Bijlage B

FIFO and LIFO sing the BLUes 139

FIFO and LIFO singthe BLUes'

Keesvan der Laan

Hunzeweg 57,
9893 PB Garnwerd, The Netherlands
cgl @ug. nl

September 1992

Abstract

FIFO, First-In-First-Out, and LIFO, Last-In-First-Out, are well-known techniques for handling se-
guences. In TeX macro writingthey are abundant but are not easily recognized assuch. TEX templates
for FIFO and LIFO are given and their useillustrated. The relation with Knuth’s\ dol i st , answer

ex11.5, and\ ct est , p.376, is given.

Keywords: FIFO, LIFO, list processing, plain TgX,
education, macro writing.

1 Introduction

It started with the programming of the Tower of Hanoi
in TEX, van der Laan (19924). For printing each tower
the general FIFO—First-1n-First-Out'—approach was
considered.? In literature (and courseware) the pro-
gramming of these kind of things is done differently
by each author, inhibiting intelligibility. In pursuit of
Wirth (1976), TEX templates for the FIFO (and LIFO)
paradigm will hopefully improve the situation.

2 FIFO

In the sequel, | will restrict the meaning of FIFO to an
input stream which is processed argument-wise. FIFO
can be programmed in TEX astemplate

\def\fifo#l{\ifx\ofif#l\ofif\fi\process
#1\fi f o} \def\ofif#1\fifo{\fi}

Printing of atower = can bedonevia

\ def \ process#1{\ hbox to3ex{%

\ hss\vrul e wi dt h#lex hei ghtlex\hss}}
\ vbox{\ basel i neski p1. 1lex\fifol2\ofif}

For the termination of the tail recursion the same
TeXniqueas given in the TEXbook, p.379, in the macro
\ del et eri ght npst , isused. Thisiselaborated as
\ br eak inFine(1992),inrelation totermination of the

loop. Theideaisthat when\ of i f isencounteredinthe
input stream, al tokensin the macro up to and includ-
ing\ f i f o—the start for the next level of recursion—
are gobbled.> Because the matching \ fi is gobbled
too, this token is inserted via the replacement text of
\of i f. ThisTeXnique is better than Kabelschacht's,
(1987), wherethetoken preceding the\ f i isexpanded
after the\ fi viatheuse of \ expandaft er. When
this is applied the exchange occurs at each level in
therecursion. It also better thanthe\ | et \ nxt =. . .

TeXnique, whichisused inthe TEXbook, for examplein
\'i t er at e, p.219, because there are no assignments.

My first verson had the two tokens after
\ifx reversed—a cow flew by—and made
me redize the non-commutativity of the first
level arguments of TEX's conditionals. For
example, \ifx aa\enpty... differs from
\ifx\empty aa. .., and \iflab\aa...
from \iflaalab..., with \def\aa{aa},
\def\ab{ab}. In math, and in programming
languages like PASCAL, the equality relation is
commutative,* and no such thing as expansion comes
in between. When not alert with respect to expansion,
TEX's\ i f -scan surprise you.

The\ fi f o macroisabasic one. It allowsoneto pro-
ceed along alist—at least conceptually—and to apply
a (user) specified process to each list element. By this
approach the programming of going through a list is
separated from the various processes to be applied to

*Earlier versions appeared in MAPS92.1 and proceedings EuroTeX '92.

! See Knuth (1968), section 2.2.1.

2In the Tower of Hanoi article Knuth’slist datastructure was finally used—TpXbook Appendix D.2—with FIFO inherent.
?In contrast with usual programming of the recursion start with the infinite loop, and theninsert the\ i f. . .\ of i f\fi.

*So are TEX's\ i f -s after expansion.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Reprint MAPS#9 (92.2); Nov 1992

140 FIFO and LIFO sing the BLUes

the elements.’ It adheres to the separation of concerns
principle, which | consider fundamental.

Theinput stream is processed argument-wise, with the
consequence that first level braceswill begobbled. Be-
ware! Furthermore, no outer control sequences are
allowed, nor \ par -s. The latter can be permitted via
theuseof \ | ong\ def .

