
Bijlage W Just give me a Lollipop (it makes my heart go giddy-up) 105

Just give me a Lollipop (it makes my heart go giddy-up)�

Victor Eijkhout

Department of Computer Science
University of Tennessee at Knoxville

Knoxville TN 37996-1301
eijkhout@cs.utk.edu

Abstract

The Lollipop format is a meta-format: it does not define user macros, but it contains the tools with
which a style designer can easily implement such user macros. This article will show some of the
capabilities of Lollipop and will give the reader a small peek behind the scenes of the implementation.

TEX is intended to support higher-level
languages for composition

Donald Knuth

1 Introduction
One of the reasons that TEX is not widely accepted
outside the scientific world is that the effort needed to
create new visual designs, or even to make minimal
modifications of a given design (“this article is a bit
too long, but since we have rather generous margins,
why don’t we put the title in the margin next to the
abstract, instead of over it”) is disproportionally large.
In Eijkhout and Lenstra (1991) it was argued that one
way of solving this problem would be to implement
powerful tools that a style designer could use to pro-
gram macros without ever programming in TEX itself.
In effect, the style designer “needs only say what she
wishes done” (Perlis) and the meta-format creates the
macros that do this. This article describes such a meta-
format: Lollipop1.

Now, for those who wondered at the title of this article,
the first half refers to an epigram by Alan Perlis, to be
found on page 365 of The TEXbook; the second half
derives from a sixties ditty by Millie Small. All other
etymologies are erroneous, and severely frowned upon.

2 The Structure of Lollipop
The Lollipop format tries to provide tools that make
programming macros as hard as using them. I will not
discuss the use of the resulting macros in detail, but will
focus on implementational matters.

2.1 Working with Lollipop.
In order to process a document in Lollipop there has to
be a ‘style definition’ for that document. This defin-
ition, a sequence of Lollipop macro calls, can be in
the document itself, it can be \input, or it can be
contained in a format. The latter option of loading
a style definition in Lollipop and dumping the res-
ult as a new format is encouraged for two reasons.
First of all, it indicates better the separation between
the work of the style designer and that of the user.
Secondly—especially on old computers (say of the or-
der of a 286)—processing the style definition for a com-
plicated document can easily take one or two minutes.

2.2 The basic Lollipop macros.
The Lollipop format is partly a macro collection – and
some of the more interesting utilities will be discussed
below – and partly a tool box for defining macros. The
tools are four macros for defining
� headings (\DefineHeading): the main charac-

teristics of a heading are that it has a title, and that
it should stay attached to the following text;

� lists (\DefineList): a list is characterized by
the fact that it has items;

� text blocks (\DefineTextBlock): a text block
is basically just a group, however, it is so general
that lists and headings are really special cases of
text blocks; and

� page grids (\DefinePageGrid): a page grid is
(a macro that installs) an output routine.

Each of these macros2 can have a large number of op-
tions.

�Presented at TUG ’92, July 27–30, Portland, Oregon,USA.
1The Lollipop format is available for anonymous ftp from cs.utk.edu.
2There is in fact a fifth macro \DefineExternalItem, closely related to \DefineList; it will be treated below.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

106 Just give me a Lollipop (it makes my heart go giddy-up) Bijlage W

2.3 An example of the use of Lollipop.
Although a large number of examples would be neces-
sary to give a representative sample of the possibilities
of the Lollipop tools, here is one example to give the
reader the basic idea. The following macro defines a
heading \SubSection.

\DefineHeading:SubSection counter:i
whitebefore:18pt whiteafter:15pt
Pointsize:14 Style:bold
block:start SectionCounter literal:,

SubSectionCounter literal:.
fillupto:levelindent title

external:Contents title external:stop
Stop

(The terms ‘block’, ‘external’ et cetera are called
‘options’.) This definition specifies that subsections
have a counter that counts in lowercase roman numer-
als, that there should be a certain amount of white space
above and below it, and that it should be formatted in
14 point bold as the section counter, a comma, the sub-
section counter, a full stop, filling these counters up to
the \levelindent width (to be explained below),
and following this by the title. Also it specifies that the
title should go to the contents file.

