst half refers to an epigram by Alan Perlis, to be
found on page 365 of The TeXbook; the second half
derives from a sixties ditty by Millie Small. All other
etymologiesare erroneous, and severely frowned upon.

2 TheStructureof Lollipop

The Lollipop format tries to provide tools that make
programming macros as hard as using them. | will not
discusstheuse of theresultingmacrosin detail, but will
focus on implementational matters.

*Presented at TUG '92, July 27-30, Portland, Oregon,USA.

2.1 Working with Lollipop.

In order to process a document in Lollipop there has to
be a ‘style definition’ for that document. This defin-
ition, a sequence of Lollipop macro cals, can be in
the document itself, it can be \ i nput, or it can be
contained in a format. The latter option of loading
a style definition in Lollipop and dumping the res-
ult as a new format is encouraged for two reasons.
First of dl, it indicates better the separation between
the work of the style designer and that of the user.
Secondly—especialy on old computers (say of the or-
der of a286)—processingthestyledefinitionfor acom-
plicated document can easily take one or two minutes.

2.2 Thebasic Lollipop macros.

The Lollipop format is partly a macro collection —and
some of the more interesting utilitieswill be discussed
below —and partly atool box for defining macros. The
tools are four macros for defining

e headings (\ Def i neHeadi ng): the main charac-
teristics of a heading are that it has atitle, and that
it should stay attached to the following text;

o lists (\ Def i neLi st): alist is characterized by
thefact that it has items;

o text blocks (\ Def i neText Bl ock): atext block
is basically just a group, however, it is so generd
that lists and headings are really specia cases of
text blocks; and

e pagegrids (\ Def i nePageG i d): apagegridis
(amacro that installs) an output routine.

Each of these macros® can have a large number of op-
tions.

!The Lollipop format is available for anonymousftp fromcs. ut k. edu.
2Thereisin fact afifth macro\ Def i neExt er nal | t em closely related to\ Def i neLi st ; it will be treated below.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Reprint MAPS#9 (92.2); Nov 1992

106

2.3 An exampleof theuse of Lollipop.
Although a large number of examples would be neces-
sary to give a representative sample of the possibilities
of the Lollipop tools, here is one example to give the
reader the basic idea. The following macro defines a
heading\ SubSect i on.

\ Def i neHeadi ng: SubSecti on counter:i

whi t ebef ore: 18pt whi t eaft er: 15pt

Poi ntsi ze: 14 Style: bold

bl ock: start SectionCounter
SubSecti onCounter literal:.
fillupto:levelindent title

external : Contents title external:stop

St op

literal:,

(Theterms ‘bl ock’, ‘ext er nal ' et ceteraare called
‘options’.) This definition specifies that subsections
have a counter that counts in lowercase roman numer-
als, that there should be a certain amount of white space
above and below it, and that it should be formatted in
14 point bold as the section counter, a comma, the sub-
section counter, afull stop, filling these counters up to
the\ | evel i ndent width (to be explained below),
and following thisby thetitle. Alsoit specifies that the
title should go to the contentsfile.

Thismacro\ Def i neHeadi ng must be apretty com-
plicated object, don’'t you think? Well, hereis the full
definition?:

\ @=neri cConstruct { Headi ng}
\ def \ @ef i neHeadi ng{
\ @ef i neSt opConmand{\ r el ax}
\ csar g\ edef {\ @ane} {\ @GENGDPEN
\'t he\ @rai n@pti ons@i st
\ @EN@CLOSE}
}

where the auxiliary macro\ csar g isdefined as

\ def\ csar g#1#2{\ expandaft er #1%
\ csnane#2\ endcsnane}

2.4 Definition of the\ Def i ne macros.

Since the \ Define. .. macros are so much
alike — many options are common to al of them
— | let al of them be defined automatically by the
same macro \ @zeneri cConstruct. This defines
\ Def i neHeadi ng as amacro that will processalist
of options (this part contains the common work for all
constructs), and then call \ @ef i neHeadi ng to do
the actua definition.

A cdl \ Def i neHeadi ng: Secti on will expand
first of al toacall

\ def \ @ane{ Secti on}

Just give me a Lollipop (it makes my heart go giddy-up)

BijlageW

As can be seen in the example above, this
macro is then used to define \ Section with
an \edef. This \ edef unpacks the token list
\ @rai n@ption@ist that has been construc-
ted during option processing. Also, the macros
\ @EEN@DPEN and \ @EEN@CLOSE contain lots of
conditionals that may or may not cause code to be in-
cluded in the definition of \ Sect i on depending on
values of parameters that were set during option pro-
cessing. Thisisexplained further bel ow.