A genera approach—relieved from the restrictions
on the input stream: every token is processed un-
til \ of i f —is given in the TeXbook answer ex11.5
(\dolist...)andonp.376 \ctest...). After
adaptation to the \ fi f o notation and to the use of
macros instead of token variables, Knuth's\ dol i st

comes down to

\def\fifo{\afterassi gnnent\tap
\let\nxt=}
\def\tap{\ifx\nxt\ofif\ofif\fi\process
\nxt\fifo} \def\ofif#1\fifo{\fi}

This general approach is indispensable for macro
writers. My less general approach can do alot already,
for particular applications, aswill beshownbelow. But,
... beware of itslimitations.

2.1 Variations

Theabove\ f i f 0 can be seen asatemplate for encod-
ingtail recursionin TEX, withargumentstaken fromthe
input stream one after another. An extension isto take
two arguments from the input stream at atime, with the
second argument to look ahead, via

\def\fifo#l#2{\process#1\ifx\ofif#2
\ofi fA\fi\fifo#2}
\def\ofif#l\ofif{\fi}

Note the systematics in the use of the parameter separ-
atorin\ofif.

And what about recursion without parameters? A nice
example of that is a variant implementation of Knuth’'s
\'i t er at e of the\ | oop, TEXbook, p.219

\def\iterate{\body\el se\etareti\fi%
\iterate} \def\etareti#1l\iterate{\fi}

(This\i terate contains only 5 tokens in contrast
with Knuth’'s 11. The efficiency and the needed
memory is determined by the number of tokens in
\ body, and therefore this5 vs. 11 isnot relevant.)

2.2 Variablenumber of parameters

TEX macros can take at most 9 parameters. The above
\ fifo macro can be seen as a macro which is re-
lieved from that restriction. Every group, or admissible

Bijlage B

token, in the input stream after \ fi f o up to and in-
cluding\ of i f, will become an argument to themacro.
When the\ of i f token is reached, the recursion will
be terminated.®

2.3 Unknown number of arguments

Tutelaers (1992), as mentioned by Eijkhout (1991),
faced the problem of inputting a chess position. The
problem is characterized by an unspecified number of
positions of pieces, with for the pawvn postions the
identification of the pavn generaly omitted. Let us
denote the pieces by the capitd letters K (ing), Q(ueen),
B(ishop), (k)N(ight), R(ook), and P(awn), with the | at-
ter symbol default. The position on the board isindic-
ated by aletter a b, c, . . ., or h, followed by anumber,
1,2,...,0r8. Then, for example,

\position{Kel, @1, Nal, e2, e4}

should entail the invocations

\ pi ece{K}{el}\piece{Q{d1}\pi ece{N}{al}
\ pi ece{P}{e2}\pi ece{ P} {e4d}

This can be done by an appropriate definition of
\ posi ti on, and an adaptation of the\fi f o tem-
plate, via

\def\position#l{\fifo#l, \ofif,6}
\def\fifo#l, {\ifx\ofif#l\ofif
\fi\process#1l\rel ax\fi fo}
\def\ofif#1\fifo{\fi}

\ def\ process#1#2#3{\i f x\r el ax#3

\ pi ece{ P} { #1#2}\ el se\ pi ece#1{#2#3}\fi}

With the following definition (smplified in relation to
Tutelaers)

\ def\ pi ece#1#2{ #1-#2}

weget K-l Q-dl1N-al P-e2 P-ed.

For an unknown number of arguments at two level s see
the Nested FIFO section.

2.4 Length of string

An dternative to Knuth’s macro \ getl engt h,
TeXbook p.219, isobtained viatheuse of \ f i f 0 with

\ newcount\ | engt h
\ def \ process#1{\ advance\l engt hl }

Then\fifo aap noot\ of i f \ number\ | ength

yieldsthelength 7.7

°If alist hasto be created, Knuth’s list datastructure might be used, however, simplifying the execution of the list. See

TeXbook Appendix D.2.

5 Another way to circumvent the 9 parameterslimitation isto associate namesto the quantitiesto be used as arguments, let us
say viadef's, and to use these quantities via their namesin the macro. Thisis Knuth's parameter mechanism andis functionally
related to the so-called keyword parameter mechanism of command languages, and for example ADA.

"Insert\ obeyspaces when the spaces should be counted as well.