This macro \DefineHeadingmust be a pretty com-
plicated object, don’t you think? Well, here is the full
definition3:

\@GenericConstruct{Heading}
\def\@DefineHeading{

\@DefineStopCommand{\relax}
\csarg\edef{\@name}{\@GEN@OPEN

\the\@main@options@list
\@GEN@CLOSE}

}

where the auxiliary macro \csarg is defined as

\def\csarg#1#2{\expandafter#1%
\csname#2\endcsname}

2.4 Definition of the \Define macros.
Since the \Define... macros are so much
alike – many options are common to all of them
– I let all of them be defined automatically by the
same macro \@GenericConstruct. This defines
\DefineHeading as a macro that will process a list
of options (this part contains the common work for all
constructs), and then call \@DefineHeading to do
the actual definition.

A call \DefineHeading:Section will expand
first of all to a call

\def\@name{Section}

As can be seen in the example above, this
macro is then used to define \Section with
an \edef. This \edef unpacks the token list
\@main@option@list that has been construc-
ted during option processing. Also, the macros
\@GEN@OPEN and \@GEN@CLOSE contain lots of
conditionals that may or may not cause code to be in-
cluded in the definition of \Section depending on
values of parameters that were set during option pro-
cessing. This is explained further below.

2.5 Options.
Clearly, a large responsibility rests on processing the
options. For instance, in the example above the option
‘counter’ has to allocate the appropriate counter, but
also set the test \has@countertrue.

Options can be general, such as the ‘counter’ option
(here \xp is \expandafter):

\@GenericOption{counter}{\has@counteryes
\NewCounter:\@name
\xp\add@mark@item\xp{\@name Counter}
\CounterRepresentation:\@name=#1
}

or they can be specific, such as the option controlling
white space between items in a list:

\@ListOption{whitebetween}{....}

Generic options are defined as follows:

\def\@GenericOption#1{
\append@to@list

{@GenericOptions}{\\#1;}
\csarg\def{Option@#1}##1##2}

for instance, for ‘counter’ a macro \Option-
@counter is defined. The definition

\@GenericConstruct{List}

causes the definition of \@ListOption:

\def\@GenericConstruct#1{
\csarg\def{@#1Option}##1%

{\csarg\def{#1@##1}####1####2}

so that the ‘whitebetween’ option causes the defin-
ition of a macro \@List@whitebetween.

Now let’s say we are defining a heading, and we find
the option ‘foo’. We then check whether a macro
\Heading@foo is defined. If so, we execute it; if
not we check for the existence of a more general macro
\Option@foo. This is executed if it exists, and if it
doesn’t, we check whether \foo is a defined control

3Several pieces of code in this article have been simplified. Others however, such as the following, have been left intact to
convey to the reader the idea that Lollipop is a sophisticated format.

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage W Just give me a Lollipop (it makes my heart go giddy-up) 107

sequence. If it is, we include the command \foo in
the \@main@options@list, so that it will later be
part of the definition of the heading we are defining; if
it is not, we generate an error message.

3 The Basic Tools
In this section I will give a short overview of the capab-
ilities of the four basic macros. First the block structure
macros used in all of them are explained briefly.

3.1 Block structure.
Text blocks and lists are obvious candidates for en-
vironment macros that do grouping, so that values of
\leftskip, \parindent, and whatever more can
stay local. As I’ve argued in (Eijkhout, 1990) such
macros can also handle spacing above and below the
environment. Thus, Lollipop has two macros

\def\@GEN@OPEN{\outer@start@commands
\begingroup \inner@start@commands}

\def\@GEN@CLOSE{\inner@end@commands
\endgroup \outer@end@commands}

that induce grouping, and that perform the various ac-
tions needed at the boundaries of an environment. This
also includes such common actions as handling coun-
ters and titles, placing marks, and defining labels for
symbolic referencing.

For instance, if the macro currently being defined (if
this is \Section, the macro \@name has that value)
has a counter, that should be incremented. Therefore
the macro \@GEN@OPEN contains a line

\ifhas@counter
\noexpand\StepCounter:\@name

\fi

Recall that these macros are called inside an \edef,
so \Section macro contains the line

\StepCounter:Section

only if the macro has indeed a counter.