25 Options.

Clearly, a large responsibility rests on processing the
options. For instance, in the example above the option
‘count er ' hasto alocate the appropriate counter, but
aso set thetest\ has@ount ert r ue.

Optionscan be general, such asthe‘count er’ option
(here\ xp is\ expandaf t er):

\ @=eneri cOption{counter}{\has@ounteryes
\ NewCount er : \ @ane
\ xp\ add@rar k@t em xp{\ @ane Counter}
\ Count er Repr esent ati on: \ @ane=#1

}

or they can be specific, such as the option controlling
white space between itemsin alist:

\ @i st Opti on{whitebetween}{....}
Generic options are defined as follows:

\ def\ @=xneri cOpti on#1{
\ append@ o@i st
{@zenericOptions}{\\#1;}
\ csar g\ def { Opti on@#1} ##1##2}

for instance, for ‘counter’ a macro \ Opti on-
@ount er isdefined. The definition

\ @=nericConstruct {List}
causes the definition of \ @.i st Opti on:

\ def\ @=neri cConstruct #1{
\ csarg\def { @1Opti on} ##1%
{\ csar g\ def { #1 @1} #H###1####2}

so that the ‘whi t ebet ween’ option causes the defin-
itionof amacro\ @Q.i st @i t ebet ween.

Now let’s say we are defining a heading, and we find
the option ‘f oo’. We then check whether a macro
\ Headi ng@ oo is defined. If so, we execute it; if
not we check for the existence of amore general macro
\ Opti on@ oo0. Thisisexecuted if it exists, and if it
doesn’t, we check whether \ f 00 is a defined control

?Several pieces of codein this article have been simplified. Others however, such as the following, have been left intact to
convey to the reader the ideathat Lollipop is a sophisticated format.

Reprint MAPS#9 (92.2); Nov 1992

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

BijlageW

sequence. If it is, we include the command \ f 0o in
the\ @i n@pti ons@ i st ,sothat it will later be
part of the definition of the heading we are defining; if
it is not, we generate an error message.

3 TheBasc Tools

Inthissection | will giveashort overview of the capab-
ilitiesof thefour basic macros. Firsttheblock structure
macros used in al of them are explained briefly.

3.1 Block structure.

Text blocks and lists are obvious candidates for en-
vironment macros that do grouping, so that values of
\ I ef t ski p,\ pari ndent, and whatever more can
stay local. As I've argued in (Eijkhout, 1990) such
macros can aso handle spacing above and below the
environment. Thus, Lollipop has two macros

\ def \ @EN@DPEN{\ out er @t art @onmmands

\ begi ngroup \inner @t art @onmmands}
\ def \ @EN@CLOSE{\ i nner @nd@ onmands

\ endgr oup \out er @nd@omrands}

that induce grouping, and that perform the various ac-
tionsneeded at the boundariesof an environment. This
also includes such common actions as handling coun-
ters and titles, placing marks, and defining labels for
symbolic referencing.

For instance, if the macro currently being defined (if
thisis\ Sect i on, the macro\ @ane has that value)
has a counter, that should be incremented. Therefore
the macro \ @EEN@DPEN containsaline

\i fhas@ount er
\ noexpand\ St epCount er : \ @ane
\fi

Recadll that these macros are called inside an \ edef
s0\ Sect i on macro contains the line

\ St epCount er: Secti on

only if the macro has indeed a counter.

Ingeneral, amacro\ f 0o openingtheenvironment will
contain the code generated by \ @en@pen, while
a corresponding command \ f oost op contains the
\ @en@! ose code.

Headings

Maybe somewhat surprisingly, a heading can be con-
sidered as an environment, namely as one where the
heading command contains both the opening and clos-
ing commands of the environment. Titles are treated
bel ow.

Text blocks

Text blocksareenvironmentsthat can span several para-
graphs. They have explicit open and close commands.
Text blocks are, for instance, away of having a chunk

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Just give me a Lollipop (it makes my heart go giddy-up) 107

of text beindented and perhapslabeled. Asan example,
here is the specification of the examples in (Eijkhout,
1992): they are indented, and the word ‘Exampl€e’ is
set initalic over them.