Reprint MAPS#9 (92.2); Nov 1992

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage B

2.5 Number of asterisks

An aternative to Knuth’s\ at est , TeXbook, p.375,
for determining the number of asterisks, isobtained via
\ fifowith

\ def\ process#1{\if *#1\ advance\ acnt
\fi}\ newcount\ acnt

by1

Then \fifo abc*de*\ofif
yields the number of asterisks: 2.2

2.6 \Vertical printing

David Salomon treats the problem of vertical printing
in his courseware. Via an appropriate definition of
\ process and a suitable invocation of \ fi f o itis
easily obtained.

\ nunber\ acnt

\ def\ process#1{\ hbox{#1}}
xy\vbox{\of finterlineskip\fifo abc\ofif}yx

yields xysyx.

2.7 Deletelast character of argument
Againan exampledueto David Sdlomon. Itisrelated to
\ del et eri ght nost, TeEXbook p.379. Effectiveis
the following, where a second parameter for\ fi f o is
introduced to look ahead, which isinserted back when
starting the next recursion level

\ def\ gobbl el ast #1{\fi fo#1\of i f}

\def\fifo#l#2{\ifx\ofif#2\ofif
\fi#1\fifo#2}

\def\ofif#l\ofif{\fi}

Then\ gobbl el ast { aap} will yield aa.

2.8 Vowds, voila

Schwarz (1987) coined the problem to print vowelsin
bold face.® The problem can be split into two parts.
First, the general part of going character by character
through a string, and second, decide whether the char-
acter at hand isavowel or not.

For the first part use\ fi f o (or Knuth’'s\ dol i st).
For the second part, combine the vowels into a string,
aei ou, and the problem can be reduced to the ques-
tion {char) € aei ou? Earlier, | used thisapproach in
searching a card in a bridge hand, van der Laan (1990,
themacro\ stri p). That was well-hidden under sev-
era pilesof cards, | presume? The following encoding
isrelated to\ i snenber , TEXbook, p.379

\new f\iffound
\def\ | oc#1#2{ % ocate #1 in #2

FIFO and LIFO sing the BLUes

141

\ def\ | ocat e##1#1##2\ end{\ i f x\ enpt y##2%
\ enpt y\ f oundf al se\el se\foundtrue\fi}%
\ | ocat e#2#1\ end}

Then\fifo Audaci ous\ofi f yieldsAudacious,
with

\ def\ process#1{\ uppercase{\ | oc#1} %
{AEI QU\ i f f ound{\ bf #1}\ el se#1\fi}

2.9 Variation

If in the invocation \ | ocat e#2#1 a free symbol
is inserted between #2 and #1, then \ | oc can be
used to locate substrings.!® And because {string; €
strings} N {strings € string1} = stringg =
strings, the variant can be used for the equality test
for strings. See aso the Multiple FIFO subsection, for
general and more effectivealternativesfor equality tests
of strings.

2.10 Processing lines

What about processing lines of text? In officia, judi-
cial, documentsit isa habit to fill out lines of text with
dots.!! Thiscan be solved by making the end-of-line
character active, with the function tofill up theline. A
general approach where we can \ pr ocess theline,
and not only append toit, can be based upon\ fi f 0.

One can wonder, whether the purpose can’t be better
attained by filling up thelast line of paragraphsby dots,
because TEX justifies with paragraphs as units.

211 Processing words

What about handling a list of words? This can be
achieved by modifying the \ fi f o template into a
version which picks up words, \ f i f ow, and to give
\ pr ocesswan appropriate function.

\def\fifow#l {\ifx\ofifw#l\ofifwhfi
\ processw{#1}\ \fifow}
\def\ofifw#l\fifow{\fi}

212 Underlining words

In print it is uncommon to emphasize words by un-
derlining. Generally another font is used, see discus-
sion of exercise 18.26 in the TEXbook. However, now
and then people ask for (poor man’s) underlining of
words. The following \ pr ocessw definition under-
lineswords picked up by \ fi f ow

\ def \ processw#1{\ vt op{\ hbox{\ st r ut #1}
\ hrul e}}

8 As the reader should realize, this works correctly when there are first level asterisks only. For counting at all levels
automatically, a more general approach is heeded, see Knuth’s\ ct est , p.376.
?His solution mixes up the picking up of list elements and the process to be applied. Moreover, his nesting of \ i f -s in order
to determine whether a character is a vowel or not, is not elegant. Fine (1992)’s solution, viaa switch, is not elegant either.
19Think of finding ‘bb’ in *ab’ for example, which goes wrong without the extra symbol.

