
58 Document Classes and Packages for LATEX2" Bijlage U

Document Classes and Packages for LATEX2"

Johannes Braams

PTT Research
P.O. box 421

2260 AK Leidschendam
The Netherlands

j.l.braams@research.ptt.nl

August 31, 1994

Abstract

In the first section of this article I describe what document classes and packages are and how they relate to
LATEX 2.09’s style files. Then the process of upgrading existing style files for use with LATEX2" is described.
Finally I give an overview of the standard packages and document classes that are part of the distribution of
LATEX2".

1 Introduction
This article is written for people who have written docu-
ment styles for LATEX 2.09 and want to upgrade them for
LATEX2". For a description of the new features of the
user level commands, see LATEX2" for authors (in the file
usrguide.tex in the LATEX2" distribution). The details
about the interface for class and package writers can be
found in LATEX2" for class and package writers (in the
file clsguide.tex). The way LATEX now deals with
fonts is described in LATEX2" font selection (in the file
fntguide.tex).

2 What are document classes and packages?
LATEX is a document preparation system that enables the
document writer to concentrate on the contents of his text,
without bothering too much about the formatting of it. For
instance, whenever he starts a new chapter the formatting
of the chapter is defined outside of his document. The
file that contains these formatting rules used to be called
a ‘document style’. Such a document style can have op-
tions to influence its formatting decisions. Some of these
options are stored in separate files, ‘document style op-
tion’ files. An example of such option files is fleqn.sty
which was part of the LATEX 2.09 distribution. This option
changes one aspect of the formatting of a document — it
makes displayed equations come out flush left instead of
centered.

There are also extensions to LATEX that implement con-
structs that are not available in the default system, such as
array.sty. These extensions are also known as ‘docu-
ment style option’ files, although they can often be used
with many kinds of documents.

To make a better distinction possible between these two
kinds of ‘options’ new names have been introduced for
them. What used to be called a ‘document style’ is now
called a ‘document class’1. Extensions to the functionality
of LATEX are now called ‘packages’.

2.1 Options, options, options...
Like the document styles of LATEX 2.09 document classes
can have options that influence their behaviour — to select
the type size for instance. But with LATEX2" it is now also
possible for packages to have options. As a consequence
there are now two kinds of options, ‘local options’ — which
are only valid for the package or document class they are
specified for — and ‘global’ options which can influence
the behaviour of both the document class and one or more
packages. As an example of this let’s consider a document
written in German. The author chooses to use the babel
package. He also wants to be able to refer to a figure ‘on
the following page’ so he uses the varioref package.
The preamble of his document might then look like:

\documentclass{article}
\usepackage[german]{babel}
\usepackage[german]{varioref}
...

As you see the option ‘german’ was specified twice. Using
a ‘global option’ this preamble could be changed to read:

\documentclass[german]{article}
\usepackage{babel}
\usepackage{varioref}
...

This way it is known to the document class as well as all
packages used in the document that the option ‘german’ is
specified.

�This article was first published in the proceedings of the 15th Anual TEX Users Group Meeting.
1This also gives a possibility to distinguish between documents written for LATEX 2.09 and documents written for LATEX2".

Reprint MAPS#13 (94.2); Nov 1994 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage U Document Classes and Packages for LATEX2" 59

2.2 Command names
This new version of LATEX comes with a new set of com-
mands. Those LATEX users who have written their own
extensions to LATEX in the past know that in version 2.09
basically two types of commands existed. There are ‘inter-
nal’ commands —which have ‘@’-signs in their name—
and there are ‘user level commands’ —without ‘@’-signs
in their name.

In LATEX2" there are also commands that have both upper-
and lowercase letters in their name. Those commands are
part of the interface for package and class writers. They
are not intended for use in documents, but they are meant
to provide an ‘easy’ interface to some of the internals of
LATEX2".

