
86 E-TEX: Guidelines for Future TEX Extensions Bijlage Q

E-TEX: Guidelines for Future TEX Extensions�

Frank Mittelbach

Electronic Data Systems (Deutschland) GmbH
Eisenstraße 56, D-6090 Rüsselsheim,

Federal Republic of Germany
mittelbach@mzdmza.zdv.uni-mainz.de

Abstract

With the announcement of TEX 3.0, Don Knuth acknowledged the need of the (ever growing) TEX
community for an even better system. But at the same time, he made it clear, that he will not get
involved in any further enhancements that would change the TEXbook.
TEX started out originally as a system designed to typeset its author’s own publications. In the
meantime it serves hundreds of thousands of users. Now it is time, after ten years’ experience, to
step back and consider whether or not TEX 3.0 is an adequate answer to the typesetting requirements
of the nineties.
Output produced by TEX has higher standards than output generated automatically by most other
typesetting systems. Therefore, in this paper we will focus on the quality standards set by typographers
for hand-typeset documents and ask to what extent they are achieved by TEX. Limitations of TEX’s
algorithms are analyzed; and missing features as well as new concepts are outlined.

�Published in TUGboat, Volume 11 (1990), No 3 — 1990 Conference Proceedings.

Reprint MAPS#10 (93.1); May 1993 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

86 E-TEX: Guidelines for Future TEX Extensions Bijlage Q

E-TEX: Guidelines for Future TEX Extensions

Frank Mittelbach

Electronic Data Systems (Deutschland) GmbH

Eisenstra�e 56, D-6090 R�usselsheim, Federal Republic of Germany
Tel. +49 6142 803267

Bitnet: mittelbach@mzdmza.zdv.uni-mainz.de

Abstract

With the announcement of TEX 3.0, Don Knuth acknowledged the
need of the (ever growing) TEX community for an even better sys-
tem. But at the same time, he made it clear, that he will not
get involved in any further enhancements that would change The

TEXbook.
TEX started out originally as a system designed to typeset its

author's own publications. In the meantime it serves hundreds of
thousands of users. Now it is time, after ten years' experience,
to step back and consider whether or not TEX 3.0 is an adequate
answer to the typesetting requirements of the nineties.

Output produced by TEX has higher standards than output
generated automatically by most other typesetting systems. The-
refore, in this paper we will focus on the quality standards set by
typographers for hand-typeset documents and ask to what extent
they are achieved by TEX. Limitations of TEX's algorithms are
analyzed; and missing features as well as new concepts are outli-
ned.

1 Introduction

Last year at Stanford we celebrated the tenth birth-
day of the TEX project. Up to now, TEX has ser-
ved thousands of users well and we expect it will
continue to do so in the future. The longevity of
TEX lies in

� the quality of its output
� its universal availability
� and its stability.

In the last few years, more and more users
brought TEX from the universities into industry
where it was challenged by new applications [33].
But time does not stand still, and what was at the
top of its profession yesterday might prove to be ob-
solete tomorrow. TEX is still state of the art for the
tasks it was designed to accomplish, but, with the
growing understanding from several years' usage, we
can now see where it will fail in high quality type-
setting.

As a result of user pressure [27], Don Knuth
announced a new version of TEX at Stanford, ack-
nowledging the fact, that he did not foresee the need
for 8-bit input [19]. At the same time, he made it
clear, that he had decided to retire from this pro-
ject and return to his long delayed topic \The Art
of Computer Programming".

So TEX is �nally frozen, and any further deve-
lopment will result in a di�erent system no longer
maintained by Knuth. The main purpose, therefore,
of this paper is to give an overview of high quality
typesetting requirements (covered and not covered
by TEX 3.0) thereby, we hope, channeling future de-
velopments so that we do not end up with several

incompatible \TEX-based systems", but rather with
one system that will provide the same characteris-
tics (i.e., quality, portability, and availability) as the
current program.

TEX was designed as a low-level formatter, a
stable kernel, of a typesetting system where exten-
sions at both ends would be possible to take into
account developments in printing technology (back
end) and in user interfaces (front end) [14]. Thus,
complaints about user unfriendliness of TEX are
uncalled for, since such requirements can be hand-
led by front ends either written in the TEX language
itself like LATEX and, therefore, fully portable, or
in an external language like ArborText's Publisher,
or VAX Document, etc. These systems use TEX or
a TEX-based system as the ultimate formatter but
provide a user-friendly interface [32].

When we discuss missing features, we must dis-
tinguish carefully between things which can and
should be handled by a front end system and things
that are truly tasks for a formatter and cannot be

Reprint MAPS#10 (93.1); May 1993 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Q Guidelines for Future TEX Extentions 87

handled in TEX 3.0. In the following sections we
analyze features required for high quality typeset-
ting, discussing whether they can be handled by TEX
primitives or by a suitable front end, or both. If
they cannot be handled, we attempt to �nd ways to
achieve the desired results. Finally, in section 12, we
switch our attention to the concepts of the TEX lan-
guage itself, outlining some ideas on how a language
for a new system could describe the underlying con-
cepts more clearly.

