
Bijlage C The Hyperlatex Markup Language 87

The Hyperlatex Markup Language

Otfried Schwarzkopf

Vakgroep Informatica, Universiteit Utrecht,
Postbus 80.089, 3508 TB Utrecht, the Netherlands

otfried@cs.ruu.nl

Januari 31, 1995

1 Introduction
Hyperlatex is a little package that allows you to use LATEX
to prepare documents in HTML (the hypertext markup lan-
guage used by the world wide web), and, at the same time,
to produce a fine printed document from your input. You
can use all of LATEX’s power for the printed output, and you
don’t have to learn a new language for creating hypertext
documents.

Using Hyperlatex is easy. You create a file document.tex,
say, containing LATEX commands — the same commands
you are used to — plus a few additional directives control-
ling conversion to HTML. If you use the command

latex document.tex

then your file will be processed by LATEX, resulting in a
DVI-file, which you can print as usual.

On the other hand, you can run the command
hyperlatex document.tex

and your document will be converted to HTML format,
presumably to a set of files called document.html, docu-
ment 1.html, : : : . (These files are created in a separate
directory which you can specify within the source file us-
ing the \htmldirectory command.) You can then use
any HTML-viewer or WWW-browser, such as Mosaic, to
view the document.

This document describes how to use the Hyperlatex pack-
age. It tells you the mechanics of setting up an input file
for LATEX and HTML, and discusses the subset of LATEX
commands which are understood and converted to HTML
tags by thehyperlatex converter. This manual does not
explain what to write in a WWW-document. There are style
guides available, which you might want to consult. Writing
an on-line document is not the same as writing a paper. I
hope that Hyperlatex will help you to do both properly.

We assume that you are familiar with LATEX, and that you
have at least some familiarity with hypertext documents —
that is, that you know how to use one of the WWW-browsers
and understand what a hyperlink is.

If you want, you can have a look at the TEX source. You
can use it as a template in writing your own documents,
and illustrates some points discussed here.

While writing and testing Hyperlatex, I have converted
several LATEX documents into Hyperlatex format. It turns

out that it takes only a few minutes for a document that
does not use much mathematics or that defines lots of its
own commands. One example I used was A few rules from
‘A Handbook for Scholars’ by Mark de Berg. A big doc-
ument written with Hyperlatex is the Ipe Manual, which
has about 50 pages in the printed version and 70 nodes as a
HTML-document. Others at our department have used Hy-
perlatex, for instance to put the department’s study guide
(more than 200 nodes) on the world wide web.

If you have used Hyperlatex to make some document avail-
able on the world wide web, I would be happy to hear about
it. I would certainly like to set up a list with demo docu-
ments.

A final footnote: The converter to HTML implemented in
Hyperlatex is written in GNU Emacs Lisp. You can use it
directly from Emacs. But even if you don’t use Emacs,
even if you don’t like Emacs, or even if you subscribe
to alt.religion.emacs.haters, you can happily
use Hyperlatex. Hyperlatex can be invoked from the shell
(as shown above), and you will never know that Emacs is
responsible for the finely formatted document which you
get.

The Hyperlatex code is based on the Emacs Lisp macros
of the latexinfo package.

Hyperlatex is copyrighted.

2 Using Hyperlatex
Using Hyperlatex is easy. You write your document in a
LATEX-file document.tex, using a certain subset of LATEX
commands, and some additional commands that control
the conversion to HTML, and to make hyperlinks between
parts of your document.

To make a printed document, you then run LATEX on your
file, like usual, and follow the standard procedures for
printing the DVI-file.

To turn your document into HTML format, you can either
run the hyperlatex shell script, which invokes Emacs
and runs the conversion macros, or you can do conversion
directly from Emacs. The hyperlatex script takes the
following arguments:

hyperlatex files

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

88 The Hyperlatex Markup Language Bijlage C

You have to specify the full filenames, including the exten-
sion .tex.

To run conversion from within Emacs, put the following
line in you .emacs file:

(autoload ’hyperlatex-format-buffer
"hyperlatex1")

Then you can call hyperlatex-format-buffer in
the buffer containing the LATEX input file. But note that the
shell script version produces better error messages.

A typical HTML document consists of a set of files. In
HTML-speak these files are also called ‘documents’. In
this manual we take the LATEX point of view, and call ‘doc-
ument’ what is enclosed in a document environment. We
will use the term node for the individual files of the HTML
document.

The node files are created in a directory which you have to
specify in the preamble of your source file. You also have
to specify the base name of the HTML-document:

\htmldirectory{directory}
\htmlname{basename}

The actual files created by hyperlatex are called di-
rectory/basename.html, directory/basename 1.html, direc-
tory/basename 2.html, and so on. The filename can be
changed for individual nodes using the \xname command.

The entry point for your document will be the file direc-
tory/basename.html. This means that you can view your
HTML-document using Mosaic as follows.

Mosaic directory/basename.html

3 Controlling the conversion to Html
Hyperlatex automatically partitions the document into
several nodes. This is done based on the LATEX sec-
tioning. The section commands \chapter, \sec-
tion, \subsection, \subsubsection, \para-
graph, and \subparagraph are assigned levels 1 to 6.
(If you use the article document style, \section to
\subparagraph are given levels 1 to 5, as there are
no chapters).

The \htmldepth command in the preamble determines
at what depth separate nodes are created. The default set-
ting is 4, which means that (for article style) sections,
subsections, and subsubsections are given their own nodes,
while paragraphs and subparagraphs are put into the node
of their parent subsection. You can change this by putting

\htmldepth{depth}

in the preamble. A value of 1 means that the full document
will be stored in a single file.

