Data with 0aTgX

Andries Lenstra, Steven Kliffen and Ruud Koning

lenstr@sci.kun.nl

Abstract

The authors explain how to handle data in TeX documents, in particular, how to avoid ever
having to type in — and check! — the same data or text twice. These data may be stored in
ordinary (non-TgX) databases, in ASCII files arranged according to the easy daT format, or
in the TEX document itself. §aTEX works in plain TEX and is supposed to work in IATEX.

1 Introduction

As soon as one uses the same data more than once, or the same text with different
data, a classical problem arises: how far should one go in leaving the repetitions to the
machine? dalgX, a collection of TEX macros for storing and retrieving data, is an engine
that enables one to go all the way, so that document source texts are as short as possible
and integrity of the data is guaranteed, as well as uniformity in typesetting.

That TeX is suitable for repetitive tasks such as mail merges, was already shown e.g.
in [2]; that a more general approach is also feasible, and that, in fact, TeX is an ideal
word processor for data handling, is what we hope to show here.

The key feature of TeX, of course, is its programmability in plain, readable text,
so that in the first place the manipulating c.q. processing of data and the perfect fine-
tuning of text to data are easy and rewarding tasks — certainly also for non-TgXnicians,
as practice has shown. One could say that the personalizing of printing, or data handling
in general, opens up a whole new realm of applications for the power of TEX as a
programming language. Now this beautiful machinery not only generates the typography,
but prior to this the very text. Examples can be found in [2] and [1].

In the second place the existence of expandable, plain text macros has great benefits
in the set-up and maintenance of databases. Such macros can be a substitute for real,
explicit data, and their expansion can be changed according to different circumstances.
Imagine, for instance, someone who uses TeX for the typesetting of concert programmes
in several languages. In his database of music pieces, the contents of the field ‘key’
belonging to some piece in A major (some music pieces have a coordinate called key; ‘A

295

296 Andries Lenstra, Steven Kliffen and Ruud Koning

major’ is a key) will not be A major, but something like \Amaj, which auxiliary files will
translate into ‘A major’, ‘A Dur', ‘La majeur’, or ‘A grote terts’, etc., dependent on the
desired language. Or think of the printing of a price list: the contents of the field ‘price’
need not be the explicit digits of the price, but may expand into a formula from which
the explicit digits will follow after a calculation with adjustable parameters.

This possibility of filling the contents of a data base with ‘meta’data, TeX macros
that expand to the actual, printed data, can even be exploited further. Consider
in the first example the field ‘composer’ (most of the music pieces have a com-
poser). Instead of putting there a specific name, e.g. Mozart, or W.A. Mozart, or
W.A. Mozart (1756--1791), why not put the command

\Some Later To Be Specified Set 0f Fields

Belonging To The Entry ‘Mozart2’

(in 0oTEX abbreviated as *Mozart2x* *), if there is a second database, of composers,
with an entry that is identified by the string Mozart2, and TeX is told where to find this
entry? — Then all questions as to the inclusion of initials and dates can safely be left
unanswered until the time of typesetting. Besides, apart from being more versatile and
less error-prone, in the presence of this second database such an approach is mandatory
because of the problem of data integrity: as soon as the same explicit data are entered
more than once, how can one be sure that a change or correction is carried through in
all occurrences in all documents?

One will realize that with this method of letting fields of one entry refer to other
entries by means of commands built around an entry-identifying string, one can give
shape to many relationships between data, in a readable and easily memorized way, so
that with minimal effort a coherent, structured set of data is obtained. The workings of
OaleX, which uses the idea of the identifying string, are now readily sketched.

2 Sketch of 6aTEX

With dalgX, the referencing facility also exists in ordinary document source text. Sup-
pose TEX has learned daTEX and that one writes

\Of *Mozart2* * {\bf\Name, \Initials} (\TownOfBirth)
in the document. Suppose also that earlier in the document, or in a separate data file,
the following lines occur:

xMozart2 \Name Mozart; \Initials W.A.;\TownOfBirth Salzburg;

**ZZZZ*
Then the typeset result will be
Mozart, W.A. (Salzburg)
The string *Mozart2* * is an abbreviation for
{\0f *Mozart2* * \Type}

Data with 6aTeX 297

The \Type is a field that every entry should have; for Mozart2 one could choose \Type
to be \Composer:

x*Mozart2* . . . \Type \Composer;\YearOfBirth 1756;
Then \Type will expand to \Composer and \Composer acts as a template, say
\def\Composer{’,

{\bf \Name, \Initials}
(\TownOfBirth, \Year0fBirth)?