2 Line breaking

TEX's line breaking algorithm is clearly a central
part of the TEX system. Instead of breaking a pa-
ragraph line by line, the algorithm regards para-
graphs as a unit and searches for an `optimal solu-
tion' based on the current values of several parame-
ters. Consequently, a comparison of results produ-
ced by TEX and other systems will normally favour
TEX's methods.

Such an approach, however, has its drawbacks,
especially in situations requiring more than block
style text of a �xed width. The �nal line breaks are
determined at a time when information about the
content of the current line has been lost (at least for
the eyes of TEX, i.e., its own macro language), so
that TEX provides no sort of post-processing of the
�nal lines based on their content.

Furthermore, there is no way to in
uence the
paragraph shape with regard to the current position
on the page, since this information is not known
a priori . See section 4 for further discussion of
this topic.

The use of only four categories (tight, de-
cent loose, very loose) to distinguish di�erent glue{
settings in adjacent lines seems somewhat inade-
quate The number of categories should be increased
In addition, a more global approach (even beyond
paragraph borders in certain circumstances), taking
the overall variation of glue-setting into account
might produce better results.

2.1 Line breaking parameters

While the algorithm provides a variety of parame-
ters to in
uence layout, some important ones for
quality typesetting are missing. There is no way
to deal with vertical stripes produced by interword
gaps falling into the same vertical position. A simi-
lar problem involves identical words one above the
other, especially at the beginning of a new line. Both
problems are distracting to the eyes of the reader
and will destroy any e�ort to produce a beautifully
broken paragraph. A good example is shown at
the beginning of the third paragraph of section 4
where \: : :breaking algorithm : : :" is repeated on
two lines.

Another aspect of �ne print is the assurance

that the last line of a paragraph will not be too
short. This is especially important in layouts which
use paragraph indentation, where an undesired gap
would be produced if the last line of one para-
graph is shorter than the indentation of the next
paragraph. Unknown to most TEX users, this can
be prevented by a special setting of TEX's line
breaking parameters as shown in example 1 in
section 14. While other parts of this paper use
this setting, this paragraph shows the undesired ef-
fect.

Hyphenation of consecutive lines is hand-
led for up to two lines (\doublehyphendemerits),
but there is no possibility of avoiding para-
graphs like the current one and the next one, in cer-
tain circumstances. As one can easily ob-
serve, the number of hyphens in these para-
graphs is arti�cially forced by setting some of
TEX's line breaking parameters to unusual va-
lues. But in non-English languages (with lon-
ger word lengths on the average), such situati-
ons present real-life problems.

Another problem is the discrepancy bet-
ween the �rst and later lines of a paragraph, pro-
duced by the implementation of the paragraph in-
dentation. This is especially crucial in layouts
with zero indentation, because space at the begin-
ning of the �rst line (for example, from \math-

surround) will not vanish into the margin be-
cause of the implicit \hbox representing the in-
dentation (even if not visibly present), while such
space will be removed at the beginning of la-
ter lines. This will result in strange star-
ting gaps.

3 Spacing

When block text is to be produced, it is necessary
to change the interword or the intercharacter spa-
cing, or both. Since variable intercharacter spacing is
frowned upon by the experts (except in rare circum-
stances), a line breaking algorithm has to stretch or
shrink the interword space starting from an opti-
mal value given by the font designer until the �nal
word positions are determined. Again, TEX has a
well designed algorithm to take such stretchability
into account. Additionally, each character has a so
called \spacefactor assigned to it which will in-

uence a following space, so that it is possible to
enlarge or reduce the interword space after certain
characters. As an example, compare the spacing af-
ter punctuation characters in this paragraph with
other paragraphs.

There is no provision, however, for in
uencing
the interword gaps in relation to the current charac-
ters on both word boundaries. If it is necessary to
shrink a given line, not all gaps should shrink by the
same amount. Instead, it is best to shrink more af-

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#10 (93.1); May 1993

88 E-TEX: Guidelines for Future TEX Extensions Bijlage Q

Das

2

Aus

6

kam

7

in

5

der

3

letzten

4

Runde,

1

wobei

Das Aus kam in der letzten Runde, wobei

Das Aus kam in der letzten Runde, wobei

DasAus kam in der letzten Runde,wobei

DasAus kam in der letzten Runde,wobei

DasAus kam in der letzten Runde,wobei

Das Aus kam in der letzten Runde, wobei

Figure 1: Interword spacing

The interword spaces are numbered in a way so that
higher numbers denote spaces which should shrink

less using the rules given by Siemoneit [28]. The last

line shows the resulting overfull box which would be
produced by standard TEX in this situation.

ter a comma, for example, than between `then it' be-
cause of the di�erent shape of the characters. There
is no way to achieve such �ne tuning in TEX ex-
cept by manually adding \hskip in lines, which is
intolerable. An example of this approach is shown
in �gure 1. Such a mechanism is clearly font de-
pendent, and an implementation would, therefore,
change both TEX and MET A F O N T , since the best
place to store this information is in the TFM �le. But
even tables similar to \sfcode (�xed by the format
or a macro) would be a big improvement, since most
fonts in use tend to have similar shapes.