A HTML file needs a title. This must be set in the preamble
using the \htmltitle command. Use something short
but helpful. The title you specify is used directly for the
top node of your document. The other nodes get a title
composed of this and the section heading.

It is common practice to put a short notice at the end of
every HTML node, giving a reference to the author. This

can be done by using the \htmladdress command in
the preamble.

The individual nodes of a HTML document are linked to-
gether using hyperlinks. Hyperlatex automatically places
buttons on every node that link it to the previous and next
node of the same depth, if they exist, and a button to go to
the parent node.

Furthermore, Hyperlatex automatically adds a menu to ev-
ery node, containing pointers to all subsections of this
section. (Here, ‘section’ is used as the generic term for
chapters, sections, subsections, : : : .) This may not always
be what you want. You might want to add nicer menus,
with a short description of the subsections. In that case you
can turn off the automatic menus by putting

\htmlautomenu{0}

in the preamble. On the other hand, you might also want
to have more detailed menus, containing not only pointers
to the direct subsections, but also to all subsubsections and
so on. This can be achieved by putting

\htmlautomenu{depth}

in the preamble, where depth is the desired depth of re-
cursion. The default behavior corresponds to a depth of
1.

A final note: All these commands must start at the begin-
ning of a line, if you want Hyperlatex to see them.

4 Parsing by LATEX and Hyperlatex
You are writing an input file that has to be read by LATEX
as well as the Hyperlatex converter. The parsing done
by LATEX is complex, and has many of us surprised in
certain situations. It was hopeless to try to imitate this
complex behavior using a modest collection of Emacs Lisp
macros. Nevertheless, Hyperlatex should behave well on
your LATEX files. If your source is comprehensible to LATEX
(with the hyperlatex.sty package), then Hyperlatex should
not have syntactical problems with it. There is, however,
one difference in parsing arguments: In LATEX, you can
write

\emph example,

and what you will get is ‘example’. Hyperlatex will com-
plain about this. To get the same effect, you will have to
write

\emph{e}xample.

Hyperlatex has been designed to understand a certain sub-
set of LATEX. It will treat all other LATEX instructions with
an error message. This does not mean that you should not
use any of these instructions for getting exactly the printed
document that you want. By all means, do. However, I felt
it was safer if Hyperlatex did not ignore any commands it
doesn’t know. So you will have to hide those commands
from Hyperlatex using the escape mechanism.

Here is what your input file should roughly look like:
\documentclass{article}
\usepackage{hyperlatex}

\htmldirectory{HTML directory}
\htmlname{base filename of HTML nodes}

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage C The Hyperlatex Markup Language 89

\htmltitle{title of HTML nodes}
\htmladdress{otfried@cs.ruu.nl}

.... more LaTeX declarations, if you want

\title{Title for LaTeX document}
\author{Author for LaTeX document}

\begin{document}

\maketitle
\section{Introduction}

\topnode{Welcome to this HTML Document}

This is the beginning of the section
titled ‘Introduction’ in the printed
manual, and at the same time the
beginning of the top node of the HTML
document....

If you are still using LATEX2.09, replace the first two lines
by

\documentstyle[hyperlatex]{article}

Note the use of the hyperlatex package. It contains the def-
initions for some LATEX extensions useful in Hyperlatex,
and also turns on the special input mode.

For the HTML document, Hyperlatex ignores everything
before the line starting with \topnode (there may only
be white space on this line before the command). The
\topnode command specifies the heading for the top
node of the HTML document. It does not produce any out-
put in the printed manual.

5 A LATEX subset — Getting started
Starting with this section, we take a stroll through the
LATEX-book [1], explaining all features that Hyperlatex
understands, additional features of Hyperlatex, and some
missing features. For the LATEX output the general rule is
that no LATEX command has been changed. If a familiar
LATEX command is listed in this manual, it is understood
both by LATEX and the Hyperlatex converter, and its LATEX
meaning is the familiar one. If it is not listed here, you can
still use it by escaping into TEX-only mode, but it will then
have effect in the printed manual only.

5.1 Hyperlatex input mode
There are ten characters that LATEX treats as special char-
acters, which means that they do not simply typeset them-
selves:

$ % & ˜ _ ˆ \ { }

Hyperlatex has only five special characters:

\ { } % ˜

The remaining five characters are not special in Hyperla-
tex. They simply typeset themselves. To typeset one of the
special characters, use

\= \{ \} \% \sim

Note that \{, \}, and \sim exist in LATEX, but only work
in math mode. These, and the two shortcuts \= and \+ are
actually the only LATEX commands whose definition have

been changed. You can use \back as a synonym for \=, to
typeset a backslash.

If you need the special meaning of one of LATEX’s special
characters, you need to use an escape to LATEX. The Hy-
perlatex input mode is turned on by \begin{document}.
This means that you can still use the regular LATEX special
characters in the preamble. (For technical reasons the spe-
cial input mode is turned on by \topnode if you are using
LATEX2.09.)

We said above that the remaining characters typeset them-
selves. This has to be taken with a grain of salt. LATEX still
obeys ligatures, which turns ffi into ‘ffi’, and some char-
acters, like >, do not resemble themselves in some fonts
(> looks like > in roman font). The only characters for
which this is critical are <, >, and |. Better use them in a
typewriter-font (this includes the example and verba-
tim environments and the \code and \kbd fonts). Note
that ?‘ is a ligature even in \typew font and displays as
?‘, but displays correct in the other (logical) fonts listed
above.

