
A METAFONT{EPS interface

Bogus law Jackowski

BOP s.c.

Gda~nsk

Poland

ekotp@univ.gda.pl

Do not explain too much.

W. Strunk Jr. and E.B. White,
\The Elements of Style"

1 Introduction

TEX is not a lion, TEX is an octopus: : : This sounds like a heresy, but it is my deepest

convincement that one of the most wonderful features of the TEX/METAFONT sys-

tem is its openness, i.e., the capability of collaboration with other systems. Hence the

association with an octopus:

The paper illustrates this statement by presenting a brief description of an interface

METAFONT-to-POSTSCRIPT, MFTOEPS. The kernel of the package is a METAFONT

257

258 Bogus law Jackowski

program (MFTOEPS.MF) which provides necessary de�nitions for translating the descrip-

tion of graphic objects from METAFONT to POSTSCRIPT. The POSTSCRIPT code is

written to a log �le. It can be extracted from the log �le either manually or with a help

of additional utilities. There are two programs in the package for performing this task:

an AWK program and a TEX program, the latter a bit slower but more universal.

The POSTSCRIPT �les (precisely, Encapsulated POSTSCRIPT �les) produced by

MFTOEPS are readable by some popular graphic programs, namely, by Adobe Illustra-

tor (Macintosh and PC compatibles), CorelDRAW! (PC compatibles), and Fontographer

(Macintosh and PC compatibles). In other words, graphic objects programmed using

METAFONT can be further processed by these programs.

It should be stressed that not the idea of employing METAFONT to produce POST-

SCRIPT code is important here. Much better tool for this purpose is J. D. Hobby's META-

P OS T. This is a possibility of further processing of the objects generated by MFTOEPS

which makes this package worthy of mention.

2 Overview of the MFTOEPS package

The MFTOEPS.MF program contains the de�nitions of the following macros which are

meant to be used for generating EPS �les:

eps_mode_setup fix_line_width

write_preamble fix_line_join

write_postamble fix_line_cap

find_BB fix_miter_limit

set_BB fix_dash

fill_C fix_fill_cmyk

draw_C fix_draw_cmyk

clip_C

Obviously, not all possibilities of POSTSCRIPT are exploited, but the main idea was to pro-

vide a simple tool for producing output \eatable" by programs which are not POSTSCRIPT

interpreters. Therefore only a small subset of the POSTSCRIPT language can be taken

into account. Nevertheless, these 15 commands are enough to produce innumerable

variety of graphic objects.

METAFONT programs using MFTOEPS have the following structure:

1 input mftoeps;

2 \input eps_mode_setup; % instead of mode_setup

3 < METAFONT code >

4 find_BB <list of paths>;

5 write_preamble jobname;

6 < METAFONT code containing fill_C, draw_C, clip_C, etc.>

7 write_postamble;

8 end.

A METAFONT{EPS interface 259

The structure seems straightforward, except for some notational details which will be

explained momentarily. Perhaps only the fourth line needs a few remarks. A properly

formed EPS �le should contain the coordinates of the corners of the bounding box in

a comment line at the beginning of the �le. Macro write_preamble needs to know

the respective coordinates, as it is responsible for generating the header of an EPS �le.

Macro find_BB simply prepares the data for write_preamble.

As you can see, using the plain beginchar and endchar commands is not essential,

although usually it is convenient to make use of them.

Synopsis of the interface of the MFTOEPS package

Conventions: In the following I shall use words number, pair, string, and path as an ab-

breviation for numeric expression, pair expression, string expression, and path expression,

respectively. The angle brackets, h and i, used for marking parameters of macros, are

\meta-characters," i.e., they do not belong to the METAFONT code.

COMMAND:

eps_mode_setup

USAGE:

eps_mode_setup <an optional number (0 or 1)>;

REMARKS:

This command should be used instead of the usual mode_setup command. The forms

eps_mode_setup and eps_mode_setup 1 are equivalent. One of them (preferably the

former one) should be used for normal processing, i.e., for generating EPS �les. Invoking

eps_mode_setup 0 is meant primarily for testing purposes and is supposed to be used

by experienced programmers who know what they are doing.