In TEX's concept for glue-setting an important
distinction is made between stretchable and shrin-
kable glue: while the latter is only allowed to shrink
to a �xed minimum (i.e., the natural width minus
the shrink component), any given amount of stret-
chable glue is automatically allowed to stretch arbi-
trarily far.1 The reason for this behavior is that it
allows the line breaking algorithm to achieve `emer-
gency results' if no suitable line breaks are otherwise
found. But this is undesirable in most circumstan-
ces, so that either the stretching should be bounded
similarly to shrinking in all cases (resulting in some
changes to the line and page breaking algorithms),
or another class of glue should be added, for which
the amount of stretching can be determined indi-
vidually.

Don Knuth [18, pp. 394{395] gives an example
of how to achieve hanging punctuation (together
with special fonts, as he noted). Since this, too, is
a sign of good quality typesetting, it is questionable
whether such a scheme (that will make the ligature
mechanism partly unusable, along with other side ef-
fects) is advisable or whether this should be a direct
feature of a future program.2

4 Page breaking

A major problem with TEX is its page breaking algo-
rithm. Page breaking is handled asynchronously by
moving things at certain times from the list of recent

contributions onto the \current page" until this list
is �lled with more items than will �t on the page in
�nal form. The �nal page break is chosen by weig-
hing badness (how full the page is if we break here)
and penalties (how expensive it is to break here).
Such penalties will be placed after some of the lines
either by the line break algorithm or during macro
expansion.

But good page layout usually requires taking
pairs of facing pages into account as they will be
seen by the reader. This is in itself not a real res-
triction, because one can view a double page as a
huge case of two-column format, provided, of course,
that both pages can be held simultaneously in me-
mory. But, unfortunately, none of TEX's internal me-
chanisms can handle multi-column layout properly,
so that such an approach has to avoid all internal
features for page breaking like \insert, etc. Good
examples that also show the limitations of TEX in
this regard are the output routine of LATEX [22] and
implementations of multi-column layout [4, 24], all
bordering on the impossible.

But, even more important, the line breaking al-
gorithm in conjunction with the page breaking al-
gorithm pose unsolvable problems. When the �nal
page break is chosen by TEX, all paragraphs which
were once candidates for the current page are al-
ready divided up by the line breaking alogrithm, and
this division cannot be undone for text carried over
to the next page, since some of the necessary infor-
mation (space at the line breaks, for example) is
lost. This makes it impossible to change the page
layout at a �xed place, e.g., at the top of a new page,
to leave room for a small �gure surrounded by text.
Only in very restricted circumstances a solution can
be found inside TEX [9], but documents of moderate
complexity cannot be handled this way. A general so-
lution to this problem can be included in the current
TEX in an upward compatible manner. A prototype
was designed at the University of Mainz shortly after
the conference at Stanford [25].

It is an open question whether we should follow
TEX's page breaking algorithm at all, since it was
stopped short because of the space and time cons-
traints of the computers available at the time of its
development. In his PhD thesis [26], M. Plass con-
sidered several global optimization strategies, using
a two pass system. His results open a wide �eld for
future research work. Some of his ideas seem to be
used in the Type & Set system [3].

1 Under normal circumstances, however, this is prevented

by the badness function.

2 Starting with the next section the article uses hanging

punctuation. The change in quality is clearly visible although

improvement is still possible by making subtle ajustments to

all characters (e.g., move the `r' a tiny bit out, etc.) to reach
a perfect alignment.

Reprint MAPS#10 (93.1); May 1993 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Q Guidelines for Future TEX Extentions 89

The main contribution of TEX82 to computer
based typesetting was the step taken from a line-by-
line paragraph breaking algorithm to a global optimi-
zing algorithm.3 The main goal for a future system
should be to solve the similar, but more complex,
problem of global page breaking.

5 Page Layout

For the tasks of page makeup, TEX provides the con-
cept of output routines together with insertions and
marks. The concepts of insertions and marks are tail-
ored to the needs of a relatively simple page layout
model involving only one column output, footnotes,
and at the most simple �gures once in a while.4

The mark mechanism provides some informa-
tion about certain objects and their relative order
on the current page, or more speci�cally, informa-
tion about the �rst and last of these objects on the
current page and about the last of these objects on
any of the preceeding pages. Such information is ne-
cessary to construct certain kinds of running heads,
e.g., one with the name of the current chapter or
with information about the �rst and last word ex-
plained on the page, etc.

This is a global mechanism, however, so that
only one class of objects can take advantage of the
whole mechanism. If more than one class is imple-
mented, some of the features of the mechanism are
lost within one class.5 As a consequence of this de�-
ciency, one should extend the mark mechanism to a
system of independent marks which can be allocated
separately by a macro package.