Like LATEX, the Hyperlatex converter understands that an
empty line indicates a new paragraph. You can achieve the
same effect using the command \par.

5.2 Dashes and Quotation marks
Hyperlatex translates a sequence of three dashes --- into
two dashes --. The quotation mark sequences ’’ and ‘‘

are translated into simple quotation marks ".

5.3 Simple text generating commands
The following simple LATEX macros are implemented in
Hyperlatex:
� \LaTeX produces LATEX.
� \TeX produces TEX.
� \LaTeXe produces LATEX2".
� \copyright produces c.
� \ldots produces three dots : : :
� \minus produces a minus sign �.
� \quad and \qquad produce some empty space.
� \ss produces ß.
� \today produces 17th May 1995— although this

might depend on when you use it : : :

5.4 Emphasizing Text
Hyperlatex understands the following physical font speci-
fications of LATEX2":
� \textbf for bold
� \textit for italic
� \textsc for SMALL CAPS

� \texttt for typewriter
� \underline for underline

Note that these font changes are properly cumulative in
LATEX2" and in the netscape browser, but are not in
LATEX2.09 and in older HTML browsers. The follow-
ing commands are supported for backwards compatibil-
ity:

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

90 The Hyperlatex Markup Language Bijlage C

� \bf and \bold for bold
� \it and \italic for italic
� \scap for SMALL CAPS

� \typew for typewriter

So you can write

{\it italic text}

but also

\textit{italic text}

Note that if you use the old LATEX versions \it and \bf,
the command must come directly after an opening brace.
You may not write

{roman text \it italic text}

The HTML guidelines encourage you to think in terms of
logical concepts instead of physical fonts. So, do not write
\textit{filename}, but write \file{filename}.
This has the advantage that the reader of the document
can still decide how she wants the logical concept ‘file-
name’ to be rendered (for instance in a light green cyrillic
font, if she wants). Here are the logical fonts available in
HTML:
� \cit for citations.
� \code for code.
� \dfn for definitions.
� \em and \emph for emphasized text.
� \file for filenames.
� \kbd for keyboard input.
� \samp for sample input.
� \strong for strong emphasis.
� \var for variables.

Finally, you can use 20\dmn{in} to typeset the dimension
20 in.

You can use \/ to separate slanted and non-slanted fonts
(it will be ignored in the HTML-version).

5.5 Changing Type Size
LATEX’s declarations for changing the type size are all un-
derstood, and HTML-tags are generated for them. Note,
however, that currently only the netscape browser in-
terprets these size changes, other browsers will simply ig-
nore them. The commands are \tiny, \scriptsize,
\footnotesize, \small, \normalsize, \large,
\Large, \LARGE, \huge, and \Huge. As the \it com-
mand, these commands have to immediately follow an
opening brace. So you can write

{\large larger text},

but you may not write

{normal text \large larger text}

In the HTML version, these font sizes are relative to the
node’s basefont size (\normalsize being the basefont
size, \large being the basefont size plus one etc.) To set
a node’s basefont size, you can use the command

\html{basefont size=x}

where x is a number between 1 and 7.

5.6 Preventing line breaks
The ˜ is a special character in Hyperlatex, and is replaced
by a HTML tag for ‘non-breakable space’. It seems, how-
ever, that the current Mosaic version does not honor this,
and simply treats it as a space. Nevertheless, ˜’s are useful
for the printed document.

5.7 Footnotes
are not yet implemented.

5.8 Formulas
There is no math mode in HTML, and all commands related
to it are rejected. It is probably useless to try to convert a
paper with a lot of mathematics into HTML format anyway.

However, sometimes you want to include simple expres-
sions like ‘the segment from pointp to pointq’ or ‘Pythago-
ras’ theorem states that a2 + b2 = c2.’ In such cases you
would like to have the properly formatted version of the
formula in the printed document, and some approximation
in the HTML-version. This can be done with the new
\math command:

\math{argument}

In LATEX, this command typesets the argument, which is
read in math mode with all special characters enabled. Hy-
perlatex simply typesets the argument without any spe-
cial treatment (but embedded commands are expanded).
Often the LATEX math expression does not look good
when put into the HTML-document untreated, contains
unknown commands, or you simply want something dif-
ferent. You might, for instance, want to typeset the ith
element (the \math{i}th element) of an array as ai
in LATEX, but as a[i] in HTML. This can be done with
the optional argument of \math:

\math[HTML-version]{LATEX-version}

In this example: \math[\code{a[i]}]{a_{i}}.

As mentioned, there is no math mode in HTML and you
have to do with an approximation of the formula. Never-
theless, if you want, you can still have them displayed in
an italic font. To do so, place a \htmlmathitalics com-
mand in your preamble. It must start on the first character
of a line.

5.9 Ignoring input
The percent character % introduces a comment in Hyper-
latex. Alternatively, you can use the command \C. Every-
thing after a % or \C up to the end of the line is ignored, as
well as any white space on the beginning of the next line.

5.10 Document class and title page
This material appears before the\topnode command and
is therefore ignored by the Hyperlatex converter. You can
use everything you want there.