\ Def i neText Bl ock: exanpl e

br eakbef ore: 500 breakafter:1

PushLi st Level

noi ndent begingroup Style:italic
literal: Exanpl e endgroup

par nobreak | ndent:no

t ext

St op

Theoption‘t ext ’ indicateswherethetext of theblock
fitsin the specification. Any optionsappearing after this
option will result in code in the macro that closes the
environment. For instance, here is a possible way of
defining left-aligning display equations:

\ Def i neText Bl ock: Di spl ayEq
whi t ebef or e: abovedi spl ayski p
whi t eaf t er: bel owdi spl ayski p
whiteleft: | evelindent
literal:$ displaystyle text
literal:$
St op

The closing macro will be defined as

\ def\ D spl ayEqst op{
$
\endgroup ... }

wherethedollar correspondsto theoneafter the‘t ext ’
option.

Lists

The main point of interest about listsis the formatting
of theitem labels. The two main choices are

itemleft itemstop
for left-aligning, and
itemright itemstop

for right-aligning labels. The label can for instance
contain an ‘i t emCount er’, or an ‘i t ensi gn’, or
even both. The item sign and the representation of the
item counter are dependent on thelevel, and can be set
by the designer.

An interesting optionis‘descri pti on’. If thisop-
tion is used, all text following \'i t emto the end of
line will be taken as the label text. The IATEX style
description list can be implemented as

itemleft Style:bold
descri pti on Spaces: 2
itemstop

Reprint MAPS#9 (92.2); Nov 1992

108 Just give me a Lollipop (it makes my heart go giddy-up)

which isused as

\item The | abel
and the next line is again nornal

Abbreviated closing

Both listsand text blocks have an explicit closing com-
mand. Since such phenomena are properly nested, the
format can very well figure out what to close if | tell
it to close the current block. Therefore, the macro \ >
closes whatever list or text block is opened last, and
\ >] closes all lists and text blocks that are currently
open.

Pagegrids

Definition of output routines is much easier in Lolli-
pop than in plain TEX, but till it isthe hardest part of
working with Lollipop. Hence I will not go into full
detail.

The most important option for page grids is ‘t ext’.
It indicates that a page will use part of \ box255. If
this option does not appear, we are defining an output
routine that does not use \ box255. For such output
routines the option \ next pagegri d is crucia: it
tells TEX what output routine to take when the current
one has output a page.

For instance, if left and right hand pages have a differ-
ent layout, we could implement them as separate output
routines:

\ Defi nePageG i d: | eft page
next pagegri d: ri ght page

\ Def i nePageG i d: ri ght page
next pagegri d: | ef t page

The‘t ext ' option usually appearsinside

band: start text band: end

and it can occur severa timesthere. For instance

band: start text
whi t e: 20pt text
band: st op

defines a two column layout with a gutter width of 20
point.

Some of the options for page grid (height and width
for instance) have a global significance, but for others
it is recorded whether they appear before or after the
‘t ext’ options. Depending on this, they become part
of the header or the footer of the page.

BijlageW

When theoutput routineisinvoked, Lollipop assembles
any header or footer, and computes the remai ning space
for text. If thisis not equa to the size of \ box255,
\ vsi ze isreset, and \ box 255 isthrown back to the
main vertical list. This mechanism is an easy way to
get pages with the same size if the size of the header or
footer can vary.

Definition of output routinesisin fact so easy inLolli-
pop that for title pages of chaptersit is easier to write
a special page grid, than to mess around with alot of
macros. Thustheline

\ Chapter The second chapter\ par

may look to the user as calling amacro, whereasin fact
it installsanew output routinefor the chapter titlepage.
The way thetitleishandled is explained bel ow.

4 Titlesand References

The perceptivereader may have noticed inthedefinition
of \ Def i neHeadi ng above that the macro defined
is not declared with a parameter. How then are titles
handled?

WEell, sincein Lollipop not only headings, but also lists,
text blocks, and page gridscan havetitles(but need not;
every once in a while a heading without a title can be
convenient, and output routines with titles are surpris-
ingly useful, as| indicated above), theoption‘titl e’
controls whether a construct actually has atitle by set-
ting aswitch\ifhas@i t! e totrue. Definition of
the actual heading macro then executes aline

\ifhas@itle \@itelize{\ @ane}\fi

where \ @i tel i ze is a macro that takes a macro,
and redefines it with an argument.

