
pa
sc

al
: formatting Pascal using TEX

Pedro Palao Gostanza and Manuel N�u~nez Garc��a

Departamento de Inform�atica y Autom�atica

Universidad Complutense de Madrid

gostanza@eucmax.sim.ucm.es, manuelnu@eucmvx.sim.ucm.es

Abstract

This paper is based on our ideas about how a system which formats programs written in

a structured language must work. Particularly, tools which help in typesetting texts where

algorithms are described. Most of our ideas have been put in practice in the
pa
sc

al
system,

which automatize the elegant layout of Pascal programs. This system is programmed as a

TEX macro package.

1 Introduction

Almost every programming language have a structured syntax, and usually, there are

several standard ways for the layout of programs in these languages. Both facets ac-

complish the same goal: programs must be easily understood. But, while the �rst one is

used in order to facilitate the task to the compiler, the second one is used exclusively1

in order to facilitate the comprehension of programs to readers.

During the history of programming languages, two variants in the representation of

programs have been developed. First, programmers in a given language usually organize

their programs in a similar way. Then, it is easier to read programs written by other

people, and this fact gives rise to the development of particular modes for text editors

like Emacs, which partially formats programs while writing then. On the other hand, a

typesetting tradition has been developed for presenting programs in books or journals,

which usually must have a very important aesthetic component.

There have been programs which partially solve these problems. For example, most

programming languages environments have a pretty-printer program. Some systems, like

WEB, go one step beyond extending the programming language so that it is possible to

1. This is not true in some languages, like Occam or Miranda, in which written representation prevails over

syntax.

169



170 Pedro Palao Gostanza and Manuel N�u~nez Garc��a

mix texts and codes in the same program. Then, the compiler sorts codes and texts

out, obtaining a correct program in the given language, and a �le containing the docu-

mentation ready to be processed by TEX. In this documentation, codes appears very well

formatted.

Our experience mixing TEX and programs (writing class exercises, our own papers,

or reading papers written by other people) says that, most of the times, a verbatim

mode is used. As a matter of fact, if the program is not very large, it is customary to

format it by hand using di�erent type styles. We disagree with both solutions. The main

advantage of using a verbatim mode is the simplicity and clearness of the source code,

and the similitude between the result and what it is given to the compiler. Nevertheless,

visual quality of this result is very poor. On the other side, formatting programs by hand

is very hard, error prone, and it is rather di�cult to understand the �nal code. We think

that so many programs are presented in these two forms because there do not exist

tools which format programs as they usually appear in papers or in lecture notes. These

programs have the following characteristics:

� Programs are split in several fragments, usually unordered.

� Each of these fragments is not necessarily complete.

� In these programs, notation which does not belong to the programming language

appears (either mathematical one or natural language).

� Programs are very related to the text around them, and thus, it is not so convenient

to input them, but it is preferably to paste programs in the text.

We planned to develop a tool which helps us to write Pascal programs with these

characteristics. The last item gives rise to two di�erent alternatives: a preprocessor, or

a TEX macro package. The �rst option has been widely used in the TEX world as well

as in the pretty-printers world. It is enough to write a program which leaves the text

without any change, adding the adequate TEX indications for typesetting programs. The

latter task is more di�cult than usual, because of the �rst three previous items, but it

is not substantially new.

While an adequate tool dealing with these items helps in the preparation of texts

where programs are a fundamental part, it still has the same important problem of

the usual solutions (either formatting by hand or using verbatim mode): a complete and

explicit indication of all format aspects instead of declaration. This is a similar problem to

that which appears when writing big documents using TEX without macros that organize

the �nal result from a logical point of view. For example, a change in the indentation of

a language component (e.g. the indentation of a while clause) would oblige to correct

previous programs trying to �x it. From the reader's point of view, there exist another

big problem: a well organized text can be easily understood, even if the �nal layout is

not standard, but a reader would hardly understand a program formatted slightly away

from his own style. This shows the importance of a declarative format, where �nal

presentation of programs depends on some mayor modes and on a small set of explicit



pa
sc

al
: formatting Pascal using TEX 171

\Program \Hello( \input, \output );

\Begin \WriteLn( 'Hello word!' ) \End.

program Hello (input, output );

begin

WriteLn('Hello word!')

end. fEnd of programg

Figure 1: The �rst program scheme

indications. If one wants to read a text containing programs, it is enough to choose his

favorite mode and to process it again.