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage C The Hyperlatex Markup Language 91

5.11 Sectioning
The sectioning commands \section, \subsection,
\subsubsection, \paragraph, and \subparagraph

are recognized by Hyperlatex and used to partition the doc-
ument in nodes. The \chapter command is recognized if
the document class is not article. You can also use the
starred version and the optional argument for the sectioning
commands. The star will be ignored, as Hyperlatex does
not number sections, and the optional argument will be
used for node titles and in menus generated by htmlmenu.

You can use \protect. It will be ignored in the HTML-
version.

5.12 Displayed material
The quote, quotation, and verse environment are all
implemented by the Hyperlatex converter — but they are
all identical!

Thecenter environment is realized using an HTML tag that
is currently only understood by the netscape browser.

To make lists, you can use the itemize, enumerate, and
description environments. You cannot specify an op-
tional argument to \item in itemize or enumerate, and
you must specify one for description.

All these environments can be nested.

The \\ command is recognized, with and without *.

There is also a menu environment, which looks like an
itemize environment, but is somewhat denser since the
space between items has been reduced. It is only meant for
single-line items.

6 Conditional Compilation: Escaping into
one mode

In many situations you want to achieve slightly (or maybe
even totally) different behavior of the LATEX code and the
HTML-output. Hyperlatex offers several different ways of
letting your document depend on the mode.

6.1 LATEX versus HTML mode
The easiest way to put a command or text in your document
that is only included in one of the two output modes it by
using a \texonly or \htmlonly command. They ignore
their argument, if in the wrong mode, and otherwise simply
expand it:

We are now in
\texonly{\LaTeX}\htmlonly{HTML}-mode.

Another possibility is by prefixing a line with \T or \H. \T
is equal to \C in HTML-mode, and a noop in LATEX-mode,
and for \H it is the other way round:

We are now in
\T \LaTeX-mode.
\H HTML-mode.

The last way of achieving this effect is useful when there
are big chunks of text that you want to skip in one mode
— a HTML-document might skip a section with a detailed
mathematical analysis, a LATEX-document will not contain

a node with lots of hyperlinks to other documents. This
can be done using the iftex and ifhtml environments:

We are now in
\begin{iftex}

\LaTeX-mode.
\end{iftex}
\begin{ifhtml}

HTML-mode.
\end{ifhtml}

6.2 Escaping to ‘real’ LATEX
Even within the iftex environment the special input
mode of Hyperlatex is still effective. Sometimes you will
want to be able to use the full power of LATEX with all its
special characters. This can be done in atex environment.
It is equivalent to iftex, but also turns on the five special
characters that make the difference between ‘real’ TEX and
Hyperlatex.

Here is another neat construction that lets you go into ‘real’
TEX mode for a single line:

\T {\tex ... and now we are in real TeX
mode ... }

The \T command escapes from Hyperlatex, and the \tex
command sets TEX’s special characters.

6.3 Flags — more on conditional compilation
You can also have sections of your document that are in-
cluded depending on a flag which you have set or cleared
before. To set a flag, use

\set{flag}

To clear a flag, use
\clear{flag}

Both commands can be used both in the preamble and in
the body of the document. If used in the preamble, they
must start at the beginning of the line or else be prefixed
with \H and whitespace, if the Hyperlatex converted has to
see them.

Then you can include parts of your document based on
some flag:

\begin{ifset}{flag}
Flag flag is set!

\end{ifset}

\begin{ifclear}{flag}
Flag flag is not set!

\end{ifset}

You can set and clear a flag more than once. It is not an
error to test a flag which has not been defined with \set

or \clear. It is considered cleared.

7 Carrying on
In this section we continue to Chapter 3 of the LATEX-book,
dealing with more advanced topics.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

92 The Hyperlatex Markup Language Bijlage C

7.1 Accents
Hyperlatex recognizes the accent commands

\’ \‘ \ˆ \˜

However, not all possible accents are available in HTML.
Hyperlatex will make a HTML-entity for the accents in
ISO Latin 1, but will reject all other accent sequences. The
command \c can be used to put a cedilla on a letter ‘c’
(either case), but on no other letter. The following is legal

Der K{\"o}nig sa\ss{} am wei{\ss}en Strand
von Cura\c{c}ao und nippte an einer
Pi\˜{n}a Colada \ldots

and produces
Der König saß am weißen Strand von Curaçao und nippte
an einer Piña Colada : : :

Not legal are Ji{\v r}\’{\i}, or Erd\H{o}s. To get a
‘ı́’, you have to type \’{\i}, not \’\i.

7.2 Defining commands and environments
Hyperlatex understands the simplest type of command def-
initions, namely commands without parameters, and only
in the preamble. The \newcommand command must start
at the beginning of the line, or must be prefixed by a \H
command and white space. The same holds for new envi-
ronments. Here are some legal examples:

\newcommand{\Html}{\scap{html}}

\T\newcommand{\bad}{\surd}
\H\newcommand{\bad}{\htmlimage{%

badexample_bitmap.xbm}}

\newenvironment{badexample}{\begin{description}
\item[\bad]}{\end{description}}

\newcommand{\ipe}{\italic{Ipe}}

\H \newenvironment{smallexample}{%
\begin{example}}{ \end{example}}

\T \newenvironment{smallexample}{\begingroup
\small\begin{example}}{%

\end{example}\endgroup}

The \bad command and the smallexample environ-
ments are good examples for conditional compilation.
The smallexample environment is equal to example
in HTML, but is typeset in a smaller font in the LATEX
document.

It is possible to trick Hyperlatex into defining a new com-
mand with an argument, if the HTML-implementation of
the new command simply typesets the argument:

\T \newcommand{\frameit}[1]{\fbox{#1}}
\H \newcommand{\frameit}{\italic}

The new command \frameit will typeset its argument in
italics in HTML-mode, but will put a frame around it in
LATEX.

