
40 Combining TEX and PostScript Bijlage Q

Combining TEX and PostScript�

Vladimir Batagelj

University of Ljubljana, Department of Mathematics
Jadranska 19, 61 111 Ljubljana

Slovenia
vladimir.batagelj@uni-lj.si/vlado.html
http://www.uni-lj.si/vlado/vlado.html

March 1995

Abstract

PostScript is becoming a de facto standard as a device independent page description language. By embedding
PostScript elements in TEX we can extend the use of TEX to new areas of application.
In the first part of the paper we give some general information about PostScript and its features. In the rest
of the paper we present some of our own experiences and solutions in combining TEX and PostScript:
� dictionaries, prolog files and how to save a lot of space with PostScript figures produced in CorelDRAW,

Mathematica, : : : ;
� writing TEX-PostScript macros, case: drawing graphs (combinatorics) in TEX; PostScript error handling

mechanism, an application in function graph drawing macro.

Keywords: PostScript, TEX, inclusion of graphics, dictio-
naries, macros, error handling.

1 Introduction
Pictures, figures and color are often important elements of
a document. They are foreign concepts to TEX which is
essentially based on arranging and glueing of boxes.

In his A Survey of TEX and Graphics [6, p. 275-276]
S. Rahtz discusses six approaches for producing graph-
ics in TEX. The first five are based on the TEX system and
therefore preserve device independence, but they are inflex-
ible in those cases where a picture has to be transformed
(scaled, rotated).

The sixth approach is based on the use of the TEX com-
mand \special with which we can include in the DVI
file commands for a selected output device driver. By do-
ing this we lose device independence; but, in the case of
PostScript, and considering its graphical power and the
availability of printers and previewers, this little adultery
seems worthwhile. In this paper we shall take a closer look
at this approach.

In the first part of the paper we give a short introduction to
basic ideas and capabilities of PostScript, thus making the
paper self-contained. In the rest of the paper we present
some of our own experiences and solutions on PCs in com-
bining TEX and PostScript.

2 PostScript
2.1 What is PostScript?
PostScript is a graphics programming language for describ-
ing, in a device-independent manner, text and other graph-
ical objects and how they are placed on the page or screen.

It was developed in 1985 by Adobe Systems in a joint
project with Apple Computer on the development of the
Apple LaserWriter. This version is known as Post-
Script Level 1.

Although PostScript was initially designed as an interface
between picture production and text formatting programs
on one side, and printers on the other side, it evolved into a
general interface language between (application) programs
and display devices. Its main extensions, by different users,
were:
� introduction of colors, improvements of pattern filling

and halftones;
� support for composite fonts (Japanese and other Eastern

alphabets);
� representation and communication of information in

some computer systems — Display PostScript (NeXT,
Silicon Graphics).

At the first PostScript Conference in 1990, Post-
Script Level 2 was announced which integrated these fea-
tures into a new version of the PostScript language.

�Version: March 1995 — updated version of the paper presented at EuroTEX’94, Sobieszewo, Poland, 26-30. Sep 1994.
Math. Subj. Class. (1991): 68 U 15, 68 - 01, 68 N 15

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Q Combining TEX and PostScript 41

2.2 PostScript programs and their execution
A PostScript program is a text (ASCII) file. Usually it is
produced by some other graphics or text formatting pro-
gram (Word, Word Perfect, CorelDRAW, Mathematica,
: : :), but it can be also prepared and maintained by a user
and any text editor.

To obtain from a document described in TEX on file.tex
its PostScript description on file.ps, we first produce, as
usual, the corresponding DVI file file.dvi and translate it
using some DVI-to-PS program (DVIPS, DVI2PS, DVI-
TOPS, : : :) into PostScript.

The simplest way to display the results of a PostScript pro-
gram on file.ps is to send it to a PostScript printer (copy
file.ps lpt: or print file.ps).