This redefinition trick can even be performed twice: if
the macro has a counter, this should be referenceable.
For some reason | decided against the IATEX approach
of using\ | abel commands: any command that can be
referenced in Lollipop* accepts an optiona parameter
with the label key. For instance

\ Section[definition:section] Notations
and Definitions\par

givesthekey ‘def i ni ti on: secti on’ toasection.

5 Indentation Levels

If listsof varioustypesareused in anested fashion, each
next level is indented with respect to the previous one
by a certain amount. Specifying these amounts can be
donequiteflexibly in Lollipop, and it is a so made easy
for the designer to have other indented materia lineup
with theseimplied left margins (Braahms, Eijkhout and
Poppelier, 1989).

“Not explained in this article is that the way something is referenced is also easily determined by the user. This makesit
possible for instance to refer to chapters by name instead of by number.

Reprint MAPS#9 (92.2); Nov 1992

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

BijlageW

On each level, a control sequence \ | evel i ndent
indicates the amount by which the next level will be
indented. Thus, letting\ par i ndent be set equal to
\ [evel i ndent at the start of atext block, will give
nicely aligning indentationsno matter at what level the
block appears.

Thevalueof \ | evel i ndent isdetermined by look-
ing at thelevel number (say that thisis 3), and checking
whether amacro \ | evel i ndentiii exists. If so,
the value of thisis taken, if not, some default fraction
of the value of \ basi ci ndent istaken. The style
designer can set this\ basi ci ndent, and adjust in-
dividual levels by

\ Level | ndent : 3=25pt

or similar calls.

Lists are indented to the next level automaticaly, but
in order to provide this functionality for other objects
there exists an explicit

\ PushLi st Level

command. Thereis even a\ PopLi st Level com-
mand that has varioususes. For instance, it can be used
to realise ‘ suspended lists': the effect of

\item Sone text\par

{\ PopLi st Level

\ noi ndent Sone text.\par}
\item Again an item

is that the ‘some text’ aligns with the text outside the
list, instead of with theitemsin thelist.

Popping and pushing list levelsisal so essential for cor-
rect formatting of external files; see below.

6 Marks

TeX's marks are a means of communication between
routines that supply certain information (values of
counters, titles), and the output routine. Since thereis
no way for the output routineto tell therest of the mac-
roswhich ones should passinformationthrough marks,
in Lollipop everyone puts their information (that is,
titles and counter values) in marks. The output routine
then selects with asimple cal, for instance

\ Last Pl aced: SectionTitle

thevalueof \ Secti onTi t| e inthe\ bot mar k.

Let's look at the implementation of this. There is a
list\ mar k@t ens that has the names of everything
that goesin a mark. For instance, defining a heading
\ Secti on causes cdls

\add@rar k@t en{ Secti onTi tl e}
\ add@rar k@t en{ Sect i onCount er}

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Just give me a Lollipop (it makes my heart go giddy-up) 109

These dlocate token lists

\mar k@ oks@ectionTitl e
\ mar k@ oks @ect i onCount er

which are to contain the titleand the counter value, and
which get their value from a command such as

\refresh@uark@tem
{SectionTitle}{The title}

whenever \ Sect i oniscalled. Everytimeamark item
is refreshed, a new mark is placed on the page which
contains the values of all mark token lists. The output
routine then simply picks from this structure whatever
information it needs.

7 External Files

Formats such as IATEX usually supply facilities for a
table of contents, and maybe lists of figures and tables,
but what if an author needs in addition a list of nota-
tions, one of definitions, and one of authorsreferenced?
Lollipop takes the drastic approach, and provides none
of these.

But it makesit easy for you to define them yourself.

7.1 User interface.

An external fileis characterized by in an internal name,
and afile name extension:

\ Defi neExt ernal Fi | e: Cont ent s=t oc

This command does some initiaization such as a call
to\ newwr i t e, andit creates aswitch so that the user
can specify with

\WiteContents: no

that thefileisnot to be overwritteninthisrun. A global
switch

\WiteExtern: no

prohibitsall externa writes.

Next, commands such as\ Sect i on have to specify
that they want to write out information. This is done
with the option ‘ext er nal '. Usualy, al that iswrit-
ten out isthetitle

external : contents title external:stop

but other information can be written out too.