COMMAND:

write_preamble

USAGE:

write_preamble <string>;

REMARKS:

This command initializes the process of writing of the POSTSCRIPT code. The string

expression is the name (without extension) of the resulting EPS �le; the extension is

always EPS. METAFONT is switched to the batchmode in order to avoid slowing down

the process by writing mess(ages) to the terminal. The inspection of a log �le is thus

highly recommended.

260 Bogus law Jackowski

COMMAND:

write_postamble

USAGE:

write_postamble;

REMARKS:

This command ends the writing of the PS code, switches METAFONT back to the

errorstopmode, and performs necessary \last minute" actions (see below).

COMMANDS:

set_BB find_BB reset_BB

USAGE:

set_BB <four numbers or two pairs separated by commas>;

find_BB <a list of paths separated by commas>;

reset_BB;

REMARKS:

Commands set_BB or find_BB should be invoked prior to invoking write_preamble.

set_BB sets the coordinates of the corners of the bounding box of a graphic object; it is

useful when the bounding box of a graphic object is known in advance or if it is required

to force an arti�cial bounding box. find_BB computes the respective bounding box for

a list of paths; if several find_BB statements are used, the common bounding box is

calculated for all paths that appeared in the arguments. The result is stored in the vari-

ables xl_crd, yl_crd, xh_crd, and yh_crd. There are two functions, llxy and urxy,

returning pairs (xl_crd,yl_crd) and (xh_crd,yh_crd), respectively. The last com-

mand, reset_BB, makes xl_crd, yl_crd, xh_crd, and yh_crd unde�ned (the initial

situation); reset_BB is performed by the write_postamblemacro, which is convenient

in the case of generating several EPS �les in a single METAFONT run.

COMMANDS:

fill_C draw_C

USAGE:

fill_C <a list of paths separated by commas>;

draw_C <a list of paths separated by commas>;

REMARKS:

These commands are to be used instead of the usual METAFONT fill and draw ones.

They cause that a list of paths followed by the POSTSCRIPT operation eofill (fill_C)

or stroke (draw_C) is translated to a POSTSCRIPT code. The list of paths constitutes

a single curve in the sense of POSTSCRIPT.

A METAFONT{EPS interface 261

COMMAND:

clip_C

USAGE:

clip_C <a list of paths separated by commas, possibly empty>;

REMARKS:

The macro clip_C with a non-empty parameter works similarly to the fill_C com-

mand, except that the eoclip operator is issued instead of eofill. This causes an

appropriate change of the current clipping area. According to POSTSCRIPT's principles,

the resulting area is a set product of the current clipping area and the area speci�ed

in the argument of the eoclip command. The empty parameter marks the end of the

scope of the most recent clip_C command with a non-empty parameter. In other words,

nested clip_C commands form a \stack" structure. If needed, the appropriate number

of parameterless clip_C commands is issued by the write_postamblemacro, thus the

user needs not to care about it. WARNING: �les produced using clip_C are interpreted

properly by Adobe Illustrator (provided paths directions are de�ned properly) but not by

CorelDRAW! (ver. 3.0).

COMMANDS:

fix_line_width fix_line_join

fix_line_cap fix_miter_limit

fix_dash

USAGE:

fix_line_width <a non-negative number (dimension)>;

fix_line_join <a number (0, 1 or 2)>;

fix_line_cap <a number (0, 1 or 2)>;

fix_miter_limit <a number � 1 (dimension)>;

fix_dash (<a list of numbers (dimensions) separated by commas, possibly

empty>) <a number (dimension)>

REMARKS:

These command are to be used in connection with the draw_C command. The command

fix_line_width �xes the thickness of the outline. The other four commands cor-

respond to POSTSCRIPT operations setlinejoin, setlinecap, setmiterlimit, and

setdash (see \POSTSCRIPT Language Reference Manual" for details). All commands

should be used after write_preamble, as write_preamble sets the default thickness

(0.4 pt), default line join (1), default line cap (1), default miter limit (10 bp), and a

solid line as a default for stroking (fix_dash () 0).