PostScript programs are either interpreted by an interpreter
built into a display device (i.e. laser printer) or by a software
interpreter in the user’s computer. The most widespread
software PostScript interpreter is Ghostscript (Aladdin En-
terprises and Free Software Foundation). Ghostscript
3.12 (September 1994) implements PostScript Level 2.
Ghostscript enables us to preview PostScript documents
on the screen and to print them on several nonPostScript
printers.

3 Basic PostScript programming
3.1 Syntax
PostScript program starts with

%!PS

followed by the description of page(s). PostScript recog-
nizes, besides a printable subset of the ASCII character
set, also characters space, tab and newline (CR or LF or
CR LF).

Some PostScript printers use CTRL-D as an indicator of
end-of-job. For this reason some application programs in-
sert CTRL-D at the beginning of PostScript files, which is
often a source of problems when we are trying to include
such files in our documents.

The content of the line from % till the end of line is a
comment.

PostScript is a stack-based language and uses a postfix (re-
verse Polish) notation for commands

p1 p2 : : : pn cmd

The interpreter puts the arguments p1, p2, : : : , pn on the
stack and leaves the results of command cmd on it.

PostScript [1, 12, 2, 3, 13] is a powerful programming
language which besides general programming elements:
data types (integer, real, boolean, string, array, dictio-
nary, file), control statements (if, ifelse, loop, for,
exit, exec), arithmetic operations and functions (add,
sub, mul, div, idiv, mod, abs, neg, ceiling, floor,
round, truncate, sqrt, exp, ln, log, sin, cos, atan,
rand, srand, rrand), operations and functions on other
data types, conversion operators, stack commands (dup,

exch, pop, copy, roll), environment commands(save,
restore, gsave, grestore); contains also many spe-
cific graphics commands: coordinate system changing
commands (rotate, scale, translate, transform),
path drawing commands (moveto, rmoveto, lineto,
rlineto, curveto, arc, charpath, newpath,
closepath), attribute setting commands (setgray,
setcmykcolor, setrgbcolor, setlinewidth), font
commands (findfont, scalefont, setfont), display-
ing commands (clip, stroke, fill, show, showpage).

3.2 PostScript’s coordinate system.
PostScript’s own coordinate system is based on units called
points (72 pt = 1 inch). It has the origin (0,0) in the lower
left corner (letter = 8.5 � 11 inch = 612 � 792 pt; A4 =
21 � 29.7 cm = 595 � 842 pt). The content of the page
is composed of page elements — parts of pictures or text.
Each page element is determined by a set of paths (lines,
arcs, curves) and their properties which are realized after
the application of some displaying command. Characters
are also treated as pictures, but supported by a special set
of very efficient commands.

3.3 Example: Simple program

%!PS
/Helvetica findfont 100 scalefont setfont
40 0 moveto
30 rotate
(TeX) false charpath
gsave

0.8 setgray
fill

grestore
4 setlinewidth
stroke
showpage

The first line of the program declares that this is a Post-
Script program. In the second line we set the Helvetica
font at size 100pt as the current font. Then we move to
the point (40,0) and rotate the coordinate system through
30 degrees. In the next line we transform the text TeX into
its outline. The command gsave saves the current graphic
environment. We fill the interior of the outline with 0.8
gray (1 is white, 0 is black) and restore the graphical en-
vironment. Now we set the line width to 4pt and draw the
outline. It has to be emphasized that path drawing and at-
tribute setting commands create only descriptions of paths
which are not realized on the page until some displaying
command is issued. The command showpage at the end
of the page requires that the interpreter display the page.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

42 Combining TEX and PostScript Bijlage Q

3.4 Dictionaries.
An important concept in PostScript is the notion of a dic-
tionary. It consists of (key, value) pairs, which are in some
sense the PostScript equivalent of the concept of a variable.
The value is stored under the name /key into the current
dictionary by the command

/key value def

There is a stack of active dictionaries which determine the
current context. There are always two permanent dictio-
naries systemdict and userdict (and globaldict),
but the user can introduce his own dictionaries.