1A
With this definition of \Composer the typeset result of writing *Mozart2* * will be

Mozart, W.A. (Salzburg, 1756)

Instead of writing

\0f *Mozart2* * \TownOfBirth
(with a space after the final *) in order to get ‘Salzburg’, one can also write

\def\Composer{\Town0fBirth}*Mozart2* *

The latter may seem too much if it is used only once, but imagine the possibilities if the
referencing is repeated. For instance, with these three templates

\def\Mpiece{\Comp}%

\def\Composer{\Town0fBirth}

\def\Town{\Country}’%
the result of *(some music piece}* * will be the country where one can find the town
where the composer was born, assuming that one filled the proper fields in the proper
databases with the proper types and the proper three-starred identifying strings c.q.
data. In the next section we will do this explicitly as an illustration of the daT format
for storing data.

For repetitive tasks, however, it is immediately clear that the template is the perfect
tool. A template is put implicitly in the document by *{an identifying string)* * as
above; writing three \Composers

Bachx *

Mozart2 *

Beethoven *

(or as one line xBach* *xMozart2* **Beethoven* *) gives three times the expansion
of \Composer, in the first case separated by spaces. This repetition is done automatically
by \Filter. In dalgX the \Filter command filters a data file according to a certain
\Type, i.e. it considers every entry in consecutive order and, if the \Type corresponds to
the given \Type, e.g. \Composer, it expands the template, in this case \Composer. So
this is the way to perform mail merges, in which a form letter, the template, is merged
with a data file that contains the data of the persons that are supposed to receive the
letters. The exact description and an example can be found in Section 7.

Explicitly asking for one or more fields of a certain entry, as in

The composer \Of *Mozart2* * \Initials{} \Name{} ...

At that time, \YearOfBirth, the town \TownOfBirth{} was

298 Andries Lenstra, Steven Kliffen and Ruud Koning

follows the rule that should be obvious from the use of \0f: all field names give the
contents belonging to the last identified entry, which means that as soon as \Df *(a
different identifying string)* * appears, \Of *Beethoven* * say, all field contents are
of the new entry, Beethoven; those of Mozart2 are forgotten. If Mozart2 has a field
\Year0fBirth, but Beethoven has not, then after the appearance of \Of *Mozart2x* *
the text \Of *Beethoven* * \Year0fBirth will cause the error message

Use of \Year0fBirthOf doesn’t match its definition.
and if the same text is not preceded by any \Of *(string identifying an entry which has
a field \Year0OfBirth)* *, then it will cause the error message

! Undefined control sequence.

With the help of the dalpX command \IfField\YearOfBirth\Exists such embar-
rassing moments can be avoided. Tools like this one can be found in Section 5.

Under circumstances to be explained later, it will save time to tell TeX in which
database it should look for the desired identifying string. Such a specification may take
the place of the space between the second and the third *, as in

*Mozart2*c: /music/data/comp.dat*
orin

\def\Dpath{c:/music/data/}/

\0f *Mozart2*\Dpath comp* \YearOfBirth
the extension .dat being supplied by daTgX if no extension has been specified.

3 Storing data

daleX has its own way of storing data, the daT format. In order for data to be accessible
to dalgeX, they should be stored according to this format, for instance in a daT file. The
user of dalEX may use his own data base programs as long as they are capable of
producing intermediate ASCIl files; these are the subject of Section 6. As soon as the
composition of the identifying string has been specified, the conversion to the daT format
can be taken care of by daTEX.

Data base programs other than 6algX often offer facilities, such as sorting, that
until now for daT files only exist in cooperation with such a data base program via an
intermediate file, or with the operating system. (Sorting inside TgX is possible; see [3].)
The éaT format, on the other hand, is very simple, versatile, and easy to learn, while
0aTEX has a very powerful sorting-out mechanism. Files according to the daT format are
as portable as ordinary TEX document source text files; in fact, they can be integrated,
wholly or partially, into the document, as we shall see.

In the daT format data are stored in data blocks. A daT file has a name with a
one, two, or three character extension, but not necessarily with the extension .dat, and
consists of a number of data blocks. Before and between these data blocks one should
put only \NoDefaults and \Default commands (to be described shortly) or comments,

Data with 6aTeX 299

and after the last data block a daT file should be empty — at least until one exactly knows
what is going on.