262 Bogus law Jackowski

COMMANDS:

fix_fill_cmyk fix_draw_cmyk

USAGE:

fix_fill_cmyk <four numbers separated by commas>;

fix_draw_cmyk <four numbers separated by commas>;

REMARKS:

These commands de�ne the colors of the interiors of graphic objects (fix_fill_cmyk)

and colors of outlines (fix_draw_cmyk) using cyan-magenta-yellow-black model (the

basic model of the MFTOEPS package). They should be used after write_preamble

(because write_preamble de�nes the black color as a default for both macros) and

prior to invoking the corresponding fill_C and draw_C commands. There are also (just

in case) macros fix_fill_rgb and fix_draw_rgb using red-green-blue model; the ar-

gument to both macros is a triple of numbers. (The user can control the process of

conversion from RGB to CMYK by the rede�nition of macros under_color_removal

and black_generation.) The numbers forming the arguments of the macros are sup-

posed to belong to the interval [0..1].

Besides the �fteen basic macros there are two functions and two control variables

that may be of some interest for a virtual user of the MFTOEPS package:

ADDITIONAL FUNCTIONS:

pos_turn neg_turn

USAGE:

pos_turn (<path>)

neg_turn (<path>)

REMARKS:

Each function returns the path passed as the argument, except that the orientation

of the path is changed, if necessary: pos_turn returns paths oriented anti-clockwise,

neg_turn|oriented clockwise. This may be useful for creating pictures which are to be

processed further by Adobe Illustrator, because this program is sensitive to the orienta-

tion of paths.

CONTROL VARIABLE:

yeseps

REMARKS:

No EPS �le will be generated unless the variable yeseps is assigned a de�nite value. It

is advisable to set this variable in a command line (see section \Examples").

A METAFONT{EPS interface 263

CONTROL VARIABLE:

testing

REMARKS:

If the variable testing is assigned a de�nite value, the whole POSTSCRIPT code is ushed

to the terminal, thus slowing down signi�cantly the process of generation of an EPS �le

(cf. the description of the write_preamble command).

3 Examples

All sample programs in this section are presented in extenso. The reader is not supposed

to study the code thoroughly. Nevertheless, I prefer to leave the reader to decide which

parts of the code are to be skipped.

Let us start with a trivial example of a \pure" METAFONT program:

1 beginchar(48, % ASCII code

2 2cm#, % width

3 1cm#, % height

4 0cm# % depth

5);

6 fill unitsquare xscaled w yscaled h;

7 endchar;

8 end.

The program, obviously, generates a font containing one character: a darkened rectangle

2 cm � 1 cm. In order to generate an EPS �le containing the same �gure, a few

modi�cations are necessary:

1 input mftoeps;

2 eps_mode_setup;

3 beginchar(48, % just something

4 2cm#, % width

5 1cm#, % height

6 0cm# % depth

7);

8 set_BB 0,-d,w,h; % coordinates

9 % of the corners

10 % of the bounding box

11 write_preamble "rectan";

12 fill_C unitsquare xscaled w yscaled h;

13 write_postamble;

14 endchar;

15 end.

264 Bogus law Jackowski

Four new commands appeared: eps_mode_setup, set_BB, write_preamble, and

write_postamble; moreover, fill has been replaced by fill_C. This is a usual routine

for converting an \ordinary" METAFONT program to a form suitable for generating EPS

�les. Obviously, draw should be replaced by draw_C, and filldraw|with two operations

fill_C and draw_C. In the latter case the order of operations fill_C and draw_C is

signi�cant if the drawing and �lling colors are di�erent.

Having done this changes you can easily generate the respective EPS �le, provided

you are a DOS user. Assume that the modi�ed program is stored in the �le RECTAN.MF.

In the package MFTOEPS you will �nd a DOS batch, M2E.BAT (subdirectory PROGS),

which|perhaps after slight adjustments|can be used for this task. It is enough to write

m2e rectan

(no extension, please) from the command line in order to obtain the required

RECTAN.EPS �le. The batch makes use of AWK for extracting the POSTSCRIPT code

from the log �le. There is also an alternative batch, M2E-ALT.BAT, that employs

TEX for this purpose. In both batches METAFONT is called in the following way:

mf386 &plain \yeseps:=1; input %1

Observe the assignment yeseps:=1. In fact, assigning a de�nite (arbitrary) value to

the yeseps variable triggers the action of the generation of an EPS �le.

I hope that making scripts for other operating systems should not be extremely

di�cult. I would be very much obliged if others could contribute such scripts to the

package.

