
Bijlage X Index Preparation for TEX Related Documents 111

Index Preparation for TEX Related Documents�

David Salomon

11835 Sapota Dr.,
Lakeside, CA 92040, USA

dxs@ms.secs.csun.edu

June 1992

A beta release of the MakeIndex program has re-
cently become available for the Macintosh computer,
and I immediately started using it to prepare the in-
dexes of two new books. MakeIndex is easy to use
with LATEX but, since I like to work with plain TEX, I
have developed all the necessary macros from scratch.
They are presented here for the benefit of anyone who
wants a professionally looking index.

A few words about the use of MakeIndex
are in order. Either LATEX or TEX is used
to create a raw index file (the IDX file)
with entries such as \indexentry{abc}{24},
\indexentry{xyz}{108}. MakeIndex then
reads the file, sorts the items, merges mul-
tiple occurences of the same item on the same
page, and creates the final, IND, file with
entries such as ‘\item abc, 11, 24, 101’
‘\item xyz 15, 76, 108’. The user has to
define macro \item to typeset an index item in any
desired way, and the entire index is then typeset by
\input doc.ind. MakeIndex supports sub- and
subsub items (indicated by a ‘!’), and has many other
features (see appendix 1).

It is generally agreed that index preparation is a complex
job, and that it should not be fully automated. Certain
things are best done manually. My original intent was,
therefore, to develop simple macros that are easy to
read, understand and modify for specific needs, yet can
do most of the work. My experience so far indicates
that they typically do more than 90% of the work, so
only a small part of the total effort of index preparation
needs to be done manually.

The macros described here are divided into two groups,
those that write index items on the IDX file, and those
that read the final, IND file, and typeset the final index.
Following the tradition of The TEXbook (p. 423), the
circumflex is turned into an active character and is used
to indicate index items in the source document. A typ-
ical example is ˆ{abc}. The macros have to take into
account the following:
1. Some index items are ‘silent’, they should be

written on the IDX file but should not appear in

the document. The macros accordingly accept
either 1 or 2 arguments of the forms ˆ{abc} and
ˆ[xyz]{abc} (but not ˆ{abc}[xyz]). The
string xyz is not typeset but becomes part of the
index item on the IDX file.

2. Many documents about TEX use the notation jabcj
for verbatim listings. The user should thus be al-
lowed to write ˆjabcj (but not ˆjabcj{..}). In
order that they not interfere with the sorting, the
vertical bars should be removed from the IDX file,
and be reinserted in the IND file.

3. The notation j\abcj presents another special case.
The user should be allowed to write ˆj\abcj, and
both the vertical bars and the ‘\’ should be removed
before sorting. However, because of the special way
macro \getpar below reads its argument, the re-
moved items cannot simply be reinstated. The solu-
tion is to convert such an index item, in the IND file,
to the form \bs abc\\. When the IND file is
\input, macro \bs adds the ‘\’ and typesets its
argument verbatim.

4. In a document about TEX, certain index items are
preceded by a ‘\’. A good example is the item
\TeX. This item should be sorted without the ‘\’,
to appear among the Ts. The ‘\’ should thus be re-
moved from this item in the IDX file prior to sorting,
and should be appended back to the same item on
the IND file before typesetting it.

5. Certain characters, such as ‘$’ and ‘%’, have special
meaning in TEX. Since an index item may contain
such characters, their special meaning should be
temporarily suppressed when writing an item on
the IDX file.

Point 5 above is handled by the \sanitize macro
which changes the catcodes of most special charac-
ters to ‘other’. Since ‘ˆ’ is used to indicate an index
item, the catcodes of ˆ, ˆˆK and ˆˆA are not changed.
\sanitize should be expanded before the arguments
of the index macros are scanned. The only macros with
arguments are \inxA#1& \inxB[#1]#2. Note be-
low how \begingroup and \endgroup are used to
localize the effect of \sanitize.