The insertion mechanism seems to be derived
from `footnote applications', and later extended to
allow for some simple kinds of
oating insertions.6

But placement of
oating objects needs more than
simply storing them in a huge box which is split
at a certain point when the output routine is cal-
led. Floats are accompanied by captions and the
like, which require di�ering treatment depending on
their �nal placement on the page. Floats may vary
in width even if they belong to the same class. On
the other hand, deferred
oats in one class may in-

uence or even prohibit the placement of
oats in
other classes.

Some classes of insertions, like marginal notes,
cannot be handled by the primitives at all. To pro-
vide such features LATEX, for example, de�nes its
own memory management for
oating objects. Na-
turally, such a mechanism is slow and space consu-
ming. Additionally, the quality of page breaks is
further reduced because it is di�cult to maintain,
for free, all the information provided by the inser-
tion concept.

Another problem is the design decision that the
page breaking mechanism is, at least in its crucial
parts, available only in outer vertical mode; thus,

\baselineskip 1
?

6

\baselineskip 1
?

6

?

6
\parskip

?

?

6

?

6 \baselineskip 2

?

6 \baselineskip 2

Figure 2: Baseline to baseline spacing

To implement a baseline to baseline dimension,

for example between a paragraph and a heading
(denoted by the question mark), the value for

\parskip has to be determined in dependence of

the \baselineskip of the second paragraph. Un-
fortunatly the value of \baselineskip used will be

the one current at the end of the second paragraph

while the \parskip has to be computed at its be-
ginning.

for example, space for insertions is not taken into
account when splitting a \vbox.

For a designer TEX's model of interline glue de-
termination is very unfamilar because it does not
allow to specify baseline to baseline spacing in a
page-spec without using lengthly and complicated in-
ternal computations (see �gure 2 on the next page).
This also means that it is nearly impossible to imple-
ment grid-oriented specs, i.e., where (nearly) all base-
lines fall into predetermined positions. This article
uses a grid-oriented spec (which was partly handpre-
pared) to show this aspect of high quality typeseting.
Details are given in example 3.

The design of suitable primitives for this com-
plex must go hand in hand with a new algorithm for
page breaking, comprising probably the most drastic
changes to the TEX system.

3 It should be noted that a similar algorithmwas developed

independently by J. Achugbue [2]. A comparison might lead

to further enhancements.

4 The term `one column output' means that all text is

assembled using the same line width. Problems with variable

line width are discussed in section 4. Of course, this already

covers a wide range of possible multi-column layouts, e.g.,

the footnote handling in this article. But a similar range of

interesting layouts is not de�nable in TEX's box-glue-penalty
model.

5 The LATEX implementation provides an extended mark

mechanism with two kinds of independent marks with the re-

sult that one always behaves like a \firstmark and the other

like a \botmark. The information contained in the primitive

\topmark is lost.

6 This is only a guess from studying [17].

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#10 (93.1); May 1993

90 E-TEX: Guidelines for Future TEX Extensions Bijlage Q

6 Penalties|measurement for decisions

Line and page breaks in TEX are determined chie
y
by weighing the \badness" of the resulting output7

and the penalty for breaking at the current point.
Such penalties are either inserted directly by the
user (during macro expansion) or added later by cer-
tain TEX formatting routines.

The main problem posed by the implicit penal-
ties is that they cannot be removed. If, for example,
the line breaking algorithm decides to put a penalty
after a line (e.g., from \widowpenalty), there is no
way to prohibit a page break at this place via macro
expansion except, of course, by setting the penalty
in question to in�nity. This is the result of TEX's al-
gorithm that consecutive penalties p1 and p2 behave
like p3 := min(p1; p2).

Local changes to the o�ending penalty parame-
ters are error prone and time consuming, since after
each change the following page breaks might fall in
di�erent places. Additionally, future editions of the
document are made more di�cult because every cor-
rection of this sort might produce undesired results
after a single change.

If we think in terms of the current TEX (i.e.,
assuming all major algorithms are unchanged), it
would be better to adopt a di�erent strategy in
the case of consecutive penalties, either p3 :=
max(p1; p2) or p3 := 1=2 (p1+p2). For both functions,
the boundary cases pi = �1 would need special
care. Breaking the chain of penalties could be per-
formed as usual by grouping or \kern0pt or similar
procedures as is already done with ligatures, etc.

As we mentioned, this is a solution within the
framework of TEX82. If a totally di�erent algorithm
for page breaking is designed, the concepts of local
penalties should be reconsidered, too, and probably
be replaced by a di�erent strategy.

7 Hyphenation

When typesetting text, especially in
narrow columns, hyphenation is often
inevitable in order to avoid unreadable,
spaced out lines.
But readability has many faces; one of the golden
rules says [28] \Avoid more than two hyphenated
lines in a row." As we mentioned in section 2, this
cannot be speci�ed in TEX (unless one disables even
two consecutive hyphens).