A new dictionary of size n (number of entries) is created
by the command

n dict

and saved in the current dictionary under the name /D by
the command

/D n dict def

It is opened for use by the command

D begin

and closed by the matching command

end

Although dictionaries allow us to use variables in a way
similar to normal programming languages, this is not in
the ‘spirit’ of PostScript — try to do the job on the stack.

Besides data, we can store in a dictionary also procedures.
Dictionaries are usually used to prepare libraries for special
tasks.

3.5 User defined commands.
User defined commands (procedures) are, in PostScript, a
special kind of array enclosed in braces { } — executable
arrays. Usually we define a procedure proc by storing its
body { cmds } into a current dictionary

/proc { cmds } def

The following two commands define the usual units

/inch { 72 mul } def
/mm { 2.835 mul } def

The command 11 mm puts on the stack values 11 and 2.835,
multiply them and returns their product (11 mm expressed
in pts) on the stack.

3.6 Example: Drawing graphs.
This example demonstrates the use of a dictionary for the
simple task of drawing (combinatorial) graphs. The dic-
tionary Graph contains two quantities:

pr – radius of a point;
pc – color of the interior of a point;

and four commands

r radius – defines/changes pr;
c pointcolor – defines/changes pc;
x y p – draws a point at (x; y);

x1 y1 x2 y2 l – draws a line connecting (x1; y1) and
(x2; y2).

The p and l commands in the description of the graph were
obtained by the Mathematica based system Vega [14]. The
resulting graph is presented in Figure 1. Note that all lines
are drawn before points.

Figure 1: Graph

%!PS
%%BoundingBox: 30 30 370 370
/Graph 6 dict def
Graph begin
/radius {/pr exch def} def
/pointcolor {/pc exch def} def
/p { pr 0 360 arc
gsave pc setgray fill grestore
stroke } def
/l { moveto lineto stroke } def
end
Graph begin
0.7 setgray 2 setlinewidth
249 360 71 101 l 249 360 151 40 l
249 360 249 40 l 249 360 329 101 l
249 360 360 200 l
151 360 71 101 l 151 360 151 40 l
151 360 249 40 l 151 360 329 101 l
151 360 360 200 l
71 299 71 101 l 71 299 151 40 l
71 299 249 40 l 71 299 329 101 l
71 299 360 200 l
40 200 71 101 l 40 200 151 40 l
40 200 249 40 l 40 200 329 101 l
40 200 360 200 l
0 setgray 4 setlinewidth
329 299 77 101 l 329 299 151 40 l
329 299 249 40 l 329 299 329 101 l
329 299 360 200 l
8 radius 1 pointcolor 3 setlinewidth
40 200 p 151 40 p 329 101 p
329 299 p 151 360 p
0 pointcolor
360 200 p 71 299 p 71 101 p
249 40 p 249 360 p
showpage
end

3.7 DSC — Document Structuring Conventions
PostScript program lines beginning with %% are special
comments intended for programs (previewers, utilities)
which process PostScript programs. The rules determining
the structure and meaning of these comments are known
as DSC — Document Structuring Conventions. A typical
PostScript program structure is

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Q Combining TEX and PostScript 43

%!PS-Adobe-3.0
%%Pages: 27

: : :DSC comments
%%EndComments
%%BeginProlog

: : :definitions of commands : : :
%%EndProlog
%%BeginSetup

: : :

%%EndSetup
%%Page: 1 1
%%BeginPageSetup

: : :

%%EndPageSetup

: : :

%%Trailer
%%EOF

The first line %!PS-Adobe-3.0 tells us that the program
conforms to DSC – version 3.0. We can omit unused DSC
comments.

An example of a previewer using DSC comments is GsView
(by Russell Lang) [10] which by using %%Page: comments
allows us to see or print the selected page(s).