�Presented at the 9e NTG meeting, June 4, 1992, Amsterdam.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

112 Index Preparation for TEX Related Documents Bijlage X

As a result, things such as ‘\insert’, ‘#52’ and
‘52%’ can easily be written on the index file, while
‘J\ˆorgen’ cannot.

Table 1 shows examples of index items. For each item,
the way it is specified in the source file is shown, as
well as the resulting text in the document, and the way
the item is finally typeset in the index.

Source Typeset in Typeset
document in index

ˆ[abc] abc abc
ˆ[xyz]{abc} abc xyzabc
ˆ[xyz]{ abc} abc xyz abc
ˆjabcj1 abc abc
ˆj\abcj1 \abc \abc
ˆ[j\abc j]{xyz} xyz \abc xyz
ˆ{\abc} replacement same

text of \abc
ˆ[j\abcj!xyz]{}2 nothing \abc,

xyz3

1Note that there is no need for braces in this case
2Main argument should be empty.
3This is a subitem.

Table 1

To handle the different cases above, a small utilityprog-

arm, IdxInd, has been written. It should be run on
the IDX file before MakeIndex reads it, and on the
IND file after it is created by MakeIndex. The entire
process involves the following steps:
� The document is typeset by TEX and file doc.idx

is prepared.
� IdxInd reads file doc.idx and creates file
tmp.idx. This is called the first pass.

� MakeIndex is run on tmp.idx. It creates the
sorted file tmp.ind.

� The first and last lines of the IND file are
\begin{index} and \end{index}. They
should be removed manually, since they are only
used by LATEX.

� IdxInd is run on tmp.ind and creates file
doc.ind. This is the second pass.

� File doc.ind is \input and the indexing mac-
ros (the second set below) used to typeset the final
index. Any special index items will show up in this
step and will require manual intervention. Also,
bad page breaks in the index pages will have to be
corrected by the user at this stage, either by chan-
ging the penalties used in the macros, or by inserting
penalties at strategic points in file doc.ind.

Table 2 shows how different types of index items appear
in the source file and in the four index files involved.

type in source on index file
file doc.idx tmp.idx tmp.ind doc.ind

1 ˆ[abc]{} abc abc abc abc
2 ˆjabcj jabcj abc* \item abc*,.. \item jabcj
3 ˆj\abcj j\abcj abc# \item abc#,.. \item \bs abc\\
3 (with ˆ[j\abcj!xyz]{} j\abcj!xyz abc#!xyz \item abc#,.. \item \bs abc\\,..
sub item) \subitem xyz,.. \subitem xyz,..
4 {ˆ\abc} \abc abc& \item abc&.. \item \abc
4 with) ˆ[\abc!xyz]{} \abc!xyz abc&!xyz \item abc&.. \item \abc
sub item) \subitem xyz,.. \subitem xyz,..

Table 2

Note that one should not have, in the same docu-
ment, items such as ˆ[\abc]{} and ˆj\abcj. They
would be changed by pass 1 to abc& and abc#, re-
spectively, and would therefore be considered different
by MakeIndex. Instead of ˆ[\abc]{} the author
should write ˆ[j\abcj]{}. It is also permissible to
write ˆ[j\abcjjbold]{} (with three vertical bars).
In such a case, IdxInd will only remove the first two
bars (and the backslash).

The last example in table 2 is of a main item j\abcj and
a subitem xyz. The entire item must be silent (placed
in square brackets), and the pair of braces that follows
should be empty.

When IdxInd removes a pair of vertical bars (or ver-
tical bars and a ‘\’, or just a ‘\’) it stores a special
code following the modified item, so that the removed
characters can later be restored. In table 2 the codes
shown are an ‘*’, a ‘#’ or an ‘&’. In reality, the program
uses ASCII codes 04, 03 and 02, respectively, for this
purpose. Those are the codes of control characters, and
so don’t show up in print.

Here is the first set of macros, those that
write the index entries on the IDX file. Note
the use of \string\indexentry. Using
\noexpand\indexentry also works, but writes a
space following \indexentry.