Let us consider now a more complex example. Suppose that the �le POLYGON.MF

contains the following de�nitions:

1 vardef regular_polygon(expr n) =

2 % n is the number of vertices;

3 % the diameter of the circumscribed

4 % circle is equal to 1, its centre is in the origin

5 (up % first vertex

6 for i:=1 upto n-1:

7 -- % next vertices:

8 (up rotated (i*(360/n))) endfor

9 -- cycle) scaled .5

10 enddef;

11 vardef flex_polygon(expr n,a,b) =

12 % n is the number of vertices,

13 % a, b are the angles (at vertices)

14 % between a tangent to a ``flex side''

15 % and the corresponding secant

16 save zz;

17 pair zz[]; % array of vertices

18 for i:=0 upto n-1:

A METAFONT{EPS interface 265

19 zz[i]:=up rotated (i*(360/n));

20 endfor

21 (zz[0] {(zz[1]-zz[0]) rotated a}

22 for i:=1 upto n-1:

23 .. {(zz[i]-zz[i-1]) rotated b}

24 zz[i]

25 {(zz[(i+1) mod n]-zz[i]) rotated a}

26 endfor

27 .. {(zz[0]-zz[n-1]) rotated b} cycle)

28 scaled .5

29 enddef;

The �rst function, regular_polygon, returns a closed path being|as the name

suggest|a regular polygon with a given number of vertices. The second function,

flex_polygon, returns a curve being in a sense a \generalised polygon"|the following

examples show why this epithet is adequate:

1 2 3

4 5

The �rst picture was generated by the following program:

1 input polygons;

2 input mftoeps;

3 eps_mode_setup;

4 beginchar(0,16mm#,16mm#,0);

5 path P[]; % ``room'' for two polygons

6 % preparing:

7 P[1]:=regular_polygon(7)

8 scaled w shifted (.5w,.5h);

9 P[2]:=flex_polygon(7,0,0)

10 scaled w shifted (.5w,.5h);

11 % exporting:

12 find_BB P[1], P[2];

13 write_preamble jobname;

14 % 25 percent of black for filling:

15 fix_fill_cmyk 0,0,0,.25;

16 fix_line_width 1pt;

266 Bogus law Jackowski

17 fill_C P1; draw_C P2;

18 write_postamble;

19 endchar;

20 end.

The remaining four �gures can be obtained by a simple modi�cation of the line 9 of the

program:

P[2]:=flex_polygon(7,-180/7,180/7) % 2

P[2]:=flex_polygon(7,45,45) % 3

P[2]:=flex_polygon(7,-45,45) % 4

P[2]:=flex_polygon(7,45,-45) % 5

These fairly trivial objects can be used for achieving not so much trivial e�ects

(METAFONT sources are included in the MFTOEPS package):

So far the examples have contained fill_C and draw_C commands with arguments

being single paths. POSTSCRIPT, contrary to METAFONT, accepts groups of paths as

a single curve. Therefore the fill_C and draw_C commands were de�ned to accept

the lists of METAFONT paths as arguments. In the resulting POSTSCRIPT code they

constitute a single object. The main reason is that such objects may contain transparent

holes. This enables achieving such e�ects as:

It is a transparent hole.

It is a transparent hole.

It is a transparent hole.

It is a transparent hole.

It is a transparent hole.

The graphic object was generated by the following simple program:

1 input mftoeps; eps_mode_setup;

2 w#=4cm#; h#=2cm#; define_pixels(w,h);

3 set_BB origin, (w,h);

A METAFONT{EPS interface 267

4 write_preamble jobname;

5 % 25 percent of black for filling:

6 fix_fill_cmyk 0,0,0,.25;

7 fix_line_width 1pt;

8 for oper:="draw_C", "fill_C":

9 scantokens oper

10 % outer edge:

11 fullcircle

12 xscaled w yscaled h

13 shifted (.5w,.5h),

14 % inner edge:

15 reverse fullcircle

16 xscaled .7w yscaled .7h

17 shifted (.5w,.5h);

18 endfor

19 write_postamble;

20 end.

One innocent trick was used in order to shorten the code: the loop in the combination

with the scantokens command (lines 8 and 9). It is advisable to have paths that form

transparent holes appropriately oriented|therefore the operator reverse is used line 15.

A TEX code for obtaining the above �gure is obvious: it is enough to put the picture on

the top of a text box, using, e.g., the \llap command.