3.8 EPS – Encapsulated PostScript
Encapsulated PostScript format is intended to allow one to
import already prepared parts of a picture into a document.
The EPS file should contain only one page and shouldn’t
use operators that would perturb the graphics environment
of the surrounding PostScript. It usually starts with a line
%!PS-Adobe-3.0 EPSF- 3.0

and one of the following lines should be

%%BoundingBox: llx lly urx ury

which defines the bounding box of the picture in the file.

4 PostScript and TEX
4.1 DVIPS and EPSF
The most popular DVI-to-PS program on PCs is DVIPS
[15]. It was written by Tomas Rokicki of Radical Eye
Software. DVIPS comes with two files epsf.tex and
epsf.sty which contain TEX macros to include an En-
capsulated PostScript graphic. It works by finding the
bounding box comment, calculating the correct scale val-
ues, and inserting a vbox of the appropriate size at the
current position in the TEX document.

Program DVIPS recognizes several forms of \special
command. For example:

\special{" cmds} — includes PostScript commands in
place. The user is responsible for providing space for such
literal graphics. The cmds are enclosed in a PostScript
save/restore pair.
\special{ps: cmds} — inline PostScript commands —
not enclosed in a save/restore pair.
\special{header=file.pro} — includes the contents
of a prolog file file.pro in userdict.

4.2 PostScript-TEX packages
By the end of eighties the first attempts to combine TEX and
PostScript were being made (PSLATEX(L.A. Carr), colors
(F. King), pspic (K.K. Thorup), psfig (T. Darell [5]), : : :)
and recently some excellent packages have been produced
(changebar (J. Braams), rotating (S. Rahtz, L. Barroca), ps-
boxit (J. Maillot, T. Sheffler), pspicture (D. Carlisle), epsfig
(S. Rahtz), geom (S. Levy [11]), foiltex (J.L. Hafner [8]),
seminar, PsTricks (T. Van Zandt [18, 16, 17]), PSNFSS
(S. Rahtz)). In the new LATEX there are some PostScript
based packages: pict2e, graphics and color [9].

4.3 Epsfig
The most popular package for inclusion of EPS figures in
TEX is epsfig (S. Rahtz, based on epsf and on T. Darell’s
psfig). It extracts the bounding box information from the
file and positions the figure according to the user’s wishes
on the page. Its main macro has the following parameters:

\epsfig{file=file,height=h,width=w,%
clip=,rotate=a,silent=,%

bbllx=lx,bblly=ly,bburx=ux,bbury=uy}

5 PostScript, TEX and other programs
5.1 CorelDraw 3
After we enter CorelDRAW we can first determine
the dimensions of the picture by selecting in menu
File/Page Setup... the option Custom. This enables
fields for user’s settings. First, if necessary, we change the
units of measurement — for example to millimeters.
Afterwards we enter the selected width and height of
the picture and confirm our decision with a click on the
OK button. Then we draw a picture. For possible fu-
ture changes we save it in CorelDRAW format (options
File/Save As... and File/Save) on file.cdr.

To get the picture in EPS format we enter
the menu File/Export. In the pop-up sub-
menu List Files of Type: we select the option
Encapsulated PostScript, *.EPS. Then we move in
the directory submenu to the directory where we keep the
pictures, enter the name of the file, and confirm our se-
lections with OK. A new dialog box Export EPS appears
in which we select the option Image Header/None and
confirm it with OK. The picture is saved in EPS format in
the file file.eps. The bounding box of the picture is de-
termined by CorelDRAW from the picture. Such pictures
can be easily included into our TEX document:

\documentstyle[11pt,epsfig]{article}
\begin{document}

: : :

\begin{figure} \begin{center}
\centerline{\epsfig{figure=encormix.eps,width=70mm}}}
\caption{Clip-art from \CD \label{CD}}
\end{center} \end{figure}

: : :

\end{document}

or in LATEX2e [9]

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

44 Combining TEX and PostScript Bijlage Q

\documentclass[11pt]{article}
\usepackage[dvips]{graphics}
\begin{document}

: : :

\begin{figure} \begin{center}
\resizebox{70mm}{!}{\includegraphics{graph.eps}}
\caption{Clip-art from \CD \label{CD}}
\end{center} \end{figure}

: : :

\end{document}

In Figure 2 a clip-art composition, made in
CorelDRAW in few minutes, is presented.