Thehard part about externd filesisspecifying how their
information isto betypeset. Telling that afile needs to
be loaded issimple:

\ LoadExt ernal Fil e: Contents

Reprint MAPS#9 (92.2); Nov 1992

110

For every command that writes information to an ex-
terna file, the style definition needs to contain a call

\ DefineExternal Item Section file:Contents

itemleft Style:roman SectionLabel
itemstop

title Spaces:2 Style:italic Page

St op

where*Sect i onLabel ’ isthe counter that was writ-
ten out automatically for \ Secti on, and ‘title’
is whatever information was specified with the
‘ext er nal ’ option.

In effect, this defines the layout of alist that has only
one item. Now we see another use for pushing indent-
ation levels: contents items for subsections may need
to be indented, but since they are a separate list on
the outer level, we need to push them explicitly to the
correct indentation:

\ Def i neExternal | tem SubSecti on
file:Contents
Pushl ndent Level Styl e:ronman
itemright SectionLabel literal:.
SubSecti onLabel Spaces:1 item stop
title Spaces:2 Style:italic Page
St op

Note that a composite label is made here out of the
section and subsection numbers.

7.2 Implementation.

External files are handled in much the same way they
are trested in IATEX: al information is written to the
main auxiliary file, and thisisloaded at the end of the
run, in order to update the other external files.

Writing out titles and such means that these are sub-
ject to the usua expansion of \write. The IATEX
approach of lettingthe user put\ pr ot ect commands
has proved over time to be too error-prone, so I've de-
cided to inhibit all expansionin titles.

8 Extendability of Lollipop

For each macro package, the question comes up ‘but
what if | want something that it cannot do? The option
mechanism of Lollipop can copewith thisquite easily.
Any option that is undefined is interpreted as a con-
trol sequence. Thus the style designer can incorporate
arbitrary macros.

For instance, the title pages of TeX by Topic (Eijkhout,
1992) have quite elaborate headings, for which
| programmed a separate macro \ Chapt er Head,
which uses the (automatically generated) macro
\ChapterTitle.

\ def \ Chapt er Head
{\ hbox{
\ Poi nt Si ze: 24 \ Styl e:roman

Just give me a Lollipop (it makes my heart go giddy-up)

BijlageW
\ChapterTitle

The macro \ Chapter then uses this

\ Chapt er Head:

\ Def i nePageG i d: Chapt er
Next PageGri d: t ext page HasTitl e: yes

Chapt er Head
St op

The undefined option ‘Chapt er Head’ generates a
call tothe macro\ Chapt er Head.

9 Goodies

It goes without saying that Lollipop has a sophistic-
ated font selection scheme, a verbatim mode, and other
assorted niceties. However, since these facilities are
rather pedestrian, if rather useful, 1 will not discuss
them here.

10 Conclusion

Lollipopisalong,complicated format. Anarticleabout
it can only give a taste of its philosophy. | hope this
piece has given the reader an idea of how macros can
be generated automatically, according to the wishes of
a style designer. People wanting to use Lollipop can
get the software and a user’s guide; people wanting to
understand it will have for awhile only thisarticle and
the codeto go on.

Asyet thereisno rea experience with Lollipop. | have
used it myself for two books, but | am the author. | find
it very easy to use, but if something goes wrong the
errors can be mystifying in the extreme.® Error mes-
sages are still amajor concern. Recall that macros are
automatically defined and redefined, by macros that are
themselves never explicitly defined. Still, | hope that
the dynamic approach will catch enough user mistakes
already in the definition stage for this format to be of
value to non-TeXnicians wishing to use TeX.

References

[1] Braams, Johannes, Victor Eijkhout, and Nico
Poppelier, “The development of national IATEX
styles', TUGboat, 10(3), pages 401-406, 1989.

[2] Eijkhout, Victor, A paragraph skip scheme, TUG-
boat, 11(4), pages 616-619, 1990.

[3] Eijkhout, Victor, TEX by Topic, Addison-Wedley,
1992.

[4] Eijkhout, Victor and Andries Lenstra. “The doc-
ument style designer as a separate entity”, TUG-
boat, 12(1), pages 31-34, 1991.

[5] Perlis, Alan, “Epigrams on Programming”, ACM
Sgplan Notices, 17 (9), pages 7-13, 1982.

®And the macros themselves can become pretty big. While debugging, | discovered that TEX will ‘only’ \ show the first

1000 characters of amacro. . .
Reprint MAPS#9 (92.2); Nov 1992

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