There is no \renewcommand. You cannot redefine any
predefined commands.

7.3 Theorems and such
There is no \newtheorem command. But you can define
an environment which does approximately the same:
% LaTeX definition
\newtheorem{guess}{Conjecture}

% HTML definition
\H \newenvironment{guess}{\begin{quotation}%

\bold{Conjecture.}
\html{I}}{\html{/I}\end{quotation}}

(The \html command generates plain HTML-tags. The
‘I’ and ‘/I’ tags used here turn on and off italics mode.)

7.4 Figures and other floating bodies
You can use figure and table environments and the
\caption command. They will not float, but will sim-
ply appear at the position in the text. No special space
is left around them, so put a center environment in a
figure. The table environment is mainly used with the
tabular environment below.

7.5 Lining it up in columns
There is a weak implementation of the tabular environ-
ment available in Hyperlatex. First of all, the &-character
is not special in Hyperlatex, so instead you have to use the
\S command to separate columns.

To produce the HTML-version of the table, Hyperlatex re-
moves all the \S commands with any followingwhite space
and the \\ or * commands. The result is not formatted
any more, and simply included in the HTML-document as
a ‘preformatted’ display. This means that if you format
your source file properly, you will get a well-formatted
table in the HTML-document — but it is fully your own
responsibility.

You can also use the \hline command to include a hori-
zontal rule. Here is an example:
\begin{table}[htp]
\caption{Keyboard shortcuts for \ipe{}}
\begin{center}
\begin{tabular}{|l|lll|}
\hline
˜ \S Left Mouse \S Middle Mouse\S Right Mouse \\
\hline
Plain \S (start drawing)\S move \S select \\
Shift \S scale \S pan \S select more \\
Ctrl \S stretch \S rotate \S select type \\
Shift+Ctrl\S ˜ \S ˜ \S select more type\\
\hline
\end{tabular}
\end{center}
\end{table}

Note the use of the ˜-character. Without it the \hline

command would eat up space up to the next \S command,
and the same holds for the two \S commands on the last
line. The example is typeset as follows:

Table 1: Keyboard shortcuts for Ipe

Left Mouse Middle Mouse Right Mouse
Plain (start drawing) move select
Shift scale pan select more
Ctrl stretch rotate select type
Shift+Ctrl select more type

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage C The Hyperlatex Markup Language 93

7.6 Simulating typed text
The verbatim environment and the \verb command are
implemented. The starred varieties are currently not imple-
mented. (The implementation of the verbatim environ-
ment is not the standard LATEX implementation, but the one
from the verbatim.sty style by Rainer Schöpf). The com-
mand \+verb+ can be used as a shortcut for \verb+verb+.

Furthermore, there is another, new environmentexample.
example is also useful for including program listings or
code examples. Like verbatim, it is typeset in a type-
writer font with a fixed character pitch, and obeys spaces
and line breaks. But here ends the similarity, since ex-
ample does not turn off the five special characters. Using
this you can still use font changes within an example en-
vironment, and you can also place hyperlinks there. Here
is an example:

To clear a flag, use
\begin{example}
\+\clear{+\var{flag}\}

\end{example}

Note also that an example environment is indented auto-
matically, while a verbatim environment is not. In the
LATEX document, you can set the amount of indentation by
setting \exampleindent:

\setlength{\exampleindent}{4mm}

8 Moving information around
In this section we deal with questions related to cross ref-
erencing between parts of your document, and between
your document and the outside world. Here lie some of
the big differences between a printed paper and a HTML-
document. Where you would have an expression such as
‘More details can be found in the classical analysis by
Harakiri [8]’ in the printed paper, the HTML-document
would include a hyperlink to Harakiri’s work.

8.1 Cross-references
You can use the \label{label} command to attach a label
to a position in your document. This label can be used to
create a hyperlink to this position from any other point in
the document. This is done using the \link command:

\link{anchor}{label}

This command typesets anchor, expanding any commands
in there, and makes it an active hyperlink to the position
marked with label:

This parameter can be set in the
\link{configuration panel}{sect:con-panel}

to influence ...

The \link command does not do anything exciting in the
printed document. It simply typesets the text anchor. If
you also want a reference in the LATEX output, you will
have to add a reference using \ref or \pageref. This
reference has to be escaped from the Hyperlatex converter.
Sometimes you will want to place the reference directly be-
hind the anchor text. In that case you can use the optional
argument to \link:

This parameter can be set in the
\link{configuration

panel}[˜(Section˜\ref{sect:con-panel})]%
{sect:con-panel} to influence ...

The optional argument is ignored in the HTML-output. In
most cases, you will need a \reference to the label already
given in the\link command. To save you same typing, the
\link command therefore defines \Ref and \Pageref

(with capitals) to be \ref{label} and \pageref{label},
where label is the label used in the\link command. These
definitions are already active when the optional argument
is expanded. This means that we can rewrite the example
above as:

This parameter can be set in the
\link{configuration panel}[˜(Section˜\Ref)]%

{sect:con-panel} to influence ...

Often this format is not useful, because you want to put
it differently in the printed manual. Still, as long as the
reference comes after the \link command, you can use
\Ref and \Pageref.

After \link{setting the parameter}{%
sect:con-panel} it is not difficult
to show that the dependence of the
.... is obvious\texonly{ (see also
Section˜\Ref)}.