TEX

Figure 2: Clip-art from CorelDRAW

When we have several CorelDRAW figures to be included
in our text we can achieve substantial savings both in disk
space (15K per file) and processing time if we notice that
all CorelDRAW EPS files have large parts that are identi-
cal. The structure of an EPS file produced by CorelDRAW
3 is as follows

%!PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 7 6 191 139
%%Creator: CorelDRAW!
%%Title: TESTA.EPS
%%CreationDate: Sat May 14 21:20:40 1994
%%DocumentFonts: AvantGarde-Book
%%DocumentProcessColors: Cyan Magenta Yel...
%%EndComments
%%BeginProlog
/AutoFlatness false def
% -------------- POSTSCRIPT PROLOG FOR CO...
% Copyright 1992 Corel Corporation. All ...
/wCorelDict 300 dict def wCorelDict begin...

: : :

%%EndProlog
%%BeginSetup

: : :

%%Trailer
end

The contents of the file after the %%BeginProlog until the
%%EndProlog is the same for all CorelDRAW EPS files.
It starts with a dictionary

/wCorelDict 300 dict def wCorelDict begin

which is ended by the end in the trailer at the end of the
file.

We can save the constant contents between the
%%BeginProlog and the %%EndProlog as a header file
corel3.pro (15K), which is read only once by a style file
corel3.sty

\long\def\ifundefined#1#2#3{\expandafter
\ifx\csname#1\endcsname\relax#2\else#3\fi}
\ifundefined{Corel3DrawSTY}
{\def\Corel3DrawSTY{}}{\endinput}
\immediate\write16{Document Style Option %
’CorelDraw 3’ ver 1.0 / 14-May-94 / VB}
\special{header=corel3.pro}

We have to insert in corel3.pro an end a line before the
%%EndProlog.

Then we can in each CorelDRAW EPS file delete the con-
tents between the %%BeginProlog and the %%EndProlog
and replace it with a command wCorelDict begin thus
obtaining a shortened file file.cps. This can be done man-
ually using an editor or by a simple program.

We can still view the shortened files by Ghostscript re-
questing

gs corel3.pro file.cps showpage.ps

On CTANs we can get also a PostScript version of standard
TEX fonts. If we register (some of) them with ATM (Adobe
Type Manager) they become available to CorelDRAW and
we can use them for labels in our pictures (see Figure 3).

Figure 3: Picture from CorelDRAW with cmmi10 labels

5.2 CorelDraw 5
Essentially the same applies as for CorelDRAW 3. There
are some differences in the preparation of CPS files. We
extract (once) from a CorelDRAW 5 EPS file the segment
from %%BeginProlog till %%EndProlog (including) to
the file corel5.pro (21.4K). In this file we insert after
wCorel5dict begin the command

/AutoFlatness true def

We produce a CPS file by deleting from the correspond-
ing EPS file the segment from the first %%BeginSetup till
%%EndProlog (including).

For unknown reasons in CorelDRAW 5 the origin of co-
ordinate system is placed at position around (2200; 2200).
To preview the CorelDRAW 5 CPS files with Ghostscript
we write on the file cd5.ps the lines

%!PS
-2200 -2200 translate

Now we can require

gs cd5.ps corel5.pro file.cps showpage.ps

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage Q Combining TEX and PostScript 45

5.3 Mathematica
Using Mathematica we draw a picture and save it with
command Display["file",picture] to the file file. For
example:

d:\>math
In[1] := <<Graphics‘Polyhedra‘
In[2] := Show[Graphics3D[Dodecahedron[],
ColorOutput->GrayLevel,Boxed->False]]
In[3] := Display["dodec.ps",%]
In[4] := Exit