Another problem is hyphenation of words at
places which are allowed but which distort the
meaning:

Stiefel-tern Stief-eltern
Spargel-der Spar-gelder8

One should probably always forbid such problema-
tical hyphens by choosing appropriate patterns for

Liang's algorithm [23]. But readability is also dis-
torted by the hyphenation of very short syllables
which give no or almost no information about the
word hyphenated and, therefore, slow down the read-
ing process considerably. With TEX 3.0 it is now
possible to adjust the minimal number of letters to
the left and right of a hyphen. This is necessary for
many languages which often have long words and,
for example, many two letter syllables like German.
But there is no provision for provision for assigning
weights to hyphenation points, i.e., it is a simple
yes or no situation. One possible solution to this
problem would be to add another class of demerits
which could be applied via

users value

length of broken part

or a similar function. Of course, one probably has to
distinguish between pre-break and post-break text
(and/or length) in the formula.

Since the quality of a certain breakpoint also
depends on the word (i.e., the meaning of the word-
parts), we should consider whether such informa-
tion could be provided by the hyphenation algo-
rithm itself.

8 Box Rotation

TEX's concept of document representation is strictly
horizontal and left to right oriented. Beside the pro-
blem of processing documents containing right-left
or top-down oriented languages (which can be hand-
led to some extent by special versions of TEX [21]),
this also poses unnecessary restrictions in standard
applications. Except by using \special (for Post-
Script devices) it is impossible to rotate certain
parts of the document. While arbitary rotation is
indeed next to impossible for most output devices,
rotation by 90� can be handled in a simple manner
by rotating the character cells. It should be easy to
include some sort of \rotate primitive to TEX's lan-
guage which would allow rotating hboxes and vboxes
by multiples of 90 degrees.9 This would allow inclu-
sion for example, of landscape tables, etc., in a docu-
ment, without the need to use real glue and scissors
to add the page number or the running head.

9 Font Information

The ISO Draft Standard [1] contains hundreds of
properties describing a font resource. While some of

7 This is in some sense a measure of the di�erence between
the optimal and actual amount of white space on the line or

page in question.

8 The meanings of the words are `step-parents' and `sa-

vings', but the �rst parts of the words in the left columns

mean `boot' and `asparagus', respectively.

9 This would also require changes to the dvi language and
thus changes in all driver programs.

Reprint MAPS#10 (93.1); May 1993 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Q Guidelines for Future TEX Extentions 91

them are accessible through TEX via \fontdimen,
the majority are not. It seems advisable to add
more of them to the set of TEX's parameters (for
example, a recommended \baselineskip), in order
to be able to make font family changes in documents
more easily.

9.1 Virtual Fonts

Use of font families in TEX, which di�er in charac-
ter position, etc., from the defaults in the Computer
Modern family, is di�cult but can be achieved as
proved in several projects [7, 35]. The proposed use
of virtual fonts [20] may help to simplify matters in
this regard. If it is possible to agree on standards
for the position and the method of access for certain
accented characters for the most common Latin al-
phabet languages, it should be possible to typeset
multilingual documents (using the new features of
TEX 3.0) without introducing unnecessary variants
of standard fonts di�ering only in the availability
of certain accented characters as `real' letters.10 A
good survey of accented characters in Latin alphabet
languages and a proposal for their access via ligatu-
res is given by Haralambous [8].

9.2 Ligatures and Kerns

Unfortunately, ligatures as well as kerns di�er from
language to language. Take, for example, the `�' li-
gature which is not used in traditional German docu-
ments. On the other hand, such documents contain
`ch', `ck' and `ft' ligatures to obtain a better script.
The following examples shows the di�erence:

Druckschrift Druckschrift (standard)
Druckschrift Druckschrift (German ligatures)

Since these special ligatures do not involve new let-
ter shapes (at least not in most font families) it is
possible to achieve the desired results simply with
kerning. In the Computer Modern font family [15],
both `ch' and `ck' are contained in kerning programs,
but only for serif fonts. Other font families show
similar de�ciencies. Thus, for typesetting German
documents, one either needs special physical fonts
(or at least virtual fonts), or a way to manipulate
ligature and kerning programs from within the TEX
program. For reasons of portability, a controlled ac-
cess to the ligature/kerning programs during font
loading seems preferable.

10 Tables

Well-designed tables are di�cult to typeset even
for experienced hand composers. TEX's primitives
\halign and \valign do a marvellous job in this
respect, even in complex situations. There is one im-
portant subclass of tables, however, which cannot
be handled at all, except with hand tailoring. It is
not possible to specify combinations of horizontally

and vertically spanned columns, e.g., an open curly
brace spanning several rows in one column while the
row structure is maintained on both sides.

Another feature often desired is the ability to
specify tables spanning several pages. While this
is di�cult to achieve, since TEX's table primitives
normally read the whole table before determining
the column width, etc., it does not pose unsolvable
problems with the advanced features of TEX 3.0.

11 Math

Mathematical typesetting is one of TEX's major do-
mains where no other automatic typesetting system
has been able to catch up. But even in this area se-
veral things could be improved.

The source code of AMS-TEX [30] shows many
interesting examples where Spivak circumvents limi-
tations of TEX's formatting rules by introducing com-
plex code to de�ne functions that should perform
standard tasks in mathematical typesetting. A de-
tailed analysis of these problems (double accents, un-
der accents, placement of equation numbers, etc.)
would easily �ll several pages; some comments can
be found in Spivak's documentation [29].