2.3 Filenames
The new version of LATEX introduces a number of new
file extensions. This makes it easy to distinguish between
files that contain a Document Class, files that contain an
external option to a Document Class and files that contain
Packages. In table 1 you can find an overview of the ex-
tensions that have been introduced. I would suggest that
you would stick to the same set of extensions when you
upgrade your old .sty files.

cls A file containing a document class
clo A file containing an external option to a document

class
sty A file that contains (part of) a package
cfg An optional file that is looked for at runtime and

which can contain customization code
def A file containing definitions that will be read in at

runtime.
ltx A file used when building the LATEX2" format
dtx Documented source code for .cls, .clo, .sty,

.cfg, .def, and .ltx files
fd A font definition file
fdd Documented source code for .fd files
ins DOCSTRIP instructions to unpack .dtx and .fdd

files

Table 1: Extensions for LATEX2" files

3 Upgrading existing ‘styles’; general
remarks

3.1 Is it a class or a package?
The first thing to do when you upgrade an existing style file
for LATEX2", is to decide whether it should become a docu-
ment class or a package. Here are a few points which might
help you to decide what to do with your .sty file.
� Was the original .sty file a documentstyle? Then turn

it into a document class.
� Was the original .sty file meant to be used for a cer-

tain type of document? In that case you should consider
turning it into a document class, possibly by building
on top of an existing class. An example of this is
proc.sty which is now proc.cls.

� Was it just changing some aspects of the way LATEX
does things? In that case you would probably want to
turn your .sty file into a package.

� Was it adding completely new functionality to LATEX?
Examples of this kind of.styfile are files such asfan-
cyheadings.sty and XYpic.sty. This you most
certainly will want to turn into a package for LATEX2".

3.2 Style options! packages
Trying it out unchanged
After you’ve decided to produce a package file, you should
first try to run a document that uses your .sty file through
LATEX2" unmodified. This assumes that you have a suit-
able test set that tests all functionalityprovided by the.sty
file. (If you haven’t, now is the time to make one!) The
experience of the last months has shown that most of the
available .sty files will run with LATEX2" without any
modification. Yet if it does run, please enter a note into the
file that you have checked that it runs and resubmit it to the
archives if it was a distributed file.

Bits that might have failed
Some .sty files will need modification before they can be
used successfully with LATEX2". Such a modification is
needed for instance when you used an internal macro from
the old font selection scheme. An example is \fivrm

which is used by some packages to get a small dot for plot-
ting. The obvious solution for this seems be to include a
definition such as:
\newcommand{\fivrm}

{\normalfont
\fontsize{5}{6.5pt}\selectfont}

But that involves a lot of internal processing and may result
in long processing times for your documents that use this.
For this purpose the command \DeclareFixedFont is
available. It bypasses a lot of the overhead of the font
selection scheme. Using this command the solution be-
comes:
\DeclareFixedFont{\fivrm}

{OT1}{cmr}{m}{n}{5}

This tells LATEX that the command \fivrm should select
a font with OT1 encoding, cmr family, medium weight,
normal shape and size 5 point.

Pieces of code that might need checking
If your file .sty file uses commands that used to be part
of the way LATEX used to deal with fonts than your file
will almost certainly not work. You will have to look in
LATEX2" font selection or The LATEX Companion (Goossens
et al. 1994) to find out the details about what needs to be
done.

Commands such as\tenrm or \twlsf have to be replaced:

\tenrm ! \fontsize{10}{12pt}\rmfamily

\twlsf ! \fontsize{12}{14.5pt}\sffamily

Another possibility is to use the rawfonts package, de-
scribed in LATEX2" for Authors.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#13 (94.2); Nov 1994

60 Document Classes and Packages for LATEX2" Bijlage U

Also commands such as \xipt do not exist any longer.
They also have to be replaced:

\vpt ! \fontsize{5}{6.5pt}\selectfont
\xipt ! \fontsize{11}{13.6pt}\selectfont

LATEX 2.09 used commands with names beginning with \p
for ‘protected’ commands. For example, \LaTeX was de-
fined to be \protect\pLaTeX, and \pLaTeX produced
the LATEX logo. This made \LaTeX robust, even though
\pLaTeX was not. These commands have now been reim-
plemented using
\DeclareRobustCommand (described in LATEX2" for
class and package writers). If your package redefined one
of the \p-commands, you should replace the redefinition
by one using \DeclareRobustCommand.