In this paper we present a system which automatically formats Pascal programs,

ful�lling the previous requirements. This system is called pascal
2 and it is entirely pro-

grammed in TEX. Developing pascal , we have experimented most of our previous ideas. In

fact, we built prototypes for Pascal and for Modula-2. At last, we decide to implement a

complete version for Pascal because it always stated more di�cult problems, and there

exist several format styles for Pascal which are quite di�erent.
pascal is fully declarative. It has three explicit format hints, which change the default

option of the system. Although we only have implemented one format mayor mode, we

will show how other modes can be simulated using these explicit hints. This shows us

that these format hints are enough expressive and that more modes may be easily added

to the system, just by simulating them internally.

2 Basic usage

TEX recognizes the beginning of a piece of program by the control word \beginPascal,

while the program must be �nished with the control word \endPascal. In LATEX version,

there exist an environment called pascal. We will call the piece of program that appears

between these two control words a program scheme, because it does not need to be

neither a complete program nor an acceptable program by a Pascal compiler.

In the following, we will show program schemes together with its the �nal layout

(as they are formatted by pascal ) using the following convention: program schemes in

\tt font and bellow, separated by a rule, the result of processing this program scheme

with pascal . See �gure 1 for an example. Some important characteristics of pascal appear in

the simple program of this �gure. A correct Pascal program is almost a correct program

2. The name is chosen in order to remark the formatting aspect of the system parameterized by the used

programming language.



172 Pedro Palao Gostanza and Manuel N�u~nez Garc��a

scheme, but it is necessary to add the character \ before each symbol (reserved words or

identi�ers) converting it in a control sequence. In order to understand why this addition

is mandatory, it is enough to know how pascal internally works. There is no parser which

formats a program scheme, but each of the elements of the program performs certain

local actions, contributing to the �nal result. Reserved words usually carry out decisions,

like changing indentation or breaking a line, while identi�ers usually just write themselves

with the adequate font. For this reason they need to be control sequences, in order to

associate them a TEX macro.

Another signi�cant detail of pascal is that reserved words are capitalized. In order

to avoid possible interferences with TEX internal macros (e.g. \if or \else). This is

not a constraint because, as we show bellow, pascal has an option that chooses the �nal

result (upper case, lower case, etc). But the problem still remains for identi�ers. In the

previous program, we had a variable called output, recognized inside the program by the

control sequence \output. When pascal �nds this sequence, it is rede�ned as a macro that

expands to \output." But \output is a fundamental register in the pages generation

mechanism of TEX. If it is activated when this variable is rede�ned, a very strange error

is produced. In order to solve this problem, we allow identi�ers to have a format such

that even a user who is not a TEXnician will be sure that there are not interferences

with TEX. We decide to provide an special character to begin identi�er names. This

special character cannot appear neither in correct Pascal identi�er names nor in TEX

control words. Due to the �rst characteristic, we can detect and delete it from the �nal

result, while due to the second one we can be sure that there are no interferences with

macros. The special character is !3 and it must be used exclusively as the �rst letter

of identi�ers, because this is the only place where it is deleted. Then, in the previous

program we would write \!input and \!output instead of \input and \output. Note

that ! is not needed in \Hello, because pascal does not de�ne it as a macro. Also, it

cannot be used in \WriteLn, because this is an identi�er introduced automatically with

this capitalization by pascal .

Let us remark that while Pascal is case insensitive, TEX is case sensitive, and thus

some coherence must be kept when writing identi�ers along a program.

3 Piecemeal programs and options

Let us remember that a program scheme is a self-contained piece of a program in the

following sense: it can format itself. For example, a simple sentence

\WriteLn( 'End of file' )

WriteLn('End of file')

3. The character @ may seem more suitable because it is used when de�ning private macros, but precisely

for this reason it is not guaranteed absence of interferences.



pa
sc

al
: formatting Pascal using TEX 173

a declarations sequence

\Var \!x: \Integer;

\Const \!c = 100;

var x: Integer;

const c = 100;

or structured sentences,

\Var \!c: \Char;

\Repeat

\WriteLn( 'Do you want to continue? ' );

\ReadLn( \!c );

\Until (\!c = 'y') \lor (\!c = 'n');

var c: Char;

repeat

WriteLn('Do you want to continue? ');

ReadLn(c);

until (c = 'y') _ (c = 'n');

where all the identi�ers are explicitly declared. In the previous examples, we have seen

that all of the identi�ers are explicitly declared inside the program scheme. This is because
pascal encloses a program scheme in a group, so that all the declarations appearing in this

scheme remain until the end of this group.
pascal provides two methods for writing programs which depend on identi�ers that we

do not want to introduce explicitly. Both methods are part of the options mechanism.