1 The problem was posed at EuroTeX 91 by Theo Jurriens.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Reprint MAPS#9 (92.2); Nov 1992

142 FIFO and LIFO sing the BLUes

Then

\l eavevnode\fifow leentje leerde lotje
| open I angs de | ange |indenlaan \ofifw
\ unski p.

yields
lindenl aan.

leentje leerde lotje lopen langs de lange

3 Nested FIFO

One can nest the FIFO paradigm. For processing lines
word by word, or words character by character.

3.1 Wordscharacter by character

Ex11.5, can be solved by processing words character
by character. A solutionto adightly ssimplified version
of the exercise reads

\fifow Though
%t h

\ def\ processw#l1{\fifo#l\ofif}

\ def \ process#1{\ boxi t #1}

\ def \ boxi t #1{\ set box0=\ hbox{ #1} \ hbox

{\1 ower\ dpO\ vbox{\ of fi nterlineskip\hrule
\ hbox{\ vrul e\ phant om#1\ vrul e}\ hrul e}}}

exerci se \ofifw \unskip.

yidds o] oroom
Inthespiritof \ dol i st...,ex115,is

%ariant neglecting word structure

\def\fifo{\afterassi gnnent\tap

\let\nxt=}

\def\tap{\i fx\nxt\ofif\ofif
\fi\process\ nxt\fifo}

\def\ofif#1\fifo{\fi}

\ def\ process#1{\i f\space\ nxt\

\ el se\ boxi t #1\fi}

\fifo Though exercise\ofif.

with the same result

T oo

3.2 Mark up natural data

Datafor\ h(v)al i gn needs & and\ cr marks. We
can get plain TEX to append a\ cr at each (natural)
input line, TEXbook p.249. An extension of thisisto
get plain TEX to insert \ cs-s, column separators, and
\ r s-s, row separators, and eventualy toadd \ | r , last
row, at theend, in natural data. For example prior to an
invocation of \ hal i gn, onewantsto get plain TEX to
do the transformation

P*ON
DEK*

= P\ cs*\ ¢sO\ csN\ rsD\ csE\ csK\ cs*\ Ir

This can be donevia

12\ith *, or LI, given an appropriate function.

Reprint MAPS#9 (92.2); Nov 1992

Bijlage B

$$\ vcent er {\ hbox{ P*ON} \ ker n. 5ex
\ hbox{DEK*}} \,\Rightarrow,

%\nd now right, mark up part

\ bdata P*ON

DEK*

\ edat a\ mar kup\ dat a

\vcent er {\ hbox{\ dat a}} $$

with

\ def \ bdat a{\ bgr oup\ obeyl i nes\ st or e}

\ def \ st or e#1\ edat a{\ egr oup\ def\ dat a{ #1} }

\ def \ mar kup#1{\ ea\ xdef \ ea#1\ ea{\ ea
\fifol #1\of ifl}}

and auxiliaries

\ I et \ nx=\ noexpand
{\catcode'\"" M=13
\gdef\fifol #1° " ME2{\ fi fo#1\ of i f %
\Vifx\ofifl#2\nx\Ir\ofifl
\fivnx\rs\fifol #2}}
\def\ofifl#L\ofifl{\fi}
\def\fifo#l#2{#1\ifx\ofif#2\ofif
\fiv\nx\cs\fifo#2}
\def\ofif#l\ofif{\fi}
%ith for this exanple
\def\cs{{\sevenrn{\tt\char92}cs}}
\def\rs{{\sevenrn{\tt\char92}rs}}
\def\Ir{{\sevenrn{\tt\char92}Ir}}

The above came to mind when typesetting
crosswords,'? van der Laan (1992b), while striving
after the possibility to allow natura input, independ-
ent of \ hal i gn processing.

4 MultipleFIFO

What about FIFO for more than one stream? (For sim-
plicity the streams are stored in def-s, because\ r ead
inputs lines) For example comparing strings, either
for equality or with respect to lexicographic ordering?
Eijkhout (1992, p.137, 138) provided for these applic-
ations the macros

\ifAll Chars...\Are...\TheSane,
and
\ifallchars...\are...\bfore.

The encodings are focused at mouth processing. The
latter contains many \ expandaf t er -s.