When you use internal commands from NFSS version 1 you
will have to be very careful to check if everything still
works as it was once intended.

Note that macros such as \rm are now defined in class files,
so their behaviour may differ for each class. Instead you
should use the lower level commands such as \rmfamily
in packages. When you want to make sure that you get
a certain font, independent of the environment in which
your macro is activated, you can first call \normalfont
and then switch the various parameters of the font selection
scheme as necessary.

In some cases you may need to use the user level commands
such as \textrm. This is necessary for instance when you
define a command that may also be used in Math mode.

3.3 Document styles! Classes
Minimal updates are necessary
When you are upgrading a document style to a document
class there are a few things that you really have to change,
or your class will not work.

One of the things that must be done, is making sure that your
class doesn’t define \@normalsize but \normalsize.
Make sure that \renewcommand is used to redefine
\normalsize as it is already defined in the kernel of
LATEX, but to produce a warning that it needs to be given a
real definition.

Another aspect that needs to be dealt with, is that the pa-
rameters \@maxsep, \@dblmaxsep and \footheight no
longer exist. The first two were part of the float placement
algorithm, but a change in that algorithm made them su-
perfluous. The parameter \footheight was reserved in
LATEX 2.09, but it was never used.

The declarative font changing commands (\rm, \sf etc.)
are no longer defined by default. Their definitions have
been moved to the class files. Make sure that you define
them or that they are not used by the users of your class.
The standard document classes all contain definitions such
as the following:
\DeclareOldFontCommand{\rm}

{\normalfont\rmfamily}{\mathrm}

This tells LATEX that when \rm is used in the text it should
switch to \normalfont and then select the roman family.
When \rm is used in mathmode the LATEX will select the
font that would be selected by \mathrm2 .

Build on standard classes
When upgrading your own document style you should con-
sider to reimplement it by buildingon an existing Document
Class. With the new features of LATEX2" this has become
very easy. The advantage of this approach is that you don’t
have to maintain a whole lot of code that is probably basi-
cally a copy of the code in one of the standard document
classes. (See below for a few examples of how to build
your own document class on an existing class.) Some doc-
umentstyles written for LATEX 2.09, such as ltugboat,
contain a command such as \input{article.sty}.
This was the only solution in LATEX 2.09 to build a new
documentstyle upon an existing style. But, there was no
way of ensuring that the file article.sty which was
found by LATEX wasn’t out of date. As you see in the ex-
amples below, it is now possible to ensure that you use a
version of article.cls that was released after a certain
date.

Suggested updates
Apart from the essential changes to your document class,
there are also a few changes that you are encouraged you
to make. Most of these changes have to do with the new
possibilities the package and class writers interface gives
you.

In a LATEX 2.09 document style an option was declared by
defining a command that starts with \ds@ followed by the
name of the option. Later on in the documentstyle the com-
mand \@options was called to execute the code for the
options that were supplied by the user. For example, the
document style article contained the following lines of
code:
...
\def\ds@twoside{\@twosidetrue

\@mparswitchtrue}
\def\ds@draft{\overfullrule 5\p@}
...
\@options
...

This code fragment defined two options, twoside and
draft.

The same effect can be achieved by using LATEX2" syn-
tax, as is shown by the following code fragment from the
document class article:
...
\DeclareOption{oneside}

{\@twosidefalse \@mparswitchfalse}
\DeclareOption{twoside}

{\@twosidetrue \@mparswitchtrue}
\DeclareOption{draft}

{\setlength\overfullrule{5pt}}
\DeclareOption{final}

{\setlength\overfullrule{0pt}}
...
\ProcessOptions

2See LATEX2" font selection for more details.

Reprint MAPS#13 (94.2); Nov 1994 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage U Document Classes and Packages for LATEX2" 61

As you can see, the intention of this code is easier to un-
derstand.

I consider it good practice, when writing packages and
classes, to use the higher level LATEX commands as much
as possible. So instead of using \def... I recom-
mend using one of \newcommand, \renewcommand or
\providecommand. This makes it less likely that you
inadvertently redefine a command, giving unexpected re-
sults.