Options, enclosed by brackets ([ ]), can appear pre�xing a program scheme. Particularly,

there exists a family of options to declare identi�ers which are used in the subsequent

program scheme. In the program

[\var\!power\!x\!y;]

\!power := 1;

\While \!y \not= 0 \Do

\Begin

\!power := \!power * \!x; \!y := \!y - 1

\End

power := 1;

while y 6= 0 do begin

power := power � x;

y := y� 1

end



174 Pedro Palao Gostanza and Manuel N�u~nez Garc��a

we have declared the variables \!power, \!x and \!y. The list of identi�ers declaration

options is: \var, \type, \const, \proc, \func, \pseudoVar and \field. This options

are used as \var in the example: pre�xing some control sequences without separation

between them, �nishing with a semicolon. The �rst �ve options correspond to the usual

Pascal identi�ers. Option \pseudoVar introduces a identi�er name representing a func-

tion name, and it is necessary for representing an isolated function body. Option \field

introduces record �eld names.

These options are only useful if the di�erent pieces of code are not related among

them. But usually, the same identi�er is used in di�erent pieces, and in a grouped

form (e.g. a data structure with types and operations). pascal introduces the concept of

declarations set. A declarations set is an object that records the declarations of a program

scheme, allowing that these declarations may be used in another program scheme. For

example, let us suppose that one wants to write a function which calculates the number

of nodes of a binary tree. First, the type must be introduced

[\newDecls{treedec}\memoDecls{treedec}\type\!Element\!TreeNode;]

\Type \!Tree = ^\!TreeNode;

\!TreeNode = \Record

\!elem: \!Element;

\!left, \!right: \!Tree

\End;

type Tree = "TreeNode;

TreeNode = record

elem: Element;

left, right: Tree
end;

The �rst option, \newDecls, creates a new declarations set called treedec. The second

one indicates that we want to record in treedec all the declarations appearing from this

point until the end of the program scheme. Particularly, treedec records declarations

given by the third option which introduces types \Element" and \TreeNode" which is

used before it is declared.4 Briey, the second line of options indicates that reserved

words are presented with capital letters and that lines are numbered starting with 1.

Following with our example, the function \nodes" is

[\useDecls{treedec}\memoDecls{treedec}]

\Function \!nodes( \!t: \!Tree ): \Integer;

function nodes( t: Tree ): Integer;

4.
pa
sc

al
does not deal with recursion in pointer types, but it is not very complicated to �x it.



pa
sc

al
: formatting Pascal using TEX 175

\useDecls allows to use in this program scheme the identi�ers recorded in treedec.

The second option adds to treedec the declarations appearing in this program scheme.

Then, the function body is

[\useDecls{treedec}\var\!t;\pseudoVar\!nodes;]

\If \!t = \Nil \Then \!nodes := 0\>

\Else \!nodes := \!nodes( \!t^.\!left ) + \!nodes( \!t^.\!right );

if t = Nil then nodes := 0

else nodes := nodes(t":left) + nodes(t":right);

which presents an example where the option \pseudoVar is necessary. Finally, an example

using the function \nodes" is

[\useDecls{treedec}\var\!t;

\noMarkStringSpaces]

\WriteLn( 'Number of nodes in tree :', \!nodes(\!t) );

WriteLn('Number of nodes in tree :'; nodes(t));

As it is shown in this example, it is usual to use \newDecls or \useDecls pre-

ceding \memoDecls. The option \decls produces one of these two sequences de-

pending if the declarations set already exists. In fact, \decls{name} is equivalent to

\newDecls{name}\memoDecls{name} if name has not yet been declared, and otherwise

it is equivalent to \useDecls{name}\memoDecls{name}.