In general, a macro \foo opening the environment will
contain the code generated by \@gen@open, while
a corresponding command \foostop contains the
\@gen@close code.

Headings
Maybe somewhat surprisingly, a heading can be con-
sidered as an environment, namely as one where the
heading command contains both the opening and clos-
ing commands of the environment. Titles are treated
below.

Text blocks
Text blocks are environments that can span several para-
graphs. They have explicit open and close commands.
Text blocks are, for instance, a way of having a chunk

of text be indented and perhaps labeled. As an example,
here is the specification of the examples in (Eijkhout,
1992): they are indented, and the word ‘Example’ is
set in italic over them.

\DefineTextBlock:example
breakbefore:500 breakafter:1
PushListLevel
noindent begingroup Style:italic

literal:Example endgroup
par nobreak Indent:no
text
Stop

The option ‘text’ indicates where the text of the block
fits in the specification. Any options appearing after this
option will result in code in the macro that closes the
environment. For instance, here is a possible way of
defining left-aligning display equations:

\DefineTextBlock:DisplayEq
whitebefore:abovedisplayskip
whiteafter:belowdisplayskip
whiteleft:levelindent
literal:$ displaystyle text
literal:$
Stop

The closing macro will be defined as

\def\DisplayEqstop{ ...
$
\endgroup ... }

where the dollar corresponds to the one after the ‘text’
option.

Lists
The main point of interest about lists is the formatting
of the item labels. The two main choices are

item:left ... item:stop

for left-aligning, and

item:right ... item:stop

for right-aligning labels. The label can for instance
contain an ‘itemCounter’, or an ‘itemSign’, or
even both. The item sign and the representation of the
item counter are dependent on the level, and can be set
by the designer.

An interesting option is ‘description’. If this op-
tion is used, all text following \item to the end of
line will be taken as the label text. The LATEX style
description list can be implemented as

item:left Style:bold
description Spaces:2
item:stop

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

108 Just give me a Lollipop (it makes my heart go giddy-up) Bijlage W

which is used as

\item The label
and the next line is again normal

Abbreviated closing
Both lists and text blocks have an explicit closing com-
mand. Since such phenomena are properly nested, the
format can very well figure out what to close if I tell
it to close the current block. Therefore, the macro \>
closes whatever list or text block is opened last, and
\>] closes all lists and text blocks that are currently
open.

Page grids
Definition of output routines is much easier in Lolli-
pop than in plain TEX, but still it is the hardest part of
working with Lollipop. Hence I will not go into full
detail.

The most important option for page grids is ‘text’.
It indicates that a page will use part of \box255. If
this option does not appear, we are defining an output
routine that does not use \box255. For such output
routines the option \nextpagegrid is crucial: it
tells TEX what output routine to take when the current
one has output a page.

For instance, if left and right hand pages have a differ-
ent layout, we could implement them as separate output
routines:

\DefinePageGrid:leftpage
nextpagegrid:rightpage
...

\DefinePageGrid:rightpage
nextpagegrid:leftpage
...

The ‘text’ option usually appears inside

band:start text band:end

and it can occur several times there. For instance

band:start text
white:20pt text
band:stop

defines a two column layout with a gutter width of 20
point.

Some of the options for page grid (height and width
for instance) have a global significance, but for others
it is recorded whether they appear before or after the
‘text’ options. Depending on this, they become part
of the header or the footer of the page.

When the output routine is invoked, Lollipop assembles
any header or footer, and computes the remaining space
for text. If this is not equal to the size of \box255,
\vsize is reset, and \box255 is thrown back to the
main vertical list. This mechanism is an easy way to
get pages with the same size if the size of the header or
footer can vary.

Definition of output routines is in fact so easy in Lolli-
pop that for title pages of chapters it is easier to write
a special page grid, than to mess around with a lot of
macros. Thus the line

\Chapter The second chapter\par

may look to the user as calling a macro, whereas in fact
it installs a new output routine for the chapter title page.
The way the title is handled is explained below.

4 Titles and References
The perceptive reader may have noticed in the definition
of \DefineHeading above that the macro defined
is not declared with a parameter. How then are titles
handled?