Note that when you use LATEX’s \ref command, the label
does not mark a position in the document, but a certain
object, like a section, equation etc. It sometimes requires
some care to make sure that both the hyperlink and the
printed reference point to the right place, and sometimes
you will have to place two labels. The HTML-label tends
to be placed before the interesting object — a figure, say
— , while the LATEX-label tends to be put after the object
(when the \caption command has set the counter for the
label).

A special case occurs for section headings. Always place
labels after the heading. In that way, the LATEX reference
will be correct, and the Hyperlatex converter makes sure
that the link will actually lead to a point directly before the
heading — so you can see the heading when you follow
the link.

8.2 Links to external information
You can place a hyperlink to a given URL (Universal Re-
source Locator) using the \xlink command. Like the
\link command, it takes an optional argument, which is
typeset in the printed output only:

\xlink{anchor}{URL}
\xlink{anchor}[printed reference]{URL}

In the HTML-document, anchor will be an active hyper-
link to the object URL. In the printed document, anchor
will simply be typeset, followed by the optional argument,
if present.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

94 The Hyperlatex Markup Language Bijlage C

8.3 Links into your document
The Hyperlatex converter automatically partitions your
document into HTML-nodes and generates HTML-tags for
your \label’s. These automatically created names are
simply numbers, and are not useful for external references
into your document — after all, the exact numbers are go-
ing to change whenever you add or delete a section or label,
or when you change the \htmldepth.

If you want to allow links from the outside world into your
new document, you will have to do two things: First, you
should give that HTML node a mnemonic name that is not
going to change when the document is revised. Further-
more, you may want to place a mnemonic label inside the
node.

The \xname{name} command is used to give the
mnemonic name name to the next node created by Hy-
perlatex. This means that you ought to place it in front
of a sectioning command. The \xname command has no
function for the LATEX-document. No warning is created if
no new node is started in between two \xname commands.

If you need an HTML label within a node to be referenced
from the outside, you can use the \xlabel{label} com-
mand. label has to be a legal HTML label.

Here is an example: The section ‘Changes between Hy-
perlatex 1.0 and Hyperlatex 1.1’ in this document starts as
follows.

\xname{hyperlatex_changes}
\section{Changes from from Hyperlatex˜1.0 to

Hyperlatex˜1.1}
\label{sec:changes}

It can be referenced inside this document
with \link{Changes}{sec:changes}, and
both inside and outside this document with
\xlink{Changes}{hyperlatex_changes.html}.

The entry about \xname and \xlabel in that section has
been marked using \xlabel{external_labels}. You
can therefore directly refer to that position from anywhere
using

\xlink{xlabel is new}{%
hyperlatex_changes.html#external_labels}

8.4 Bibliography and citation
Hyperlatex understands the thebibliography envi-
ronment. Like LATEX, it creates a section titled ‘Refer-
ences’. The \bibitem command is equivalent to \par,
and sets a label with the given cite key at the given position.
This means that you can use the \link command to define
a hyperlink to a bibliography entry. The command \Cite

is defined analogously to \Ref and \Pageref by \link.
If you define a bibliography like this

\begin{thebibliography}{99}
\bibitem{latex-book}
Leslie Lamport, \cit{\LaTeX: A Document

Preparation System,}
Addison-Wesley, 1986.

\end{thebibliography}

then you can add a reference to the LATEX-book as follows:

... we take a stroll through the
\link{\LaTeX-book}[˜\Cite]{latex-book},

explaining ...

Hyperlatex also understands the \bibliographystyle

command (which is ignored) and the \bibliography

command. It reads the .bbl file, inserts its contents at
the given position and proceeds as usual. Using this fea-
ture, you can include bibliographies created with BIBTEX
in your HTML-document! It would be possible to design
a WWW-server that takes queries into a BIBTEX database,
runs BIBTEX and Hyperlatex to format the output, and sends
back a HTML-document.

8.5 Splitting your input
The \input command is implemented in Hyperlatex. The
subfile is inserted into the main document, and typesetting
proceeds as usual. You have to include the argument to
\input in braces.

8.6 Making an index or glossary
The Hyperlatex converter understands the commands
\index and \cindex, which are synonymous. It col-
lects the entries specified with these commands, and you
can include a sorted index using \htmlprintindex. This
index takes the form of a menu with hyperlinks to the posi-
tions where the original\index commands where located.
You can specify a different sort key for an index intry using
the optional argument of \cindex:

\cindex[index]{\verb+\index+}

This entry will be sorted like ‘index’, but typeset in the
index as ‘\verb+\index+’.

The hyperlatex.sty style defines \cindex as follows:
� \cindex{entry} is expanded to \index{entry}, and
� \cindex[sortkey]{entry} ist expanded to
\index{sortkey@entry}.

This realizes the same behavior as in the Hyperlatex con-
verter if you use the index processor makeindex. If not,
you will have to consult your Local Guide and redefine
\cindex appropriately.

The index in this manual was created using \cindex com-
mands in the source file, the index processor makeindex
and the following code:

\H \section*{Index}
\H \htmlprintindex
\T \input{hyperlatex.ind}

9 Designing it yourself
In this section we discuss the commands used to make
things that only occur in HTML-documents, not in printed
papers. Practically all commands discussed here start with
\html, indicating that the command has no effect whatso-
ever in LATEX.