A data block consists of a number of entries. An entry starts with **(the identifying
string)* followed by any number of fields and occurrences of this three-starred identifying
string. A field consists of optional spaces followed by a control word denoting the field
name (a control word is of the form \(a string of letters without spaces)) followed by
the field contents followed by a semicolon,

(field name) (field contents);

and an entry ends with the occurrence of *x(a different identifying string)*, with
which a new entry starts, except when this last string is zzzz. The string zzzz is
supposed to be different from all strings used for entries; after *xzzzzx* the data block
ends. The fields may be broken by the identifying strings; the entry minus all occurrences
of *x(the identifying string)* should be a sequence of fields. So

x*Mozart2*\Name Mozart;\Type\Composer; \ChristianNames Wolfgang
x*Mozart2* Amadeus ;**Beethovenx \Name Van Beethoven;\Type \Composer
; **Beethoven***Salzburgx\Type\Town;\Country Austria;

XZZZZ

is a data block, albeit a somewhat untidy one. The rationale for allowing the identifying
strings breaking the fields is that **(the identifying string)* should occur at the beginning
of every line of the entry and nowhere else, so that no two entries share the same line.
For such data blocks some manipulations with the data are possible with the help of
common outside tools. Before we discuss these possibilities, let us clean up the above
data block, adding some data and \Defaults.

\NoDefaults

\Default\Type\Composer;

\Default\Name\Ident;

x*Mozart2*\Name Mozart;\TownOfBirth *Salzburgx *;
\ChristianNames Wolfgang}

**Mozart2* Amadeus ;

**Mozart2* \Year0fBirth1756; \YearOfDeath 1791;

**Beethoven* \Name Van \Ident;

**xBach*

xSalzburg\Type\Town; \Country Austria;

**KV 488*\Type\Mpiece;\Key \Amaj;\Comp *Mozart2* *;

**ZZZZ*

Now with the definitions from the previous section *KV 488* * will indeed give ‘Austria’.
The control word \Ident always expands to the identifying string of the entry. For
the entry Bach two fields exist (by \Default), the field with field name \Name and
contents \Ident, and the field with field name \Type and contents \Composer. In
the entry Mozart2 the contents of the field with field name \ChristianNames are

300 Andries Lenstra, Steven Kliffen and Ruud Koning

Wolfgang Amadeus , with a space at the end. Without the %-sign there would have
been two spaces between these names.

In practice, one probably would not mix up so many different \Types in one data
block, and one would add a list of field names for every \Type, just to be sure that
no such things happen as using together \Forenames and \ChristianNames. But one
has the complete freedom to invent new fields on the spot and to list them in any
order, independent from other entries, as long as all fields are closed by the delimiter ;
(semicolon). This should be carefully checked, apart from the explicit data themselves.

Vice versa, as soon as a semicolon appears, chances are high that it terminates the
field contents. If one needs the semicolon in the contents of a field, one should use
\Semicolon. The typeset asterisk, ‘*', is available as \Star.

The choice of the identifying string is free, as long as it identifies the entry (i.e.
all entries have different strings), is not empty, and only contains letters, digits, spaces,
and no two spaces in a row. 6aIgX will only check this to a limited extent.

Whole, closed data blocks can be put anywhere in the document. A éaT file can
be absorbed, i.e. memorized, searched for an entry, or \Filtered; a data block in the
document is always absorbed.

3.1 Manipulations with data blocks

If all entries of a data block have their **(identifying string)* at the beginning of every
line and nowhere else, then sorting the block on the first column means sorting the data
on the identifying string. This is useful in its own right and also a means of bringing
together the different parts of an entry that is scattered around the block. A way of
taking care of broken fields would be by inserting sorting dummies like \zz1, \zz2,
\defined as {}.

Moreover, with the help of the grep command, well known to Unix users, one can
sort on field contents by having \Filter make a list of these contents paired with the
identifying strings,

((possibly processed) field contents) (identifying string)

sorting the list on field contents, and asking grep to rearrange the data block according
to the new order of the identifying strings.

Finally, grep allows preprocessing of TeEX documents in which daTEX is invoked. The
searching of files for strings by grep will be faster than by 6aTgX, so that having grep
search the document for three-starred identifying strings, search the daT files for the
lines on which these occur, and putting these lines in the document (taking care of the
proper \Defaults and the closing of the data block by **zzzz*) will sometimes save
time.