Well, since in Lollipop not only headings, but also lists,
text blocks, and page grids can have titles (but need not;
every once in a while a heading without a title can be
convenient, and output routines with titles are surpris-
ingly useful, as I indicated above), the option ‘title’
controls whether a construct actually has a title by set-
ting a switch \ifhas@title to true. Definition of
the actual heading macro then executes a line

\ifhas@title \@Titelize{\@name}\fi

where \@Titelize is a macro that takes a macro,
and redefines it with an argument.

This redefinition trick can even be performed twice: if
the macro has a counter, this should be referenceable.
For some reason I decided against the LATEX approach
of using\label commands: any command that can be
referenced in Lollipop4 accepts an optional parameter
with the label key. For instance

\Section[definition:section] Notations
and Definitions\par

gives the key ‘definition:section’ to a section.

5 Indentation Levels
If lists of various types are used in a nested fashion,each
next level is indented with respect to the previous one
by a certain amount. Specifying these amounts can be
done quite flexibly in Lollipop, and it is also made easy
for the designer to have other indented material line up
with these implied left margins (Braahms, Eijkhout and
Poppelier, 1989).

4Not explained in this article is that the way something is referenced is also easily determined by the user. This makes it
possible for instance to refer to chapters by name instead of by number.

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage W Just give me a Lollipop (it makes my heart go giddy-up) 109

On each level, a control sequence \levelindent
indicates the amount by which the next level will be
indented. Thus, letting \parindent be set equal to
\levelindent at the start of a text block, will give
nicely aligning indentations no matter at what level the
block appears.

The value of \levelindent is determined by look-
ing at the level number (say that this is 3), and checking
whether a macro \levelindentiii exists. If so,
the value of this is taken, if not, some default fraction
of the value of \basicindent is taken. The style
designer can set this \basicindent, and adjust in-
dividual levels by

\LevelIndent:3=25pt

or similar calls.

Lists are indented to the next level automatically, but
in order to provide this functionality for other objects
there exists an explicit

\PushListLevel

command. There is even a \PopListLevel com-
mand that has various uses. For instance, it can be used
to realise ‘suspended lists’: the effect of

\item Some text\par
{\PopListLevel
\noindent Some text.\par}
\item Again an item

is that the ‘some text’ aligns with the text outside the
list, instead of with the items in the list.

Popping and pushing list levels is also essential for cor-
rect formatting of external files; see below.

6 Marks
TEX’s marks are a means of communication between
routines that supply certain information (values of
counters, titles), and the output routine. Since there is
no way for the output routine to tell the rest of the mac-
ros which ones should pass information through marks,
in Lollipop everyone puts their information (that is,
titles and counter values) in marks. The output routine
then selects with a simple call, for instance

\LastPlaced:SectionTitle

the value of \SectionTitle in the \botmark.

Let’s look at the implementation of this. There is a
list \mark@items that has the names of everything
that goes in a mark. For instance, defining a heading
\Section causes calls

\add@mark@item{SectionTitle}
\add@mark@item{SectionCounter}

These allocate token lists

\mark@toks@SectionTitle
\mark@toks@SectionCounter

which are to contain the title and the counter value, and
which get their value from a command such as

\refresh@mark@item
{SectionTitle}{The title}

whenever \Section is called. Everytime a mark item
is refreshed, a new mark is placed on the page which
contains the values of all mark token lists. The output
routine then simply picks from this structure whatever
information it needs.

7 External Files
Formats such as LATEX usually supply facilities for a
table of contents, and maybe lists of figures and tables,
but what if an author needs in addition a list of nota-
tions, one of definitions, and one of authors referenced?
Lollipop takes the drastic approach, and provides none
of these.

But it makes it easy for you to define them yourself.

7.1 User interface.
An external file is characterized by in an internal name,
and a file name extension:

\DefineExternalFile:Contents=toc

This command does some initialization such as a call
to \newwrite, and it creates a switch so that the user
can specify with

\WriteContents:no

that the file is not to be overwritten in this run. A global
switch

\WriteExtern:no

prohibits all external writes.

Next, commands such as \Section have to specify
that they want to write out information. This is done
with the option ‘external’. Usually, all that is writ-
ten out is the title

external:contents title external:stop

but other information can be written out too.