When you define an environment use the commands
\newenvironment or \renewenvironment instead of
\def\foo{...} and \def\endfoo{...}.

If you need to set or change the value of a hdimeni or hskipi
register, use \setlength.

The advantage of this practice is that your code is more
readable and that it is less likely to break when future ver-
sions of LATEX are made available.

Some packages and document styles had to redefine the
\begin{document} or \end{document} commands to
achieve their goal. This is no longer necessary. The
‘hooks’ \AtBeginDocument and \AtEndDocument are
now available. They make it more likely that your package
wil work together with someone else’s.

When a document class needs to pass information to the
user, you can use one of the commands \ClassInfo,
\ClassWarning, \ClassWarningNoLine or
\ClassError. A similar set of commands exists for
packages.

Be colour safe
One of the new features of LATEX2" is the support for
coloured documents. To create a document that contains
colour you need:
� the color package, which is part of the LATEX2" dis-

tribution;
� a driver which supports colour — dvips by Tomas Ro-

kicki is an example of such a driver;
� colour safe macros.

The first two points are probably obvious, the third point
needs some explanation. TEX has no knowledge of colour,
therefore the macros need to keep track of the colour. To
achieve that, various changes have been made to the ker-
nel of LATEX. This has been done in such a way that the
changes are ‘dormant’ when thecolor package isn’t used.
As an example, here is the current definition3 of the LATEX
command \sbox:
\def\sbox#1#2{\setbox#1\hbox{%

\color@@setgroup#2\color@@endgroup}}

The extra level of grouping is activated by thecolorpack-
age and is needed to keep colour changes local. For more
information about being ‘color safe’ you should read the
documentation that comes with the color package.

If you use the LATEX commands for boxing sunch as\mbox,
\sbox, \fbox, etc. instead of the low level commands

\hbox, \vbox and \setbox, your code will be automati-
cally ‘colour safe’.

4 Upgrading existing ‘styles’ — an example
tour

4.1 A minimal class
Most of the work of a class or package is in defining new
commands, or changing the appearance of documents. This
is done in the body of the class or package, using com-
mands such as \newcommand, \setlength and \sbox

(or \savebox).

However, there are some new commands for helping class
and package writers. These are described in detail in
LATEX2" for class and package writers.

There are three definitions that every class must pro-
vide. These are \normalsize, \textwidth and
\textheight. So a minimal document class file is:
\NeedsTeXFormat{LaTeX2e}
\ProvidesClass{minimal}

[1994/06/01 Minimal class]
\renewcommand{\normalsize}{%

\fontsize{10}{12}\selectfont}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{8in}

However, most classes will provide more than this!

4.2 Extending a class with new commands
The first example shows how you can extend an existing
class with a few extra commands. Suppose you call your
new class extart. It could start off with the following
code:
%------------ Identification ------------%
\NeedsTeXFormat{LaTeX2e}[1994/06/01]
\ProvidesClass{extart}

[1994/08/01 v2.0j
Article like class with new commands]

This first line tells LATEX that your code was written for
LATEX2", released after june first, 1994. The second line
informs LATEX that this file provides the document class
extart, dated august 1, 1994 and with version 2.0j.
%------------ Option handling -----------%
\DeclareOption*{%

\PassOptionsToClass{\CurrentOption}
{article}}

The code above instructs LATEX to pass on every option the
user asked for to the document class article.
\ProcessOptions
%------------ Load other class ----------%
\LoadClass[a4paper]{article}[1994/06/01]

The command \ProcessOptions executes the code
associated with each option the user specified. The
\LoadClass command subsequently loads the class file.
The first optional argument to \LoadClass passes the op-
tion a4paper to the class; the second optional argument
to \LoadClass asks for article.cls dated june first,
1994 or later.

Note that if you change your mind and load report in-
stead you also have to change the second argument of
\PassOptionsToClass.

3Shown here only as an illustration, the actual implementation may change.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#13 (94.2); Nov 1994

62 Document Classes and Packages for LATEX2" Bijlage U

%------------ Extra command -------------%
\newcommand\foo{\typeout{Hello world!}}
...