A basic approach is: loop through the strings character
by character, and compare the characters until either
the assumed condition is no longer true, or the end of
either one of the strings, has been reached.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage B

4.1 Equality of strings
The TeX-specific encoding, where use has been made
of the property of \ i f x for control sequences, reads

\ def \ eq#1#2{\ def \ st { #1}\ def \ nd{#2}
\ifx\st\nd\eqtrue\el se\eqgfal se\fi}

with auxiliary \ newi f\i f eq.

Asastepping stonefor lexi cographic comparison, con-
sider the general encoding

\ def\ eq#1#2{\ conti nuetrue\ eqtrue
\ I oop\i f x#1\ enpt y\ conti nuef al se\fi
\'i fx#2\ enpt y\ conti nuef al se\fi
\ifcontinue \nxte#l\nxtt \nxte#2\nxtu
\Vifx\nxtt\nxtu
\ el se\ eqgf al se\conti nuefal se\fi
\r epeat
\ifx\enpty#1\ifx\enpty#2
\el se\eqfal se\filel se\eqgfal se\fi}

with auxiliaries

\newi f\ifcontinue\new f\ifeq
\ def \ nxt e#1#2{\ def \ pop##1##2\ pop{ %
\ gdef #1{ ##2}\ gdef #2{ ##1} } \ ea\ pop#1\ pop}

Then

\ def\t {abc}\def\ u{ab}
\eq\t\u\ifeq$abc=ab$\ el seSabc\ not =ab$\ fi

yields abe # ab.

4.2 Lexicographic comparison

Assume that we deal with lower case and upper case
letters only. The encoding of \ s| e—String Less or
Equal—followsthe same flow astheequality test, \ eq,
but differsinthetest, because of TEX’sexpansion mech-
anisms

\ def\ sl e#1#2{ %1, #2 are def’'s
\global\sletrue {\continuetrue
\ I oop\i f x#1\ enpt y\ conti nuef al se\fi
\'i fx#2\ enpt y\ conti nuefal se\fi
\'i fconti nue\ nxt e#1\ nxtt\ nxt e#2\ nxtu
\ea\ea\ea\ll e\ea\nxtt\nxtu
\repeat}
\ifslelifx\enpty#2\ifx\enpty#l
\el se\global\sltfal se\fi\fi
\fi}

with auxiliaries (Ile=Letter Less or Equal)

FIFO and LIFO sing the BLUes 143

\new f\ifcontinue\gl obal\new f\ifsle
\ def \ nxt e#1#2{\ def \ pop##1##2\ pop{ %
\ xdef #1{ ##2} \ xdef #2{ ##1} } \ ea\ pop#1\ pop}
\def\ || e#1#2{\ uppercase{\i f num #1=" #2}
\el se\ conti nuef al se

\uppercase{\if num #1>* #2} {}\ gl obal

\slefal se\fi

\fi}

For example

\def\t { ABC}\ def\u{ab}\sle\t\u
\'i f sl e$ABC<ab$\ el se$ABC>ab$\ f i

yidlds ABC' > ab,
and

\def\t{noo}\def\u{apen}\sle\t\u
\'i f sl e$noo<apen$\ el se$noo>apens$\ fi

yiedsnoo > apen.

The above can be elaborated with respect to\ r ead for
strings each on a separate file, to strings with accented
letters, to theinclusion of an ordering table, and in gen-
eral to sorting. Some of the mentioned items will be
treated in Sorting in BLUe.

5 LIFO

A modification of the \fifo macro—
\ process{#1} invoked at the end instead of at the
beginning—will yield the Last-In-First-Out template.
Of course LIFO can be applied toreversion ‘on thefly,
without explicitly allocating auxiliary storage.'>

\def\lifo#l#2\of il {\ifx\enpty#2
\empty\ofil\fi\lifo#2\ofil\process#1}
\def\ofil#1\ofil {\fi}

With the identity—\ def \ pr ocess#1{ #1}, or the
invoke\ pr ocess#1 replaced by #1'4—thetemplate
can be used for reversion on the fly For example
\lifo aap\ofil yieddspaa.

5.1 Changeof radix

In the TEXbook a LIFO exercise is provided at p.219:
print the digits of a number inradix 16 representation.