Data with 6aTeX 301

4 System set-up

For simple 6aTEX tasks there is nothing left to learn except the use of a few tools, and
the fact that the size of data blocks in documents is limited because they are absorbed
(how much TgX can absorb, depends on the local implementation). If daTEX has to
search unspecified éaT files, however, daTEX has to know these files and may need some
guidance in their treatment. The
\TheDataFiles (first file name)(x) ... \InSearchOrder

command tells daTgX which §aT files should be absorbed ((x)=(a)), which daT files
should be searched if no search-file has been specified after the second star ((x)=(s) or
(x)=(0)) and in what order they should be searched, and which of these default search-
files get a ‘search-only’ treatment ((x)=(s)) under \DefaultMemoryProtection.

Whenever

(an identifying string)(optional daT file specification)*
or

\0f #(an identifying string)*(optional éaT file specification)* \(field name)
invoke dalgX to retrieve data, dalgX will normally try to remember these. If the data
block was absorbed in which the identifying string occurs, or if 6aTEX has looked up
the data already once before, it will succeed in searching its memory and find the data.
Otherwise the data are looked up in the search-file specified after the second star or, if
there is no such file, in the default search-files, i.e. all non-absorbed files of the list of
\TheDataFiles.

So the normal way is that the more strings 6aTgX looks up, the more data it will
remember. This means that when dalgX is invoked for many different strings, TgX
may run out of memory. Therefore \DefaultMemoryProtection allows for something
special: if a daT file has been specified in the list as (s), ‘search-only’, and has been
specified between the second and third star, as in *(an identifying string)*(name of a
search-only éaT file)*, then §aTeX will not try to remember the data but will look them
up immediately in the specified file, use them, and forget them.

In the \DefaultMemoryProtection mode the protection of the memory has to
be activated by specifying a search-only file after the second star. However, in the
\StrongMemoryProtection mode the memory is always protected; the only way to
have 6algX search its memory immediately is by specifying an absorbed, (a), file after
the second star. In this mode the specification of any non-absorbed file makes §aTEX
act as after the specification of a search-only file in the default mode. If there is no
specification at all, daTgX will not try to remember the data (this would involve the
forming of a control sequence, and the number of control sequences that TeX can see in
a single run is limited), but search the default search-files for them. If it finds the data,
it uses them and forgets them; in the absence of success it will conclude that the data
must have been absorbed and only then search its memory.

dalgX always starts in \DefaultMemoryProtection but the user can alternate
between this mode and \StrongMemoryProtection.

302 Andries Lenstra, Steven Kliffen and Ruud Koning

4.1 File specification

When between the second and third star an absorbed file or a search-only file is specified,
taking the place of the space, then in order for daIEX to be able to recognize this file
as absorbed or search-only, it is not only necessary that the \TheDataFiles command
has been executed already, but also that the ‘canonical’ file name of this file on this
place in the document is the same as when it was listed in the list of \TheDataFiles.

The canonical file name is the result of the following reduction: éTgX expands all
control sequences in the typed-in file name, e.g. \Dpath in \Dpath comp in Section 2,
then it tries to remove possible spaces at the beginning and at the end, and checks if
the result has an extension, i.e. ends on .x or .xy or .xyz, with x, y, and z letters. If
there is an extension then this is preserved, otherwise the extension .dat is attached.
So always writing the same name is by no means necessary, but for the same daT file
one should not switch between file name with full path included, and file name.

If the expansions of the control sequences in the typed-in file names do not begin
or end with a space and there are no + signs in file names, then there will most probably
be no problems with spaces around the file names or around the delimiters (a), (s),
and (). For instance, one can write *{identifying string)* \Dpath comp * as well as
(identifying string)\Dpath comp* and

\TheDataFiles

\Dpath comp.dat (a)
\Dpath mpiece(s)town ()

\InSearchOrder
as well as

\TheDataFiles

\Dpath comp.dat(a)\Dpath
mpiece (s)

town()\InSearchOrder

— \TheDataFiles, for that matter, provides a check-list.

5 Tools

5.1 Default fields

The \NoDefaults and \Default commands, introduced in Section 3, may only be given
outside a data block, so when one wants to change the default contents of a field, or
wants to add a default field, then one should first put **zzzz*. The syntax of \Default
is
\Default(field name) (default field contents); (space)

which is the same as \Default {default field) (space). The necessary space after the
semicolon could be provided by giving every \Default a line of its own. dalgX puts the
default fields immediately behind the first **(identifying string)* of an entry in the given

Data with 6aTeX 303

order (new default fields behind the old ones), before the fields that are explicitly typed
in. The contents of a field are overridden by those of a subsequent field with the same
field name. This holds for all fields, default or explicitly typed in, so that by
\Default(same field name) (new default field contents); (space)

one can change the default contents of a field. 6aTEX starts with an empty list and will
not change this list unless it is told to do so by a \Default or \NoDefaults command.
In order to know the exact contents of this list at every moment and to avoid surprise
results when dalgX absorbs or searches a sequence of daTl files, one should have it
emptied often by the \NoDefaults command — for instance at the beginning of every
oaT file.