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage X Index Preparation for TEX Related Documents 113

\newwrite\inx
\immediate\openout\inx=\jobname.idx

\def\Caret{\ifmmode\def\next{ˆ}\else\let\next=\indexT\fi\next}
\catcode‘\ˆ=\active \letˆ=\Caret

\def\makeother#1{\catcode‘#1=12\relax}
\def\sanitize{\makeother\ \makeother\\\makeother\$\makeother\&%
\makeother\#\makeother_\makeother\%\makeother\˜\makeother\|}

\def\indexT{\futurelet\new\macX}
\def\macX{\ifx\new[\let\Next=\inxB\else\let\Next=\inxA\fi
\begingroup\sanitize\Next}
\def\inxA#1{#1\finidx{#1}}
\def\inxB[#1]#2{#2\finidx{#1#2}}
\def\finidx#1{\gdef\wridx{\write\inx{\string\indexentry{#1}{\folio}}}%
\endgroup\wridx}

The document, with index items, should follow, ending
with \closeout\inx.

Special index items: Control sequences and items
in angle brackets should be handled in a special
way. The control sequence \abc should be in-
dexed as ˆ[\abc]{} (silent). An item such as
<xyz> should be indexed as ˆ[<xyz>]{} (silent)
or ˆ[<xyz>]{}\lr{xyz} where \lr is a macro
producing the brackets.

Since in practice we don’t want the brackets and back-
slashes to participate in the sorting, we should move
them to the right in the IDX file (thus ˆ[abc\]{}
ˆ[xyz><]{}), run MakeIndex, and move them
back to the left in the IND file. For most documents,
such cases are rare, and can be handled manually. For
documents on TEX, a program should be written to do
this. For the index of The TEXbook, a special code was
written on the raw index file (pp. 423–424) to indicate
special items. After sorting, a special program was run
to interpret the codes and add brackets, backslashes,
etc.

The index itself is prepared in double-column format.
The macros for double columns appear in The TEXbook,
pp. 416–417 and should be personalized. Typically, the
values of \hsize & \vsize should be changed, and
the \shipout in macro \onepageoutmay have to
be modified.

The second set of macros appears below. These are the
indexing macros, which are deliberately kept simple, to
make them easy to read and modify. They should be
sufficient for most needs. Note the following:
� An item such as
ˆ[auxiliary spacesjsee{ties}]{}
should appear only once in the document (since
no page numbers will be listed for it any-
way). The macros shown here will work even if
ˆ{auxiliary spaces} appears several times,
but the see must appear in the first occurence.

� An item such as
ˆ[auxiliary spacesjseealso{ties}]{}

should, similarly, appear just once in the document,
at the last time auxiliary spaces is indexed.

\newif\ifpagebreak\pagebreaktrue
\def\item{\begingroup\obeylines\getpar%

\global\pagebreaktrue}
{\obeylines
\gdef\getpar#1
{\par\ifpagebreak\bigbreak\else\nobreak\fi
\hangafter=1 \hangindent=15pt #1\par
\global\leftskip=0pt \endgroup}}
\def\goodfil{\hfil\penalty-9\hfilneg}

%similar to \filbreak [353]
\def\see#1#2{{\it see }#1} % If there is

% more than one \see or
% \seealso per item, manual intervention
% is necessary.
\def\seealso#1#2{#2; \goodfil{\it see

also }#1}
\def\bold#1{{\bf#1}}
\def\indexspace{\par \vskip 10pt plus 5pt %

minus 3pt\relax}
\def\subitem{\par\pagebreakfalse%

\leftskip=7.5pt\item}
\def\subsubitem{\par\pagebreakfalse%

\leftskip=15pt\item}

Assuming that the double-column macros (from The
TEXbook, pp. 416–417) are available, the index can
now be produced by:

\pageno=<whatever>
\line{\bf\hfil Index\hfil\hfil}\vskip.1in
A quotation can be placed here

\begindoublecolumns
\tolerance=6000 \parindent=0pt
\input mybook.ind
\enddoublecolumns
\bye

Exercise: An index is normally divided into 26 groups,
each of items starting with the same letter. Modify

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#9 (92.2); Nov 1992

114 Index Preparation for TEX Related Documents Bijlage X

\indexspace to typeset the letter preceding each
group.