The saved file contains a PostScript description of a picture.
After we exit Mathematica, we have still to transform the
saved picture into EPS format. This can be done with the
DOS command eps file EPSfile. In our example

d:\>eps dodec.ps dodec

The command eps is determined by a batch file eps.bat
which contains a call to Mathematica program rasterps

rasterps -format eps -file %2.eps %1 %3 %4 %5

Figure 4: Pictures from Mathematica

This program inserts at the beginning of the file some DSC
comments and the Mathematica prolog.

%!PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 0 0 138 138
%%Creator: Mathematica
%%CreationDate: Thu Aug 4 03:01:20 1994
%%EndComments
%%BeginPreview: 200 200 1 200

: : :

} bind def
%!
%%Creator: Mathematica
%%AspectRatio: 1.00154
MathPictureStart
%% Graphics3D
/Courier findfont 10 scalefont setfont

: : :picture

% End of Graphics
MathPictureEnd
end
showpage

thus producing an EPS file.

Again we can input Mathematica prolog (24K) only once
and insert at the begining of the file a short header

%!PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 0 0 276 276
%%Creator: Mathematica
% *** Partial EPS form produced by PS4TeX
%%CreationDate: ...
%%EndComments
Mathdict begin

and add as a last line end showpage. For unknown rea-
sons the bounding box provided by rasterps is only one
half of the correct one.

For preparing cps and mps files, a short program PS4TEX

was written. Its latest version for the PC is available in
self-extracting format by anonymous FTP from

uek.uni-lj.si:pub/vlado/tex/ps4tex*.exe

6 TEX-PostScript macros
As already said, in principlePostScript programs are gener-
ated by other programs which are also responsible for their
correctness. Different approaches to this problem were
used in the existing TEX-PostScript packages (see, for ex-
ample, Van Zandt’s PSTricks and Carlisle’s pspicture).

Although PostScript is a complete programming language,
the generating program should perform all computations
and other processing that it can. Nevertheless, since TEX
lacks (trigonometric and other) functions, we sometimes
leave PostScript to do the job.

6.1 Error mechanism in PostScript
The dictionary systemdict contains as its entries two
dictionaries related to error handling. The errordict

contains built-in procedures for all possible error types and
a procedure handleerror. On an error the PostScript in-
terpreter executes the corresponding error procedure which
saves the information about the error in the second dictio-
nary $error and executes the command stop.

We can catch a stop inside the commands context cmds

by the command

{ cmds } stopped

which, when an error occurs, pops the corresponding part
of execution stack and returns a boolean value true.

The command stop transfers control to the innermost
stopped context. The main interpreter loop is always
such a context and invokes the standard handleerror

procedure as a part of error recovery. The user can replace
this procedure by his or her own procedure.

6.2 Example: Functions
The following simple PostScript program draws (see Fig-
ure 5) a function f(x) = 200 sin2x.

Figure 5: Function

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

46 Combining TEX and PostScript Bijlage Q

%!PS
%%BoundingBox: -5 90 720 510
0 300 moveto
0 1 720 { % from step to

dup % x x
2 mul % 2*x
sin % sin(2x)
200 mul % 200 sin(2x)
300 add % 300 +
lineto %

} for
3 setlinewidth stroke
-5 300 moveto 720 300 lineto
0 100 moveto 0 500 lineto
1 setlinewidth stroke
showpage

But, if we try to draw, by inserting a sqrt after the sin,
a function f(x) = 200

p
sin 2x the error rangecheck

occurs. We can overcome the problem (see Figure 6) by
intercepting the error by the command stopped as shown
in the improved version of the program

Figure 6: Function
%!PS
%%BoundingBox: -5 90 720 510
/up true def
0 300 moveto
0 1 720 {

{ dup 2 mul sin sqrt 200 mul
300 add } stopped

{ pop /up true def }
{ up
{ moveto /up false def }
{ lineto }
ifelse }

ifelse }
for
3 setlinewidth stroke
-5 300 moveto 720 300 lineto
0 100 moveto 0 500 lineto
1 setlinewidth stroke
showpage

There is still a lot of work to convert this solution to a
macro for drawing functions, but the details go beyond the
scope of this paper.