The rest of the file contains the extra code you need such
as the definition of the command \foo.

4.3 Changing the layout produced by another
class

The first few lines of a class that modifies the layout of an
existing class would look much the same as in the example
above.

%------------ Identification ------------%
\NeedsTeXFormat{LaTeX2e}[1994/06/01]
\ProvidesClass{review}

[1994/08/01 v1.0
Article like class with changed layout]

%------------ Option handling -----------%
\DeclareOption*{%
\PassOptionsToClass{\CurrentOption}

{article}}
\ProcessOptions
%------------ Load other class ----------%
\LoadClass{article}[1994/06/01]

Suppose we have to print on paper 7 inch wide and
9.875 inch tall. The text should measure 5.5 inch by
8.25 inch

%------------- Layout of text -----------%
\setlength{\paperwidth}{7in}
\setlength{\paperheight}{9.875in}
\setlength{\textwidth}{5.5in}
\setlength{\textheight}{8.25in}

What we have to do now is position the body of the text in
a proper place on the paper.

\setlength{\topmargin}{-.5625in}
\setlength{\oddsidemargin}{-.25in}
\setlength{\evensidemargin}{-.25in}
\setlength{\marginparwidth}{.25in}
\setlength{\headsep}{.1875in}

We could go on and modify other aspects of the design of
the text, but that is beyond the scope of this article.

4.4 Extending a class with new options
As before, we start the document class with some identifi-
cation.

%------------ Identification ------------%
\NeedsTeXFormat{LaTeX2e}[1994/06/01]
\ProvidesClass{optart}

[1994/08/01 v1.0
Article like class with extra options]

Suppose you want to be able to print a document in 9pt
type or when you want to be loud, print it in 14pt type. You
know that the standard LATEX classes contain the command
\input{size1\@ptsize.clo}

just after the execution of \ProcessOptions. Supposing
you don’t want to print an article in 19pt type, you use
the file name size9.clo to implement your design for a
layout that assumes the type size is 9pt. To implement a
design for 14pt type you create the file size14.clo.

Adding the options to your extended document class is
done by the following two lines of code:

\DeclareOption{9pt}{\renewcommand\@ptsize{9}}
\DeclareOption{14pt}{\renewcommand\@ptsize{4}}

All other options have to be passed on to the article
class.

%------------ Option handling -----------%
\DeclareOption*{%

\PassOptionsToClass{\CurrentOption}{article}}
\ProcessOptions
%------------ Load other class ----------%
\LoadClass{article}[1994/06/01]

4.5 A real life example
Apart from adding options to an existing document class it
is also possible to disable options that are allowed by the
document class you are building upon. An example of this
is the document class ltxdoc, used by the LATEX3 project
team for the documented source code of LATEX. It contains
the following lines of code:

\NeedsTeXFormat{LaTeX2e}
\ProvidesClass{ltxdoc}

[1994/05/27 v2.0n
Standard LaTeX documentation class]

\DeclareOption{a5paper}%
{\@latexerr{Option not supported}{}}

\DeclareOption*{%
\PassOptionsToClass {\CurrentOption}%

{article}}
...

The interesting bit is the line that associates the option
a5paper with an error message. When someone speci-
fies the a5paper option to the class ltxdoc he will be
warned that this document class does not support A5 paper
printing.

This document class allows customization by checking if
a file ltxdoc.cfg exists. If a file with that name is found
the user is told that the file is read in.

\InputIfFileExists{ltxdoc.cfg}
{\typeout{%
*************************************ˆˆJ%
* Local config file ltxdoc.cfg usedˆˆJ%
*************************************}}
{}

Such a configuration file might contain the instruction to
use A4 paper for printing:
\PassOptionsToClass{a4paper}{article}

When the configuration file is read, the options are pro-
cessed and the article class is loaded.

\ProcessOptions
\LoadClass{article}

Then the package doc is required. This package is needed
to print documented TEX source code, which the document
class ltxdoc is made for.

\RequirePackage{doc}

The last line from this document class that is interesting is
the following:

\AtBeginDocument{\MakeShortVerb{\|}}

This instructs LATEX to store the command
\MakeShortVerb together with its argument (\|) to be
executed when \begin{document} is encountered.