Using declarations set, it is very easy to change the capitalization of the prede�ned

identi�ers:

\beginPascal[

\decls{predefined}

\const\!nil\!true\!false;

\type\!integer\!boolean\!real\!char\!text;

\proc\!write\!writeln\!read\!readln\!new\!dispose;

\func\!succ\!pred\!sqr\!sqrt;

]\endPascal

4 Layout hints

Previous examples show the pascal default formatting mode. Possibly, this is not a very

standard style and, as we suggest in the introduction, it is di�cult to understand pro-

grams when the reader is not used to this style. But this is not a problem for the

philosophy behind pascal : the reader can choose another mode and recompile the �le.

Unfortunately, by now, this is the only implemented mode in pascal .



176 Pedro Palao Gostanza and Manuel N�u~nez Garc��a

In this section we present the layout hints. These elements allow to locally change

defaults options but they must be used exclusively in those places where the understand-

ing of the code would improve if it is not presented in the default mode. Anyway, their

use must be limited because it is against the declarative form behind pascal .
pascal only has three layout hints. Each of them speci�es a kind of operation which is

normally used to write Pascal programs: to break a line, to join two lines, and to align

to a point. Respectively, they are activated by the three control symbols \>, \< and \!.

For example:

[\decls{listdec}\type\!Element\!Node;]

\Type\! \!List = ^\!Node;

\!Node =\! \Record\<

\!value: \!Element;

\!next: \!List;

\End;

type List = "Node;

Node = record value: Element;

next: List;

end;

Layout hints work in a coherent form: if a line is broken, then the rest of the text is

indented using a value (that depends on the context); if two lines are joined, a small

separation is inserted; an alignment only remains in the corresponding context. In short,

the layout hints know the mechanism of the structured construction of Pascal programs,

and thus they are much more abstract than formatting by hand.

Using layout hints in a systematic way, other format styles can be obtained. For

instance, the previous example presents a very frequent style where type declarations

are aligned. Another style appears when these declarations are split:

[\useDecls{listdec}]

\Type\> \!List = ^\!Node;

\!Node =\> \Record\<

\!value: \!Element;

\!next: \!List;

\End;

type

List = "Node;

Node =

record value: Element;

next: List;

end;



pa
sc

al
: formatting Pascal using TEX 177

This shows the expressiveness of the chosen layout hints and why it is so easy to add

new format styles to pascal .

5 Other options

In addition to the de�nition of identi�ers, the pascal options system allows to indicate

many aspects of the �nal result. Below, we summarize some of the most signi�cative

options

\lineNumbers,\noLineNumbers This option allows (or does not) the numeration of

lines.

\firstLine The count of lines is made globally. This option has an argument which

changes the default value (i.e. 1).

\cap,\Cap,\CAP Alternative options indicating the capitalization of reserved words.

\autoEnd,\noAutoEnd This option indicate that a message corresponding to the end

of functions, procedures or programs appears (or does not).

\markStringSpaces,\noMarkStringSpaces These options indicate that blank spaces

must be substituted by  or just a space is left.

\abstractAssign/\textualAssign Complementary options indicating if assignation

is represented either by \:=" or by \ ."

An example showing these features follows:

[\useDecls{listdec}

\global\abstractAssign

\noAutoEnd\Cap

\lineNumbers\firstLine{1} ]

\Function \!exists( \!e:\!Element; \!l:\!List ): \Boolean;

\Var\! \!find: \Boolean; \!aux: \!List;

\Begin

\!find := \False;\< \!aux := \!l;

\While \Not\!find \And (\!aux \not=\Nil) \Do\> \Begin

\!find := \!aux^.\!value = \!e;

\!aux := \!aux^.\!next

\End;

\!exists := \!find

\End;

1 Function exists( e: Element; l: List ): Boolean;

2 Var �nd: Boolean;

3 aux: List;

4 Begin

5 �nd False; aux l;

6 While Not �nd And (aux 6= Nil) Do



178 Pedro Palao Gostanza and Manuel N�u~nez Garc��a

7 Begin

8 �nd aux":value = e;

9 aux aux":next

10 End;

11 exists �nd

12 End;

If these options are used together with \global, their e�ects remain in sub-

sequent program schemes. For instance, in the previous example we have declared

\global\abstractAssign, and thus, all the assignations appearing in the rest of the

paper will be denoted by  .