While TEX's spacing rules for math are quite
good, it seems at least questionable that many of
them are hardwired into the program instead of
being accessible through parameters. The table for
spacing between di�erent math-atoms is probably
the most important example of this sort.

Another problematical feature of TEX's math
typesetting routines is that sub-formulas are always
boxed at natural width even if the top level math-
list is subject to stretching or shrinking. This might
produce ugly results in certain circumstances. The
concept of boxing sub-formulas has the additional
disadvantage that such parts of a formula cannot
be broken across lines. Therefore programming con-
structs like \left: : :\right which automatically de-
termine the height of variably sized delimiters, can-
not be used in complex displays.

12 TEX's language

The language of TEX is divided into two parts which
are described as the mouth and the stomach of TEX
[18]. This distinction is crucial in many applicati-
ons since the output produced by TEX's gastrono-
mical routines cannot be fed again into its mouth,
i.e., its scanner. Actually, constructed boxes are
post-processable to a limited extent (via \lastbox,
\unpenalty, etc.) but arbitrary constructions can-
not be handled this way because primitives for ma-
nipulating things like characters, rules, etc., are mis-
sing. In general, this distinction is the reason for

10 The use of the accent primitive of TEX is not recommen-

ded for standard accents of a language [18, p. 54] since it

disables the hyphenation facility.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#10 (93.1); May 1993

92 E-TEX: Guidelines for Future TEX Extensions Bijlage Q

many obstacles in TEX-programming, which some-
times prevent any solution at all. A new system
should remove this two-class society of internal com-
mands.

Another severe problem of the language is its in-
completeness regarding standard programming con-
structs (such as certain conditionals, an acceptable
arithmetic parser, etc.), as well as special constructs
suitable for typesetting. To determine, for example,
the length of the last line in a paragraph (which
is done automatically by TEX when typesetting dis-
plays), one has to use a complicated and lengthy
computation, as shown in example 2, below. This
example also shows one of the inconsistencies of
TEX's language: \prevgraf has to be advanced
using a scratch register because the direct use of
\advance is forbidden. Many problems of this sort
can be found by looking at appendix D of the The

TEXbook [18, pp. 373{401] which is entitled \Dirty
Tricks". Actually nine out of ten examples the-
rein are used in the implementation of LATEX [22],
which shows that these examples are far less exo-
tic than the preface to this appendix suggests. As
examples of missing programming constructs, condi-
tionals, such as \ifmathopen, for determining math
atoms should be mentioned.

Such problems explain the fact that general ap-
plication software written in TEX (like LATEX) easily
takes up more than a third of the available memory
without typesetting even a single letter. For better
and more stable front ends one needs a language
where such tasks can be speci�ed in a more elegant
manner.

Some of TEX's restrictions in the language
are due to the representation of dimensions in
most TEX installations as `real numbers', which
are machine-dependent.11 To make TEX neverthe-
less machine-independent, Knuth tried to prevent
machine-dependent results generated in TEX's sto-
mach from creeping into parts accessible to the scan-
ner, or to in
uence internally any decisions about
line or page breaks. As a result of this strategy, the
use of the code in example 2 together with a �nite
\parfillskip (as in example 1) will nearly always
produce the value \maxdimen instead of a decent
one.12 For the same reason, Knuth said in a conversa-
tion with the author at Stanford that he cannot per-
mit the removal of arbitrary items in a constructed
list since this would allow access to
oating-point
arithmetic. But there exists another way to achieve
machine-independence, which would also eliminate
the restrictions mentioned, namely to change from

oating-point to �xed-point arithmetic13 which can
be done in a straightforward way, as Knuth himself
has acknowledged [16, p. 46].

TEX is a macro-language with all the advanta-
ges and disadvantages. Anyone who ever wrote a

relatively long application in TEX knows that debug-
ging is extremely di�cult. Transparent program-
ming, as proposed by the author of TEX [10], is
next to impossible: it is no problem to write three li-
nes of TEX code that cannot be understood even by
TEXperts without a second and third look. But it is
much more di�cult to write TEX code that performs
a desired function, and is, at the same time, under-
standable to the average user. The examples given
in section 14 are good test cases; they are all straight-
forward TEX-coding, but their precise meanings are
di�cult to understand without explanatory text.

Many problems arise from design decisions ba-
sed on totally di�erent semantic constructs, which
have similar or identical syntactical structure. The
most important examples are the curly braces and
the dollar sign.14 The curly braces are used both
for delimiting arguments during macro expansion, as
well as for the start and end of block structures that
de�ne the scope of certain declarations. In math
mode they have the additional meaning of delimi-
ting the scope of a sub-formula. Two consecutive
dollar signs normally start or end a display formula,
but in restricted horizontal mode they simply denote
an empty math formula. Such concepts should be
unraveled for the sake of clarity.