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage C The Hyperlatex Markup Language 95

9.1 Making menus
The \htmlmenu command generates a menu for the sub-
sections of the current section. It takes a single argument,
the depth of the desired menu. If you use \htmlmenu{2}
in a subsection, say, you will get a menu of all subsubsec-
tions and paragraphs of this subsection.

If you use this command in a section, no automatic menu
for this section is created.

A typical application of this command is to put a ‘mas-
ter menu’ in the top node, containing all sections of all
levels of the document. This can be achieved by putting
\htmlmenu{6} in the text for the top node.

9.2 Rulers and images
The command \htmlrule creates a horizontal rule span-
ning the full screen width at the current position in the
HTML-document. It has an optional argument that you
can use to add the additional tags size, width, align,
and noshade. These additional tags are currently only un-
derstood by the netscape browser. Here is an example.

\htmlrule[width=70% align=center]

[width=70

The command \htmlimage{URL} makes an inline
bitmap with the given URL. It takes an optional argu-
ment that can be used to specify the additional tags un-
derstood by some HTML browsers. One of the letters ‘t’,
‘c’, ‘b’, ‘l’, or ‘r’ can be specified as a shortcut for the
alignments ‘top’, ‘center’, ‘bottom’, ‘left’, or ‘right’. So
\htmlimage[c]{image.xbm} includes the image in im-
age.xbm, vertically centered at the current text position. A
more complicated example is

\htmlimage[align=left width=50 height=75
hspace=3]{image.jpg}

(Note that jpeg inlined images are currently only under-
stood by the netscape browser.)

This is what I use for figures in the Ipe Manual that appear
in both the printed document and the HTML-document:

\begin{figure}
\caption{The Ipe window}
\begin{center}
\T {\tex\Ipe{window.ipe}}
\H \htmlimage{window.gif}

\end{center}
\end{figure}

(\Ipe is the command to include ‘Ipe’ figures. Since the
figure contains math mode material, it has to be escaped
using \tex.)

9.3 Adding raw HTML
Hyperlatex provides two commands to access the HTML-
tag level.

\html{tag} creates the HTML tag <tag>, and
\htmlsym{entity} creates the HTML entity description
&entity;.

The \htmlsym command is useful if you need symbols
from the ISO Latin 1 alphabet which are not predefined in

Hyperlatex. You can, for instance, define the ligature \AE
as in TEX using

\H \newcommand{\AE}{\htmlsym{AElig}}

9.4 Turning TEX into bitmaps
There can be many things in a LATEX-file that Hyperla-
tex doesn’t understand: equations, fancy tables, picture
environments — the list is endless. Especially equations
appear quite often and are pretty hard to represent in HTML.
Sometimes the only sensible way to incorporate them into
a HTML-document is by turning them into a bitmap. Hy-
perlatex has an environment gif that does exactly this: In
the HTML-version, it is turned into a reference to an in-
line bitmap (just like \htmlimage). In the LATEX-version,
the gif environment is equivalent to a tex environment.
Note that running the Hyperlatex converter doesn’t create
the bitmaps yet, you have to do that in an extra step as
described below.

The gif environment has three optional and one required
arguments:

\begin{gif}[tags][resolution][fon
TEX material : : :

\end{gif}

For the LATEX-document, this is equivalent to
\begin{tex}

TEX material : : :

\end{tex}

For the HTML-version, it is equivalent to
\htmlimage[tags]{name.gif}

The other two parameters, resolution and font resolution,
are used when creating the gif-file. They default to 100

and 300 dots per inch.

Here is an example:

\htmlonly{\par}
\begin{gif}{eqn1}

\[
\sum_{i=1}ˆ{n} x_{i} = \int_{0}ˆ{1} f
\]

\end{gif}

produces the following output:

nX
i=1

xi =

Z
1

0

f

We could as well include a picture environment. The code

\begin{center}
\begin{gif}[b][80]{boxes}
\setlength{\unitlength}{0.1mm}
\begin{picture}(700,500)
\put(40,-30){\line(3,2){520}}
\put(-50,0){\line(1,0){650}}
\put(150,5){\makebox(0,0)[b]{α}}
\put(200,80){\circle*{10}}
\put(210,80){\makebox(0,0)[lt]{$v_{1}(r)$}}
\put(410,220){\circle*{10}}
\put(420,220){\makebox(0,0)[lt]{$v_{2}(r)$}}
\put(300,155){\makebox(0,0)[rb]{a}}
\put(200,80){\line(-2,3){100}}
\put(100,230){\circle*{10}}

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

96 The Hyperlatex Markup Language Bijlage C

\put(100,230){\line(3,2){210}}
\put(90,230){\makebox(0,0)[r]{$v_{4}(r)$}}
\put(410,220){\line(-2,3){100}}
\put(310,370){\circle*{10}}
\put(355,290){\makebox(0,0)[rt]{b}}
\put(310,390){\makebox(0,0)[b]{$v_{3}(r)$}}
\put(430,360){\makebox(0,0)[l]{$\frac{b}{a} =

\sigma$}}
\put(530,75){\makebox(0,0)[l]{$r \in

{\cal R}(\alpha, \sigma)$}}
\end{picture}

\end{gif}
\end{center}

creates the following image.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

r

v1(r)

r

v2(r)
a

J

J

J

JJ

r�
�
�
�
�
�

v4(r) J

J

J

JJ

r

b

v3(r)
b

a
= �

r 2 R(�; �)

It remains to describe how you actually generate those
bitmaps from your Hyperlatex source. This is done by run-
ning LATEX on the input file, setting a special flag that makes
the resulting DVI-file contain an extra page for everygif en-
vironment. Furthermore, this LATEX-run produces another
file with extension .makegif, which contains commands to
run dvips and ps2gif to to extract the interesting pages
intoPostscript files which are then converted togif format.
Obviously you need to have dvips and ps2gif installed if
you want to use this feature. (A shellscript ps2gif is sup-
plied with Hyperlatex. This shellscript uses ghostscript
to convert the Postscript files to ppm format, and then runs
ppmtogif to convert these into gif-files.)