Reprint MAPS#13 (94.2); Nov 1994 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage U Document Classes and Packages for LATEX2" 63

\PackageWarningNoLine{babel}
{The language ‘Dutch’ doesn’t have hyphenation patterns\MessageBreak
I will use the patterns loaded for \string\language=0 instead.}

produces:

Package babel Warning: The language ‘Dutch’ doesn’t have hyphenation patterns
(babel) I will use the patterns loaded for \language=0 instead.

Figure 1: An example of the use of the command \PackageWarning

4.6 Informing the user
4.7 Error handling
LATEX2" contains a set of commands that provide an inter-
face for error handling. There are commands to signal an
error (and prompt for corrective user input); commands to
issue a warning about something and commands to just pro-
vide some information. In figure 1 you can see an example
of the use of the command \PackageWarningNoLine.
The result of executing the command is also shown.

4.8 Compatibility with LATEX 2.09
Upwards compatibility is provided by the compatibility
mode of LATEX2". This mode was introduced to be able
to run old LATEX 2.09 documents through LATEX2", yield-
ing (almost) the same result. If this is what you need
to achieve, than you may be pleased to know that the
\if@compatibility switch can be used to test for com-
patibility mode. Using this switch, you can develop a
full blown LATEX2" Package or Document Class out of a
LATEX 2.09 style file and yet still be able to print your old
documents without changing them.

4.9 Possible Pitfalls while upgrading
Some mistakes that might be easily made and that can lead
to unexpected results:
� You declare options in your package using
\DeclareOption but forget to call
\ProcessOptions. LATEX will give an error, ‘unpro-
cessed options’ unless sometimes other errors in the
class file intervened and prevent the system detecting
this mistake.

� The usage of either \footheight, \@maxsep or
\@dblmaxsep outside of compatibility mode will lead
to a complaint from TEX about an unknown command
sequence.

� With LATEX 2.09 the order in which options to a docu-
mentstyle were specified was very significant. A docu-
ment would fail if the options were given in the wrong
order. By default LATEX2" does not process the options
in the order that they were specified in the document.
It rather processes them in the order that they are de-
clared in the class or package file. When the order
of processing the options is relevant to your code you
can use the command \ProcessOptions*. This will
make LATEX2" evaluate the options in the order that
they were specified in by the user.
For the babel package for instance, the order of pro-
cessing the options is significant. The last language
specified in the option list will be the one the document
starts off with.

5 Document Classes and Packages in the
LATEX2" distribution

5.1 Standard Document Classes
In table 2 an overview is given of the document classes
that are available when you get the standard distribution of
LATEX2".

article successor of the article document style
report successor of the report document style
book successor of the book document style
letter successor of the letter document style
slides successor of the slides document style and

SLITEX
proc Successor of the proc style option
ltxdoc to typeset the documented

sources of LATEX2"
ltxguide to typeset the LATEX2" guides
ltnews to typeset the news letter that comes with each

release of LATEX

Table 2: Available document classes that are part of
LATEX2"

Most of these will be familiar to you, they are the suc-
cessors of their LATEX 2.09 counterparts. Basically these
document classes behave like the old document styles. But
there are a few changes:
� The options openbib and twocolumn are now inter-

nal options, the files openbib.sty and
twocolumn.sty do not exist any more.

� A number of new options are implemented; support-
ing a range of paper sizes. Currently implemented
are a4paper, a5paper, b5paper, letterpaper,
legalpaper and executivepaper. These options
are mutually exclusive.
Another new option is the landscape option. It
switches the dimensions set by one of the ..paper

options. Note that this does not necessarily mean
that when you combine a4paper and landscape the
whole width of the paper will be used for the text. The
algorithm which computes the \textwidth from the
\paperwidth has an upper bound in order to make
lines of text not too long.

� The document class letter now also supports the
option twoside. It does not support the option land-
scape.