Removing the command fix_fill_cmyk (line 6) and replacing the command

fill_C (line 8) by clip_C gives the opportunity of obtaining yet another e�ect:

It is a clipped text.

It is a clipped text.

It is a clipped text.

It is a clipped text.

In this case, however, the TEX code is somewhat complicated, since macros for

inclusion of an EPS �le (I use Tomas Rokicki's EPSF.TEX) embed the code of the

EPS �le into a POSTSCRIPT save { restore group. A clipping path is subjected to

such a grouping, contrary to the state of the currently painted picture. Therefore some

\special hackery is needed (the respective TEX source is included with samples in the

MFTOEPS package).

The di�erence between single and multiple paths in the context of drawing outlines

(draw_C) is meaningless.

The �nal example shows how to use clipping for generating a geometric �gure known

as \Sierpi�nski's carpet." In order to construct the \carpet" you start with a square with

a central hole being a square thrice smaller. Now you divide the �gure into nine squares

268 Bogus law Jackowski

and replace all �lled small squares with a scaled down thrice the original square. Then

you apply the same procedure to the smaller squares, an so on, ad in�nitum.

Here you have the program accomplishing this task (in�nity \equals" three):

1 input mftoeps; eps_mode_setup;

2 % ---

3 def ^ = ** enddef; % syntactic sugar

4 primarydef i // n = % ditto

5 (if n=0: 0 else: i/n fi)

6 % why not to divide by 0?

7 enddef;

8 def shifted_accordingly(expr i,j,n,D)=

9 shifted ((i//n)[0,w-D],(j//n)[0,w-D])

10 enddef;

11 % ---

12 w#=16mm#; h#=16mm#; define_pixels(w,h);

13 for N:=1,2,3: % 4, 5, 6, ..., infinity

14 set_BB 0,0,w,h;

15 write_preamble jobname & decimal(N);

16 D:=3w;

17 for n:=

18 0 for q:=1 upto N-1: , 3^q-1 endfor:

19 % i.e.:

20 % ``for n:=0, 3^1-1, ..., 3^(N-1)-1:''

21 path p[], q[]; D:=1/3D; k:=-1;

22 for i:=0 upto n: for j:=0 upto n:

23 k:=k+1;

24 p[k]=unitsquare scaled D

25 shifted_accordingly(i,j,n,D);

26 q[k]=reverse unitsquare scaled 1/3D

27 shifted (1/3D,1/3D)

28 shifted_accordingly(i,j,n,D);

29 endfor; endfor;

30 clip_C p0, q0

31 for i:=1 upto k: , p[i], q[i] endfor;

32 endfor;

33 fill_C unitsquare scaled w;

34 write_postamble;

35 endfor;

36 % ---

37 end.

A METAFONT{EPS interface 269

The program is lengthy mainly because of technical details that are not especially inter-

esting, however, there are three points worthy of comment. First, observe that a couple

of EPS �les is produced in one METAFONT run (the loop in line 13 is relevant here);

second, loops are used for forming arguments to the loop in line 18 and to the clip_C

command in line 31|it is a very useful feature of METAFONT that loops behave ex-

actly like macros; and third, observe that only once the operation fill_C is used. The

resulting EPS �les are shown in the following picture:

You may argue that such a �gure can be generated easily without clipping. True,

yet I like this approach|can you imagine a simple method for generating a \circular

carpet"

without clipping? But, on the other hand, �nding the precise bounding box for a

clipped �gure becomes a non-trivial task. You must remember, moreover, that clipping

consumes a lot of the resources of a POSTSCRIPT interpreter, thus it should be used

with a great care.

4 Final remarks

The MFTOEPS package was not devised as a competitive software for such giants like

Adobe Illustrator or CorelDRAW!. On the contrary, it can be regarded as their little ally.

Interactive programs cope not so well with tasks that bear logical structure. In such cases

METAFONT|with its wealth of programmable path operations, absent \by de�nition"

from the menus of interactive programs|is certainly a preferable tool.

One of the advantages of the applied approach is its portability|the only software

needed is METAFONT and either AWK or TEX. Another advantage is its exibility. It is not

particularly di�cult to modify the MFTOEPS package to produce another POSTSCRIPT

dialect, if for some reason the dialect of Adobe Illustrator is inconvenient. MFTOEPS

can also be modi�ed to produce output in other lingos, e.g., HP-GL (Hewlett-Packard

Graphic Language).