The encoding is based upon the property
(N=r*)ymodr=d, k=01,...,n,

with radix r, coefficients d;,, and the number represent-

ation .
N = Z dk Tk.
k=0

13 Johannes Braams drew my afttention to Knuth and MacKay (1987), which contained among others
\reflect...\tcel fer. They compare#1with\ enpt y, whichisnice. Theinvocation needsan extratoken,\ enpt y—a
so-called sentinel, see Wirth (1976)—to be included before\ t cel f er, however. (Knuth and Mackay hide this by another
macrowhichinvokes\ref | ect.. .\ enpty\tcel fer). My approachrequiresat |east oneargument, with the consequence
that the empty case must be treated separately, or a sentinel must be appended after all.

14 Remember the stack size limitations.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Reprint MAPS#9 (92.2); Nov 1992

144 FIFO and LIFO sing the BLUes

Therearetwowaysof generating thenumbersd;,: start-
ingwithd,,, or thesimpler onestartingwith d,, withthe
disadvantage that the numbers are generated in reverse
order with respect to printing. The latter approach is
given in TEXbook p.219. Adaptation of the LIFO tem-
plate does not provide a solution much different from
Knuth's, because the numbers to be typeset are gen-
erated in the recursion and not available in the input
stream.

6 Acknowledgements

Wiodek Bzyl and Nelson Beebe are kindly acknow-
ledged for their help in clearing up the contents and
correcting my use of English, respectively.

7 Conclusion

In looking for a fundamental approach to process ele-
ments sequentially—not to confuse with list processing
where the list is also built up, see TEXbook Appendix
D.2, or with processing of every token in the input
stream, see ex11.5 or p.376—TEX templates for FIFO
and LIFO, emerged.

The templates can be used for processing lines, words
or characters. Also processing of words line by line,
or characters word by word, can be handled via nested
use of the FIFO principle.

The FIFO principlea ong with thelook ahead mechan-
ism is applied to molding natural data into representa
tionsrequired by subsequent TEX processing.

Coursaware might benefit from the FIFO approach to
unify answers of the exercises of the macro chapter.

TeX's\ifx... and\if... conditionals are non-
commutative with respect to their first level operands,
while the similar mathematical operations are, as are
the operationsin current high-level programming lan-
guages.

MultipleFIFO, by comparing stringslexicographically,
has been touched upon.

Reprint MAPS#9 (92.2); Nov 1992

Bijlage B

References

[1] Eijkhout, V (1991): TeX by Topic. Addison-
Wedley.

[2] Fine, J (1992): Some basic control macros for
TeX, TUGboat 13, no. (1), 75-83.

[3] Hendrickson, A (priv. comm.)

[4] Kabelschacht, A (1987): \ expandafter vs.
\l et and \ def in conditionals and a genera-
ization of plain's\ | oop. TUGhoat 8, no. (2),
184-185.

[5] Knuth, D.E (1968): The Art of Computer Pro-
gramming. 1. Fundamental Algorithms. Addison-
Wedley.

[6] Knuth, D.E (1984): The TeXbook. Addison-
Wedley.

[7] Knuth, D.E, P Mackay (1987): Mixing right-
to-left texts with left-to-right texts. TUGboat 7,
no. (1), 14-25.

[8] Laan, C.G vander (1990): Typesetting Bridgevia
TEX, TUGboat 11, no. (2), 91-94.

[9] Laan, C.G van der (1992a): Tower of Hanoi, re-
visited. TUGboat 13, no. (1), 91-94.

[10] Laan, C.G van der (1992b): Typesetting Cross-
words via TeX. EuroTeX '92, 217-224. Also
MAPS92.1.

[11] Laan, C.G van der (1992c): Table Diversions.
EuroTeX '92, 191-211. Also a little adapted in
MAPS92.2.

[12] Laan, C.Gvander (inprogress): Sortingin BLUe.
MAPS93.1. (For heap sort encodingin plain TEX,
see MAPS92.2)

[13] Salomon, D (1992): Advanced TEX course: In-
sights & Hindsights, MAPS 92 Special. 254p.

[14] Schwarz, N (1987): Einfuhrungin TEX, Addison-
Wedley.

[15] Tutelaers, P (1992): A font and a style for type-
setting chess using IATEX or TeX. TUGboat 13,
no. (1), 85-90.

[16] Wirth, N (1976): Algorithms + Data Structures
= Programs. Prentice-Hall.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