� The document class slide can now be used with
LATEX, SLITEX does not exist as a separate format any
longer.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#13 (94.2); Nov 1994

64 Document Classes and Packages for LATEX2" Bijlage U

Two column (using the option twocolumn slides are
not supported.
While processing the document class slides LATEX
tries to load the optional file sfonts.cfg. This file
can be used to customize the fonts used for making
slides.

� The former option proc.sty has now been turned into
a separate document class, which is implemented by
building on article using the \LoadClass com-
mand. This class does not allow the options a5paper,
b5paper and onecolumn.

A few new document classes have been added to the dis-
tribution of LATEX. These are mainly meant to be used for
documents produced by the LATEX3 project team, but they
can be used as an example of how to build a new class on
top of an existing class. These classes are not yet finished
and will probably change in the future.
� The document class ltxdoc is used in the documen-

tation of all the LATEX2" source code. The document
class is built upon the article class and also loads
the doc package.
It defines the command \DocInclude which works
like the \include command from LATEX, but sets
things up for formatting documented source code.
The formatting of the source code can be cus-
tomized by creating the file ltxdoc.cfg. Such
a file could for instance select your favorite paper
size. This can be done by entering the follow-
ing command in ltxdoc.cfg: \PassOptionsTo-

Class{a4paper}{article}} Selecting a5paper is
not allowed; the source listings wouldn’t fit.

� The document class ltxguide is used for the user
guides that are included in the distribution.

� The document class ltnews is used for the short
newsletter that accompanies the LATEX distribution.

5.2 Packages
Table 3 lists the packages that are contained in the LATEX2"
distribution.
ifthen successor of the ifthen option
makeidx successor of the makeidx option
showidx successor of the showidx option
doc successor of the doc option
shortvrb implements \MakeShortVerb and

\DeleteShortVerb
newlfont successor of the newlfont option
oldlfont successor of the oldlfont option
latexsym makes the LATEX symbol fonts

available
exscale implements scaling of the math extension font

‘cmex’
fontenc supports switching of output

encoding
syntonly successor of the syntonly option
tracefnt successor of the tracefnt option

Table 3: Available packages that are part of LATEX2"

The packages that are contained in the LATEX2" distribu-
tion are listed in table 3. Most of the packages in table 3
are described in The LATEX Companion.

The package ifthen (which used to be the option
ifthen) has been enhanced and now also defines
\newboolean, \setboolean and \boolean{...} to
provide a LATEX interface to TEX’s switches. Other new
commands are \lengthtest and \ifodd.

The package shortvrb has only recently been intro-
duced. It contains the definitions of the commands
\MakeShortVerb and \DeleteShortVerb from the
doc package. By providing this package those commands
can also be used in other documents besides LATEX source
code documentation.

5.3 Related software bundles
Table 4 lists some related software bundles that are dis-
tributed separately.

amslatex Advanced mathematical typesetting from the
American Mathematical Society

babel Supports typesetting in over twenty different
languages

color Provides support for colour
graphics Inclusion of graphics files
mfnfss Typesetting with bit-map (Metafont) fonts
psnfss Typesetting with Type 1 (PostScript) fonts
tools Miscellaneous packages written by the LATEX3

project team

Table 4: Packages that are not part of LATEX2"

These packages come with documentation and each of
them is also described in at least one of the books The
LATEX Companion (Goossens et al. 1994) and LATEX: A
document preparation system (Lamport 1994).

References
[1] Goossens, Michel, Frank Mittelbach and Alexander

Samarin. The LATEX Companion. Addison-Wesley
Publishing Company, 1994. ISBN 0 201 54199 8

[2] Lamport, Leslie. LATEX: A Document Preparation
System. Addison-Wesley Publishing Company, sec-
ond edition, 1994. ISBN 0 201 52983 1

[3] The LATEX3 Project team. LATEX2" for Authors. A
document provided in the LATEX2" distribution in file
usrguide.tex

[4] The LATEX3 Project team. LATEX2" for class and
package writers. A document provided in the
LATEX2" distribution in file clsguide.tex

[5] The LATEX3 Project team. LATEX2" font selection.
A document provided in the LATEX2" distribution in
file fntguide.tex

Reprint MAPS#13 (94.2); Nov 1994 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