TEX's language is suitable for simple program-
ming jobs. It is like the step taken from machine
code (of the formatter) to assembly language. For
complex programing tasks of general application soft-
ware, especially from the viewpoint of logically tag-
ged documents [5], a more powerful language with
well-de�ned concepts for variable-bindings, procedu-
res, etc, is preferable. While this aspect can be achie-
ved in a front end programming language (which
compiles into the TEX language) it is better to in-
clude it, for the sake of portability, in the TEX
kernel. In the author's opinion, an ideal language
should combine the advantages of procedural langua-
ges with the goodies of interpreter features.15 As a
side e�ect, such a language would be partly com-
pilable.

13 Conclusion

The current TEX system is not powerful enough to
meet all the challenges of high quality (hand) ty-

11 Actually, this only applies to internal dimensions repre-

senting stretching or shrinking of glue, computed kerns for

accents, and some others.

12 The reason is given in module 1148 of the TEX program

[16, p. 470].

13 Perhaps, using always the same
oating-point algorithm
(either available in the compiler library or simulated by the

program) would be even better.

14 To be more exact, the three characters with \catcode

one, two, and three.

15 Some sort of Lisp-like system, but with primitives suit-
able for typesetting.

Reprint MAPS#10 (93.1); May 1993 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Q Guidelines for Future TEX Extentions 93

pesetting. The author shares Knuth's dream of a
stable, low-level formatter which is able to produce
documents of highest quality. But, unlike Knuth, he
views the current TEX only as a very good prototype
on the way to reach this goal.

As outlined in this paper, many important con-
cepts of high quality typesetting are not supported
by TEX 3.0. Further research is necessary to design
a typesetting language which can handle these tasks
properly.

The TEX user community needs an open mind
for new developments that keep the `TEX-System'
the state of art in the �eld of computer typesetting.
As Knuth is no longer involved in research on typo-
graphy it is important for TUG to �nd an identity
in supporting and maintaining `the best typesetting
program' and not only promoting the program that
Knuth has given to the world. If we don't strike for
even further quality our large community might fall
back to insigni�cance.

One important step for TUG would be to initi-
ate and (when advisable) support further research
projects which will take up the challenges posed by
the Stanford project.

14 Examples

Example 1 To avoid nearly empty lines at the end
of a paragaph, the following code could be used:

\parfillskip \columnwidth

\advance \parfillskip -1.5\parindent
\advance \parfillskip 0pt minus \parfillskip

\advance \parfillskip 0pt minus -1em

This setting was used throughout this article, for
example, which led to some changes in section 2.
With the standard setting (e.g., 0pt plus 1fil),
the �rst and third paragraph therein would have en-
ded with the word part `ods' (from `meth-ods') and
the word `topic' respectively. Unfortunately, this
solution is not perfect either, since it produces some-
what funny results with lines consisting of two very
short words.

Example 2 The following code determines the
length of the last line of the preceeding paragraph,
using a feature of TEX built into mathematical dis-
plays. This code can be used to determine, for
example, the amount of white space before an itemi-
zed list, or something similar. The example of code
given is not really suitable for direct applications of
this sort, since it simply displays the value found on
the terminal. But it could easily be extended.

\def\getlastlinewidth{\ifhmode $$%

\predisplaypenalty\@M \postdisplaypenalty\@M

\abovedisplayskip-\baselineskip \belowdisplayskip\z@

\abovedisplayshortskip\abovedisplayskip

\belowdisplayshortskip\belowdisplayskip

\showthe\predisplaysize

$$\count@\prevgraf \advance\count@-\thr@@
\prevgraf\count@ \else\typeout{*Not hmode*}\fi}

This example illustrates several important things.
First, there is no elementary way to compute such
important information. Second, it is one of the (not
unusual) cases where information about the typeset-
ting process can only be got by introducing unde-
sired (since space-consuming) penalties, glues, and
null-boxes in the output.

Example 3 To introduce a grid-oriented spec all

exible glue on the page has to be disposed o�
(execpt for \skip\footins) and the \vsize must
be adjusted. Titles are set with 8pt + 4pt =
\baselineskip leading and we have to ensure that
the above space is kept after a page break. Lists are
set with 6pt+6pt so the inner lines are half way o�.
Page breaks insides lists would need special treat-
ments, e.g., by increasing \topskip to keep the sub-
grid. Figures and examples in di�erent type sizes
are measured and necessary kerns added to keep the
surrounding material in line. Again this approach
only works if no page break intervence, which hap-
pens to be the case for this article. To use the bad-
ness calculation of TEX for determing page breaks
a stretchable \topskip can be used. During the
output routine this extra stretch must then be can-
celed again.

References

1. Information Processing|Font Information In-

terchange, ISO/IEC JTC 1/SC 18/WG8 N1036,
February 1990.

2. Achugbue, James O. \On the line breaking pro-
blem in text formatting." Proc. of the ACM

SIGPLAN/SIGOA, 2(1, 2), 1981.
3. Asher, Graham. \Type & Set: TEX as the en-

gine of a Friendly Publishing System." Pages
91{ 100 in TEX applications, uses, methods, Mal-
colm Clark [6].

4. Benson, Gary, Debi Erpenbeck, and Jannet
Holmes. \Inserts in a multiple-column format."
Pages 727{ 742 in 1989 Conference Proceedings,
Christina Thiele [31].