Answer: If we can assume that all 26 letter groups are
present, this is easy. The modified macro is:

\newcount\Letter\Letter=’101
\def\indexspace{\par\vskip...%

\advance\Letter1%
{\bf\char\Letter}\vskip...}

and an additional \indexspace command has to be
placed manually in the IND file before the first group.
If some groups may be missing, the simplest solution
is to add a parameter to \indexspace:

\def\indexspace#1{\par\vskip...
{\bf#1}\vskip...}

and supply the argument manually. A general solution
may use the following idea: Macro \indexspace
sets a flag (a \newif variable) to indicate that a letter
should be typeset before the next item. Macro \item
should test the flag. If the flag is true, \item should
isolate the first character of its argument, typeset it (with
appropriate vertical spacing) and clear the flag.

Appendix 1: MakeIndex
MakeIndex expects an IDX input file with entries of
the form\indexentry{entry}{page number}.
The following are the main options that it recognizes:
� A ‘!’ can be used for sub items and subsub

items. There are no subsubsub items. The IDX file
entry \indexentry{abc!opq!xyz}{23} is
converted by MakeIndex to the following three
entries in the IND file:
\item abc
\subitem opq
\subsubitem xyz, 23
The user should define macros \item,\subitem
and \subsubitem to typeset the index in any de-
sired way.

� A vertical bar is used to indicate a command. The
IDX file entry
\indexentry{abcjbold}{23}
is converted by MakeIndex to
\item abc \bold{23} on the IND file. Again,
the user should define a macro \bold to typeset the
page number in the desired way. Other common ex-
amples are
\indexentry{abcjsee{xyz}}{23} and
\indexentry{abcjseealso{xyz}}{23}.

� An ‘@’ is used to specify a print entry that’s dif-
ferent from the sort entry. The IDX file entry

\indexentry{eleven@xi}{23} will result
in ‘\item xi, 23’ placed among the E’s in the
IND file.

Appendix 2: IdxInd
This small utility is written in Modula 2 for the Met-
rowerks PSE compiler on the Macintosh computer, and
is freely available from the author. It has two separate
parts, pass 1 and pass 2. In pass 1 it reads an IDX file,
scans each record for special characters, replaces them
with ASCII codes 02, 03 or 04, and writes the record
on a new IDX file, to be processed by MakeIndex.
After MakeIndex creates the IND file, pass 2 is run,
to restore the special characters.

The program looks for a pair of vertical bars and for a
backslash. It distinguishes three cases:
� An IDX file entry contains a pair of vertical bars.

This corresponds to a type 2 record in table 2. The
bars are removed, and an ASCII 02 in inserted at
the back of the entry.

� The entry contains a pair of vertical bars, the first
of which is immediately followed by a backslash.
This corresponds to type 3 in table 2. The three
characters are removed, and an ASCII 03 is inser-
ted.

� A backslash but no vertical bars. This corresponds
to type 4 in table 2. Again, the backslash is re-
moved, and an ASCII 04 is inserted.

Pass 2 performs two tasks. The first is to look for the
special ASCII characters and restore the vertical bars
and/or backslash. The second task is to look for long,
multi-line records, and convert them to a single line.
An index item that appears on many pages in the doc-
ument, may end up as a long record, with many page
numbers, in the IND file. Such an entry is broken, by
MakeIndex, into several lines. It may typically look
like:

\item abc 3, 11, 18, ...
125, 153, 167,...
180, 242, 394, ...

Our simple macros expect each line to start with
\item, \subitem or something similar. The three
lines in the above example have thus to be united into
a single record, and this is done in pass 2 by removing
the carriage return characters at the end of the first two
lines.

Reprint MAPS#9 (92.2); Nov 1992 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