7 Conclusion
Combining TEX and PostScript returns TEX into the com-
petition with other typesetting systems. It will be a big
challenge for the TEX community in the following years to
provide the support for this approach.

References
[1] Adobe Systems Inc.: PostScript Language, Ref-

erence Manual. Second Edition. Addison-Wesley,

Reading, MA, 1990.
[2] Adobe Systems Inc.: PostScript Language, Tuto-

rial and Cookbook. Addison-Wesley, Reading, MA,
1985.

[3] Adobe Systems Inc., Reid G.C.: PostScript Lan-
guage, Program Design. Addison-Wesley, Reading,
MA, 1988.

[4] Aladdin Enterprises: Ghostscript,use.doc. 30 Sep
1994. ftp.cs.wisc.edu:pub/ghost, 1994.

[5] Darrell T.: Psfig/TEX 1.10 User’s Guide.
whitechapel.mit.media.edu:pub, 1994.

[6] Goossens M., Mittelbach F., Samarin A.: The LATEX
Companion. Addison-Wesley, Reading, MA, 1994.

[7] Goossens M., Van Herwijnen E.: Scientific Text Pro-
cessing. International Journal of Modern Physics C
3(1992)3, 479-546.

[8] Hafner J.L.: Making Foils Using FoilTEX. 21 aug
1992. IBM Almaden Research Center, San Jose, CA.

[9] Lamport L.: A Document Preparation System LATEX.
User’s Guide and Reference Manual. Second Edition.
Addison-Wesley, Reading, MA, 1994.

[10] Lang R.: Gsview, readme.doc. 9 Dec 1994.
ftp.cs.wisc.edu:pub/ghost/rjl, 1994.

[11] Levy S.: The geom style for LATEX. Geometry cen-
ter, University of Minnesota, geom.umn.edu, July
1992.

[12] McGilton H., Campione M.: PostScript by Example.
Addison-Wesley, Reading, MA, 1992.

[13] Monsarrat J.: — PostScript — Answers to Questions.
The comp.lang.postscript FAQ v2.2 (12-26-
1993). wilma.cs.brown.edu:pub, 1993.

[14] Pisanski T.: Vega 0.3 alpha release, 1994.
http://vegaj.mat.uni-lj.si/vega03/.

[15] Rokicki T.: DVIPS: A TEX Driver. Manual, v5.521.
labrea.stanford.edu:pub, 1994.

[16] Van Zandt T.: PSTricks, PostScript macros for
Generic TEX. User’s Guide. Version 0.93a,prince-
ton.edu:pub/tvz, 12 Mar 1993.

[17] PSTricks et Seminar (D. Girou, ed.). Cahiers GUTen-
berg 16, 1994. (in French)

[18] Van Zandt T.: seminar.sty, A LATEX style for slides
and notes. User’s Guide. Version 0.93, prince-
ton.edu:pub/tvz, 16 Feb 1993.

[19] Walsh N.: Making TEX Work. O’Reilly, Sebastopol,
CA, 1994.

See also:
http://www.cs.wisc.edu/˜ghost/index.html
http://www.cs.indiana.edu/docproject/

programming/postscript/postscript.html
http://www.adobe.com/
http://www.ucc.ie/info/TeX/tug/
http://www.tex.ac.uk/UKTUG/home.html
http://www.stat.wisc.edu/latex.html
http://info.desy.de/UCO/latex2e.html

8 Acknowledgements
Supported in part by the Ministry of Science and Technol-
ogy of Slovenia.

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