5. Bryan, Martin. SGML: an author's guide to the

standard generalized markup language. Addison-
Wesley, Woking, England; Reading Massachu-
setts, second edition, 1988.

6. Clark, Malcolm, editor. TEX applications,

uses, methods, Chichester,West Sussex, Eng-
land, 1990. Ellis Horwood Limited. Exeter con-

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#10 (93.1); May 1993

94 E-TEX: Guidelines for Future TEX Extensions Bijlage Q

ference July 1988.
7. Conrad, Arvin C. \Fine typesetting with TEX

using native autologic fonts." Pages 521{528 in
1989 Conference Proceedings, Christina Thiele
[31].

8. Haralambous, Yannis. \TEX and latin alphabet
languages." TUGboat, 10(3):342{345, Novem-
ber 1989.

9. Honig, Alan. \Line-Oriented Layout with TEX."
Pages 159{ 184 in TEX applications, uses, me-

thods, Malcolm Clark [6].
10. Knuth, Donald E. \Literate programming."

The Computer Journal, 27:97{ 111, 1984. An
expository introduction to WEB and its underly-
ing philosophy.

11. Knuth, Donald E. Computers & Typesetting.
Addison-Wesley, Reading, Massachusetts, 1986.
Consists of [18, 16, 13, 12, 15].

12. Knuth, Donald E. MET A F O N T : The Program.
Volume D of Computers & Typesetting [11],
1986.

13. Knuth, Donald E. The MET A F O N T book. Vo-
lume C of Computers & Typesetting [11], 1986.

14. Knuth, Donald E., September 1987. Talk given
at Gutenberg Museum Mainz.

15. Knuth, Donald E. Computer Modern Typefaces.
Volume E of Computers & Typesetting [11],
July 1987. Reprint with corrections.

16. Knuth, Donald E. TEX: The Program. Vo-
lume B of Computers & Typesetting [11], May
1988. Reprint with corrections.

17. Knuth, Donald E. \The errors of TEX." Techni-
cal Report STAN-CS-88-1223, Stanford Univer-
sity, Department of Computer Science, Stanford,
California 94305, September 1988.

18. Knuth, Donald E. The TEXbook. Volume A
of Computers & Typesetting [11], May 1989.
Eighth printing.

19. Knuth, Donald E. \The new versions of TEX
and MET A F O N T ." TUGboat, 10(3):325{ 328,
November 1989.

20. Knuth, Donald E. \Virtual Fonts: More fun for
Grand Wizards." TUGboat, 11(1):13{23, April
1990.

21. Knuth, Donald E. and Pierre MacKay. \Mixing
right-to-left text with left-to-right text." TUG-

boat, 8(1):14{25, April 1987.
22. Lamport, Leslie. latex.tex, February 1990.

LATEX source version 2.09.
23. Liang, Franklin Mark. Word Hy-phen-a-tion by

Com-put-er. PhD thesis, Stanford University,
Department of Computer Science, Stanford, CA
94305, August 1983. Report No. STAN-CS-83-
977.

24. Mittelbach, Frank. \An environment for multi-
column output." TUGboat, 10(3):407{ 415, No-
vember 1989.

25. Mittelbach, Frank. Letter to Don Knuth, Sep-
tember 1989. Suggestions for the TEX 3.0 release.
Published by R. Wonneberger in [34].

26. Plass, Michael Frederick. Optimal Pagination

Techniques for Automatic Typesetting Systems.
PhD thesis, Stanford University, Department of
Computer Science, Stanford, CA 94305, June
1981. Report No. STAN-CS-81-970.

27. Rynning, Jan Michael. \Proposal to the TUG
meeting at Stanford." TEXline, 10:10{ 13, May
1990. Reprint of the paper that triggered TEX
3.0.

28. Siemoneit, Manfred. Typographisches Gestal-

ten. Polygraph Verlag, Frankfurt am Main, se-
cond edition, 1989.

29. Spivak, Michael. amstex.doc, 1990. Comments
to [30].

30. Spivak, Michael. amstex.tex, 1990. AMS-TEX
source version 2.0 (without comments).

31. Thiele, Christina, editor. 1989 Conference Pro-
ceedings, volume 10#4 of TUGboat. TEX Users
Group, December 1989.

32. Wittbecker, Alan E. \TEX enslaved." Pages
603{606 in 1989 Conference Proceedings, Chris-
tina Thiele [31].

33. Wonneberger, Reinhard. \TEX in an industrial
environment." In Br�uggemann-Klein, Anne,
editor, 1989 EuroTEX Conference Proceedings,
1990. To appear.

34. Wonneberger, Reinhard. \TEX yesterday, today,
and tomorrow." TEXhax, 90(5), January 7 1990.

35. Youngen, R. E., W. B. Woolf, and D. C. Latter-
ner. \Migration from computer modern fonts to
times fonts." Pages 513{ 519 in 1989 Conference
Proceedings, Christina Thiele [31].

Reprint MAPS#10 (93.1); May 1993 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