There is still a lot of work to be done. Of course, every program can be improved,

but perhaps more important would be preparing a library of METAFONT routines useful

for creating objects with a vector representation.

270 Bogus law Jackowski

For example, it would be convenient to have a procedure which for a given set of

graphic objects �nds a single curve (outline) �lling of which would give the same optical

result. In other words, such a procedure would perform the task of �nding an outline for

a set union of graphic objects. Such a procedure is known as removing overlaps. The

example of the \circular carpet" (see above) illustrates a similar problem: to �nd an

outline for a set intersection of a group of graphic objects.

If the carpet is generated using clipping, the POSTSCRIPT �le contains, in fact, the

following elements:

They are partially invisible because of clipping, still they are there. In some contexts,

e.g., if the �gure is to be cut on a cutting plotter, it is crucial to replace such a multiplicity

of objects by a single object:

Note that routines for �nding the outline of a set union or a set intersection of a

group of graphic objects are not MFTOEPS-oriented. I guess that METAFONT program-

mers would appreciate having it as well METAP OS T programmers. Universal routines of

that kind are important from the point of view of the openness of the TEX/METAFONT

system, and the openness|as was already mentioned|is one of the most powerful

features of the system.

Note also that the openness of a system concerns both output and input. MFTOEPS

accomplishes the �rst part of the conjunction, but one can think also about an import

from POSTSCRIPT to METAFONT. A \prototype" of such a package is under testing. Its

kernel is the converter (written in POSTSCRIPT and using the GHOSTSCRIPT interpreter

of POSTSCRIPT) of a general POSTSCRIPT code into a canonical Encapsulated POST-

SCRIPT form; the result of such a conversion can be translated to a METAFONT program

using, e.g., AWK. This would complete a link between METAFONT and POSTSCRIPT. I

do believe that providing such links is one of the most e�cient ways towards a limitless

development of the TEX/METAFONT system.

5 Glossary

AWK a simple yet powerful batch text processor.

A METAFONT{EPS interface 271

Bounding box the smallest rectangle surrounding the glyph of a picture; coordinates

of its lower left and upper right corners (in big points) should appear in a structural

comment in a header of an EPS �le.

EPS �le Encapsulated POSTSCRIPT �le; a single-page POSTSCRIPT document; the

purpose of the EPS �le is to be included (\encapsulated") as a part of other

POSTSCRIPT programs and to exchange graphic data among applications.

Even-odd rule a rule that speci�es the interior of a (multiple) path in the following way:

if for a given point and for any ray drawn from this point to in�nity the number of

intersection points of the ray and the path is odd, the point is inside; if the number

is even, the point is outside; command eofill and eoclip operators follow this

rule.

Path orientation nodes of a closed single path are ordered; if traversing a path following

the order of its nodes results in an anti-clockwise turn(s), the path is positively

oriented, if it results in a clockwise turn(s), its orientation is negative; number of

turns (signed) is called a turning number (METAFONT) or a winding number (POST-

SCRIPT); the operators fill and clip make use of a winding number, the operators

eofill and eoclip ignore it.

TEX is a trademark of the American Mathematical Society.

METAFONT is a trademark of Addison Wesley Publishing Company.

POSTSCRIPT is a registered trademark of Adobe Systems Incorporated.

Fontographer is a registered trademark of Altsys Corporation.

Adobe Illustrator is a trademark of Adobe Systems Incorporated.

CorelDRAW! is a registered trademark of Corel Corporation.

GHOSTSCRIPT is a copyrighted product of Aladdin Enterprises.

6 Availability

The MFTOEPS package can be found at ftp.pg.gda.pl

in the directory TeX/GUST/contrib/BachoTeX95/B_Jackowski

References

[1] Adobe Systems Inc. POSTSCRIPT Language Reference Manual. Addison-Wesley,

1991.

[2] A.V. Aho, B.W. Kernighan, and P.J. Weinberger. The AWK Programming Lan-

guage. Addison-Wesley, 1988.

[3] B. Jackowski and M. Ry ko. Labyrinth of METAFONT paths in outline. conference

proceedings, EuroTEX'94, Sobieszewo, 1994.

[4] D.E. Knuth. The METAFONTbook. Addison-Wesley, 1992.