Assuming that everything has been installed properly, us-
ing this is actually quite easy: To generate the gif bitmaps
defined in your Hyperlatex source file source.tex, you run
LATEX as follows (of course you could make a shell script
to save some typing).

latex ’\def\makegifs{}\input{source.tex}’

This will create a DVI-file source.dvi and a file
source.makegif. All gif images defined in source.tex are
then created by calling

sh source.makegif

9.5 Customizing the navigation panels
Normally, Hyperlatex adds a ‘navigation panel’ at the be-
ginning of every HTML node. This panel has links to the
next and previous node on the same level, as well as to the
parent node. The panel for the top node has a link to the
first chapter or section.

In the long run, navigation panels should be fully cus-
tomizable. However, since I’m still pondering how to

do that properly, this isn’t implemented yet. You can,
however, turn the navigation panel off for selected nodes.
This is done using the commands \htmlpanel{0} and
\htmlpanel{1}. All nodes started while \htmlpanel is
set to 0 are created without a navigation panel. Once the
standard navigation panel has been suppressed, you can of
course design and create your own navigation panel using
\link commands.

10 Changes since Hyperlatex 1.0
Changes from 1.0 to 1.1
� The only change that introduces a real incompatibility

concerns the percent sign %. It has its usual LATEX-
meaning of introducing a comment in Hyperlatex 1.1,
but was not special in Hyperlatex 1.0.

� Fixed a bug that made Hyperlatex swallow certain ISO

characters embedded in the text.
� Fixed HTML tags generated for labels such that they can

be parsed by lynx.
� The commands \+verb+ and \= are now shortcuts

for \verb+verb+ and \back.
� It is now possible to place labels that can be accessed

from the outside of the document using \xname and
\xlabel.

� The navigation panels can now be suppressed using
\htmlpanel.

� If you are using LATEX2", the Hyperlatex input mode is
now turned on at \begin{document}. For LATEX2.09
it is still turned on by \topnode.

� The environment gif can now be used to turn DVI

information into a bitmap that is included in the HTML-
document.

Changes from 1.1 to 1.2
Hyperlatex 1.2 has a few new options that allow you
to better use the extended HTML tags of the netscape
browser.
� \htmlrule now has an optional argument.
� The optional argument for the \htmlimage com-

mand and the gif environment has been extended.
� The center environment now uses the center HTML

tag understood by some browsers.
� The font changing commands have been changed to ad-

here to LATEX2". This hasn’t been done before because
it didn’t make sense while font changes in HTML were
not properly cumulative. The font size can be changed
now as well, using the usual LATEX commands.

Changes from 1.2 to 1.3
Hyperlatex 1.3 fixes a few bugs.

11 Acknowledgments
Thanks to everybody who reported bugs in Hyperlatex 1.0
or who suggested useful new features. This includes Arne
Helme, Bob Kanefsky, Greg Franks, Jim Donnelly, Jon
Brinkmann, Nick Galbreath, and Piet van Oostrum.

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage C The Hyperlatex Markup Language 97

12 Copyright
Hyperlatex is ‘free,’ this means that everyone is free to use
it and free to redistribute it on certain conditions. Hyperla-
tex is not in the public domain; it is copyrighted and there
are restrictions on its distribution as follows:

Copyright c 1994 Otfried Schwarzkopf

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public Li-
cense as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later ver-
sion.

This program is distributed in the hope that it will be useful,
but without any warranty; without even the implied war-
ranty of merchantability or fitness for a particular purpose.
See the GNU General Public License for more details. A
copy of the GNU General Public License is available on the
World Wide web.1 You can also obtain it by writing to the
Free Software Foundation, Inc., 675 Mass Ave, Cambridge,
MA 02139, USA.

13 Glossary
� node

A HTML-document usually consists of several files,
here called nodes. Other HTML documentation often
calls nodes ‘documents’, and a full document is some-
times referred to as a ‘work.’

� preamble
The preamble of a LATEX file is the part between
the \documentstyle command and the \be-
gin{document} command. LATEX does not allow

text in the preamble, you can only put definitions and
declarations there. hyperlatex looks in the pream-
ble for the commands
– \htmldirectory
– \htmlname
– \htmltitle
– \htmldepth
– \htmlmathitalics
– \htmlautomenu
– \htmladdress
– \newcommand
– \newenvironment
– \set
– \clear

Note that Hyperlatex will only see these commands if
they start at the beginning of a line.

� top node
The top node is the entry point of your HTML doc-
ument. It is stored in a file named basename.html,
while all other nodes are stored in numbered files (base-
name N.html). The top node is an ancestor of all other
nodes. It is considered to be at level zero, while all
other nodes have a level corresponding to the section-
ing command, and therefore at least 1.
The top node often contains a menu of all sections of the
document. This can be achieved using the command

\htmlmenu{6}

References
[1] Leslie Lamport, LATEX: A Document Preparation Sys-

tem, Addison-Wesley, 1986.

1at http://www.cs.ruu.nl/people/otfried/txt/copying.txt

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