5.2 Conditionals

We introduce three \If... commands. Like TgX's ordinary \if...s, they have an
optional \else part, are closed with \fi, and may be nested. §TgX allows \Fi instead
of \fi. All examples refer to the second data block of Section 3.
The definition of a control word can be inspected by the command
\IfCs(control word)\IsDefinedAs{(a string)}
After \Of *(an identifying string)* * the control word \Ident is defined as (this
identifying string), so that the typeset result of
\Of *Mozart2x *
\IfCs\Ident\IsDefinedAs{Mozart2}/
{\bf\Namel}’
\Fi
is ‘Mozart'. With \Of *(any other identifying string)* * the result will be nothing.
The possibility of checking on the existence of fields was announced already in
Section 2. The condition
\IfField(field name)\Exists
is true for all entries for the field names \Type and \Name, e.g.
‘\0f *Bachx*x * \IfField\Name\Exists'is true;
‘\0f *Bachx* * \IfField\TownOfBirth\Exists'is false.
Finally, here is a facility for testing if an existing field looks like a given field:
\IfExistingField\LooksLike(field name) (given field contents);
In this comparison the field contents are left untouched by TgX, i.e. they are not expanded
or processed otherwise. So the typeset result of
\Of *Mozart2x *
\IfField \TownOfBirth \Exists
\IfExistingField\LooksLike \TownOfBirth*Salzburg+ *;J
{\bf\Name}},
\Fi
\Fi

304 Andries Lenstra, Steven Kliffen and Ruud Koning

is ‘Mozart'. With \Of *(any other identifying string from our data block)* * the result
will be nothing. Furthermore:

\Of *Mozart2* * \IfExistingField\LooksLike \Name Mozart; is true,

\O0f *Beethoven* * \IfExistingField\LooksLike\Name Van \Ident; is true,
\O0f *Beethoven* * \IfExistingField\LooksLike\Name Van Beethoven; is false,
\Of *Bach* * \IfExistingField\LooksLike \Type \Composer ; is true.

The comparison of a given string with processed field contents is a different matter.
Consider, for instance, the string Van Beethoven. This string is equal to the result
of processing the field contents Van \Ident in the following way: expand all that is
expandable until there is nothing expandable left. After \Of *Beethoven* * the process
of producing out of \Name the field contents Van \Ident themselves, also only involves
expansion. Therefore, for the control word \nAme the effect of

\0f *Beethoven* * \edef\nAme{\Name}’
is the same as

\def\nAme{Van Beethoven}Y,

All other fields \Name in our data block also have contents that can be expanded com-
pletely, i.e. until there is nothing expandable left. This means that in this case we are
back to the \IfCs technique learnt above. The typeset result of

\0f *Beethoven* * \edef\nAme{\Name}’

\IfCs\nAme\IsDefinedAs{Van Beethoven}},

{\bf\Name}},

\Fi
is ‘Van Beethoven’, and with \Of *(any other identifying string)* * the test will work
but the result will be nothing. (We could have used \Name itself instead of \nAme, but
then the protection against misuse of the field name \Name, as exposed in Section 2,
would have disappeared.)

Field contents of the form *(an identifying string)* * cannot be expanded com-
pletely; they cannot be put in an \edef without TEX having to stop and complain, or
behaving in some other undesirable manner. If in our data block there had been an entry
of which the \Name had contents of this form, the above test would not work properly
and the \IfExistingField\LooksLike test should be preferred.