6 The �elds problem

Nowadays, almost every Pascal compiler allows several record declaration sharing �eld

names. They also allow that �eld identi�ers can be used to denote other objects. pascal
also allows this. For example, we can de�ne a function computing the left subtree of a

tree:

[\decls{treedec}]

\Function \!left( \!t: \!Tree ): \!Tree;

\Begin

\!left := \!t^.\!left;

\End;

function left( t: Tree ): Tree;

begin

left t":left;

end; fEnd of left functiong

In the left hand side of the assignation, \left" denotes a function, while in the right hand

side, \left" denotes the �eld of the record implementing the type \Tree."
pascal can distinguish from the context among the di�erent uses of an identi�er which

is simultaneously used as a record �eld and as another object. Nevertheless, pascal is more

limited than a Pascal compiler, because it does not keep type informations. This problem

appears when using the with sentence:

[\useDecls{treedec}\useDecls{listdec}\var\!l\!t;]

\With \!l \Do

\!value := \!value + \!nodes(\!left(\!t));

with l do value value + nodes(left(t));



pa
sc

al
: formatting Pascal using TEX 179

In the previous example, pascal has misunderstood the call to the function \left" for a

use of the �eld \left." In general, whenever pascal analyzes a with command, it does not

use the type information of the expression associated with the with. All the identi�ers

associated with �eld declarations will expand as a �eld, without taking care of the

possible association with another object. In order to indicate pascal that some symbol

does not represent a �eld, one must pre�x it with \), which indicates a local closure of

a with. For example, the previous program would be

[\useDecls{treedec}\useDecls{listdec}\var\!l\!t;]

\With \!l \Do

\!value := \!value + \!nodes(\)\!left(\!t));

with l do value value + nodes(left(t));

In addition to \), the pre�x \( locally opens a with. For example, the previous

program, assuming an external with, would be

[\useDecls{treedec}\useDecls{listdec}\var\!l\!t;]

\(\!value := \(\!value + \!nodes(\!left(\!t));

value value + nodes(left(t));

7 Di�erences with respect to Pascal and TEX

There exist two aspects in Pascal syntax which pascal implements in a slightly di�erent

way: comments and subrange types.

Comments are written using the control sequence \Comment, which has two argu-

ments: the �rst one is an optional dimension (enclosed between squared brackets) and

the second is the text.

If the �rst one is omitted, the text is written using a horizontal box. Otherwise, the

optional parameter indicates the horizontal size of a vertical box. For example

\Const \!max = \cdots; \Comment{Maximum size of the stack}

\Type \!stack = \!\Record

\!top: [0..\!max];

\!data: \Array [1..\!max] \Of \Integer

\End;\< \Comment[7cm]{Invariant: the

{\it top} field contains the

index of the last pushed element.}

const max = � � �; fMaximum size of the stackg

type stack = record



180 Pedro Palao Gostanza and Manuel N�u~nez Garc��a

top: 0 : : max;

data: array [1 : : max] of Integer
end; fInvariant: the top �eld contains the index

of the last pushed element. g

In this example, we show another di�erence with respect to Pascal: subrange types

must be enclosed between square brackets, as done in Modula. With this, we allow

arbitrary expressions appearing in both range limits:

[\const\!a\!b\!c\!d;]

\Type\! \!range = [(\!a+\!b)*(\!c+\!d)..100];

\!colors = (\!red,\!green,\!blue);

type range = (a + b) � (c + d) : : 100;

colors = (red, green, blue);

Without using \[ ]", an expression beginning with \(" will be taken as an enumeration.

As we have shown along the paper, any math mode control sequence can be used

inside Pascal expressions. Nevertheless, ^ and ' have been rede�ned in order to respec-

tively represent an indirection and the beginning of a string. Superscripts appears in

Pascal expressions using \^. If one wants to write primes, the whole de�nition must be

used, that is \^\prime.

8 Conclusions and future work

In this paper we have presented the system pascal , which has been developed for helping

in the typesetting of texts where Pascal programs appear. pascal is very operative, and

excepting the absence of several modes, ful�lls all of our proposed objectives. We have

used it to write exercises and it has proved to be very useful when presenting either

bottom-up decompositions or top-down ones.

We think that the most important future task is to implement some major modes

including the most usual ones. This is relatively easy because of the organization of pascal :

most of the code is independent of the format style and the three major Pascal syntactic

groups (types, sentences and declarations) are distributed in di�erent �les. Then, modes

can be chosen by syntactic groups.

Another task is to translate the ideas behind pascal to other programming languages

such as Modula-2, Ada or ML. Most of the code related with formatting and the

declarations sets is independent of the language, and thus it can be shared.