The hard part about external files is specifying how their
information is to be typeset. Telling that a file needs to
be loaded is simple:

\LoadExternalFile:Contents

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

110 Just give me a Lollipop (it makes my heart go giddy-up) Bijlage W

For every command that writes information to an ex-
ternal file, the style definition needs to contain a call

\DefineExternalItem:Section file:Contents
item:left Style:roman SectionLabel

item:stop
title Spaces:2 Style:italic Page
Stop

where ‘SectionLabel’ is the counter that was writ-
ten out automatically for \Section, and ‘title’
is whatever information was specified with the
‘external’ option.

In effect, this defines the layout of a list that has only
one item. Now we see another use for pushing indent-
ation levels: contents items for subsections may need
to be indented, but since they are a separate list on
the outer level, we need to push them explicitly to the
correct indentation:

\DefineExternalItem:SubSection
file:Contents
PushIndentLevel Style:roman
item:right SectionLabel literal:.

SubSectionLabel Spaces:1 item:stop
title Spaces:2 Style:italic Page
Stop

Note that a composite label is made here out of the
section and subsection numbers.

7.2 Implementation.
External files are handled in much the same way they
are treated in LATEX: all information is written to the
main auxiliary file, and this is loaded at the end of the
run, in order to update the other external files.

Writing out titles and such means that these are sub-
ject to the usual expansion of \write. The LATEX
approach of letting the user put \protect commands
has proved over time to be too error-prone, so I’ve de-
cided to inhibit all expansion in titles.

8 Extendability of Lollipop
For each macro package, the question comes up ‘but
what if I want something that it cannot do?’ The option
mechanism of Lollipop can cope with this quite easily.
Any option that is undefined is interpreted as a con-
trol sequence. Thus the style designer can incorporate
arbitrary macros.

For instance, the title pages of TEX by Topic (Eijkhout,
1992) have quite elaborate headings, for which
I programmed a separate macro \ChapterHead,
which uses the (automatically generated) macro
\ChapterTitle.

\def\ChapterHead
{\hbox{ ...

\PointSize:24 \Style:roman

\ChapterTitle
...}

The macro \Chapter then uses this
\ChapterHead:

\DefinePageGrid:Chapter
NextPageGrid:textpage HasTitle:yes
...
ChapterHead
... Stop

The undefined option ‘ChapterHead’ generates a
call to the macro \ChapterHead.

9 Goodies
It goes without saying that Lollipop has a sophistic-
ated font selection scheme, a verbatim mode, and other
assorted niceties. However, since these facilities are
rather pedestrian, if rather useful, I will not discuss
them here.

10 Conclusion
Lollipop is a long,complicated format. An article about
it can only give a taste of its philosophy. I hope this
piece has given the reader an idea of how macros can
be generated automatically, according to the wishes of
a style designer. People wanting to use Lollipop can
get the software and a user’s guide; people wanting to
understand it will have for a while only this article and
the code to go on.

As yet there is no real experience with Lollipop. I have
used it myself for two books, but I am the author. I find
it very easy to use, but if something goes wrong the
errors can be mystifying in the extreme.5 Error mes-
sages are still a major concern. Recall that macros are
automatically defined and redefined, by macros that are
themselves never explicitly defined. Still, I hope that
the dynamic approach will catch enough user mistakes
already in the definition stage for this format to be of
value to non-TEXnicians wishing to use TEX.

References
[1] Braams, Johannes, Victor Eijkhout, and Nico

Poppelier, “The development of national LATEX
styles", TUGboat , 10(3), pages 401–406, 1989.

[2] Eijkhout, Victor, A paragraph skip scheme, TUG-
boat , 11(4), pages 616–619, 1990.

[3] Eijkhout, Victor, TEX by Topic, Addison-Wesley,
1992.

[4] Eijkhout, Victor and Andries Lenstra. “The doc-
ument style designer as a separate entity", TUG-
boat , 12(1), pages 31–34, 1991.

[5] Perlis, Alan, “Epigrams on Programming", ACM
Sigplan Notices, 17 (9), pages 7–13, 1982.

5And the macros themselves can become pretty big. While debugging, I discovered that TEX will ‘only’ \show the first
1000 characters of a macro: : :

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