Now for processed field contents where the processing involves more than expansion.
The comparison of

1. field contents that refer to other entries, but of which the stage that is to be

compared is completely expandable, with

2. strings in which nothing expandable is left,

is possible with \xdef (=\global\edef). Consider, for instance, the string Austria,
the result of *KV 488* * with the templates of Section 2. After \Of *Salzburg* * ,
the process of producing Austria out of \Country only involves expansion, but after
\Df *KV 488 x the process of producing Austria out of \Comp involves more than
sheer expansion, and

Data with 6aTeX 305

\Of *KV 488+ * \edef\cOmp{\Comp}
is not recommended. The \Comp field contents *Mozart2* * refer to other entries, but
the stage \Country, that is to be compared, is completely expandable. The solution is
to have TeX do its work, but put the result aside for later testing, wrapped in a control
word: when

\def\Town{\xdef\cOuntry{\Country}}*KV 488 *J,
hence

\IfCs\cOuntry\IsDefinedAs{Austrialj,
is true. Of course, more would be needed to make the test work for arbitrary \Mpieces.
Now the \Comp and all other fields have to exist down to \Country.

One can also test immediately and export the result. This will be shown for strings
and field contents that should not be touched. If the \Country field contents are
xAustriax *, then after

\newif\ifTheRightOne

\def\Town{\global\TheRightOnefalse

\IfExistingField\LooksLike\Country*Austria* *;%

\global\TheRightOnetrue

\Fi

/A

*xKV 488x *J,
it will be seen that \ifTheRightOne is true.

5.3 Wrapping

In the last test only the result of the comparison was available, not a control word
like \cOuntry for further testing or processing. As an analogue to \xdef, the \WrapIn
command provides this facility whenever TgX should not touch the field contents to be
compared. After \Of *(an identifying string)* *
\WrapIn (pseudo field name) (field name)
is equivalent to
\gdef (pseudo field name){{(field contents)}
Here is the penultimate example again; the \Country field contents are assumed to be
xAustriax *. The condition in
\def\Town{\WrapIn\cOuntry\Country}*KV 488 *J,
\IfCs\cOuntry\IsDefinedAs{*Austria* *1}J,
is true, and \cOuntry is available for other purposes.

6 Conversion

Most data base programs are capable of reading and producing AscCIl data files. daTEX
offers two utilities that facilitate the cooperation with such programs. The first reads
almost all Ascil data files that the latter may produce, and converts these data files

306 Andries Lenstra, Steven Kliffen and Ruud Koning

into daT files. The second converts, for almost every data base program, a éaT file into
the particular Ascll format that is readable for the program. These utilities are currently
under construction.

7 Filtering

The \Filter command, announced in Section 2, filters a daT file according to a certain
\Type:

\Filter (6aT file specification)\Type (the filter type)
for instance,

\Filter \Dpath comp \Type\Composer
considers every entry of \Dpath comp in consecutive order and, if the \Type is equal
to \Composer, it expands \Composer. dalgX reduces the daT file specification to the
canonical file name, as explained in Section 4. A space before '\Type' should not cause
any problems.

The restriction to one \Type is not essential. Suppose one has a big daTl file
mail.dat with many entries of different \Types sorted on some postal code. If all
entries should receive a letter, then \Filtering the 6T file once for every \Type would
destroy the ordering. The solution is to replace, in mail.dat, all occurrences of ‘\Type'
by ‘\ProType' (i.e. to change the field name \Type into \ProType), to add, at the top
of mail.dat, the line

\Default\Type\FormLetter;
if there is one template, \FormLetter, or the line

\Default\Type\ProType;
if every old \Type has its own template, and to

\Filter mail.dat \Type\FormLetter
or to

\Filter mail.dat \Type\ProType
respectively. For detailed examples of form letters we refer to [1].

We conclude with an example that filters a éaT file of \Composers. If there is a
field \TownOfBirth, its contents refer to a daT file of towns, i.e. are of the form *(a
town)* *. Every \Town has \Default \Name \Ident;, and a \Country with contents
that are macros to be translated by a translation file:

\def\Town{\xdef\nAme{\Name}\WrapIn\cOuntry\Country}

\def\Composer{/,

\IfField \TownOfBirth \Exists
\Town0fBirth
\IfCs\cOuntry\IsDefinedAs{\Austrial},

{\bf\Name}, from \nAme, \cOuntry\par
\Fi
\Fi

Data with 6aTeX 307

/A

\Filter c:/dat/comp \Type\Composer
The result is a list of all composers in c:/dat/comp.dat that are born in Austria, with
their towns of birth.

References

[1] A. Lenstra, S. Kliffen, R. Koning, and K. Aardal. Tips and tricks with daTgX. to
appear, 1995.

[2] M. Piff. Text merges in TEX and IATEX. Taken from the file textmerg.dtx provided
with the program source code, April 21, 1995.

[3] K. van der Laan. Sorting in BLUe. MAPS, 10, 1992.

