
Data with ��TEX

Andries Lenstra, Steven Kli�en and Ruud Koning

lenstr@sci.kun.nl

Abstract

The authors explain how to handle data in TEX documents, in particular, how to avoid ever

having to type in { and check! { the same data or text twice. These data may be stored in

ordinary (non-TEX) databases, in ASCII �les arranged according to the easy ��T format, or

in the TEX document itself. ��TEX works in plain TEX and is supposed to work in LATEX.

1 Introduction

As soon as one uses the same data more than once, or the same text with di�erent

data, a classical problem arises: how far should one go in leaving the repetitions to the

machine? ��TEX, a collection of TEX macros for storing and retrieving data, is an engine

that enables one to go all the way, so that document source texts are as short as possible

and integrity of the data is guaranteed, as well as uniformity in typesetting.

That TEX is suitable for repetitive tasks such as mail merges, was already shown e.g.

in [2]; that a more general approach is also feasible, and that, in fact, TEX is an ideal

word processor for data handling, is what we hope to show here.

The key feature of TEX, of course, is its programmability in plain, readable text,

so that in the �rst place the manipulating c.q. processing of data and the perfect �ne-

tuning of text to data are easy and rewarding tasks { certainly also for non-TEXnicians,

as practice has shown. One could say that the personalizing of printing, or data handling

in general, opens up a whole new realm of applications for the power of TEX as a

programming language. Now this beautiful machinery not only generates the typography,

but prior to this the very text. Examples can be found in [2] and [1].

In the second place the existence of expandable, plain text macros has great bene�ts

in the set-up and maintenance of databases. Such macros can be a substitute for real,

explicit data, and their expansion can be changed according to di�erent circumstances.

Imagine, for instance, someone who uses TEX for the typesetting of concert programmes

in several languages. In his database of music pieces, the contents of the �eld `key'

belonging to some piece in A major (some music pieces have a coordinate called key; `A

295

296 Andries Lenstra, Steven Kli�en and Ruud Koning

major' is a key) will not be A major, but something like \Amaj, which auxiliary �les will

translate into `A major', `A Dur', `La majeur', or `A grote terts', etc., dependent on the

desired language. Or think of the printing of a price list: the contents of the �eld `price'

need not be the explicit digits of the price, but may expand into a formula from which

the explicit digits will follow after a calculation with adjustable parameters.

This possibility of �lling the contents of a data base with `meta'data, TEX macros

that expand to the actual, printed data, can even be exploited further. Consider

in the �rst example the �eld `composer' (most of the music pieces have a com-

poser). Instead of putting there a speci�c name, e.g. Mozart, or W.A. Mozart, or

W.A. Mozart (1756--1791), why not put the command

\Some Later To Be Specified Set Of Fields

Belonging To The Entry `Mozart2'

(in ��TEX abbreviated as *Mozart2* *), if there is a second database, of composers,

with an entry that is identi�ed by the string Mozart2, and TEX is told where to �nd this

entry? { Then all questions as to the inclusion of initials and dates can safely be left

unanswered until the time of typesetting. Besides, apart from being more versatile and

less error-prone, in the presence of this second database such an approach is mandatory

because of the problem of data integrity: as soon as the same explicit data are entered

more than once, how can one be sure that a change or correction is carried through in

all occurrences in all documents?

One will realize that with this method of letting �elds of one entry refer to other

entries by means of commands built around an entry-identifying string, one can give

shape to many relationships between data, in a readable and easily memorized way, so

that with minimal e�ort a coherent, structured set of data is obtained. The workings of

��TEX, which uses the idea of the identifying string, are now readily sketched.

2 Sketch of ��TEX

With ��TEX, the referencing facility also exists in ordinary document source text. Sup-

pose TEX has learned ��TEX and that one writes

\Of *Mozart2* * {\bf\Name, \Initials} (\TownOfBirth)

in the document. Suppose also that earlier in the document, or in a separate data �le,

the following lines occur:

**Mozart2* \Name Mozart; \Initials W.A.;\TownOfBirth Salzburg;

. . .

**zzzz*

Then the typeset result will be

Mozart, W.A. (Salzburg)

The string *Mozart2* * is an abbreviation for

{\Of *Mozart2* * \Type}

Data with ��TEX 297

The \Type is a �eld that every entry should have; for Mozart2 one could choose \Type

to be \Composer:

**Mozart2* . . . \Type \Composer;\YearOfBirth 1756; . . .

Then \Type will expand to \Composer and \Composer acts as a template, say

\def\Composer{%

{\bf \Name, \Initials}

(\TownOfBirth, \YearOfBirth)%

}%

With this de�nition of \Composer the typeset result of writing *Mozart2* * will be

Mozart, W.A. (Salzburg, 1756)

Instead of writing

\Of *Mozart2* * \TownOfBirth

(with a space after the �nal *) in order to get `Salzburg', one can also write

\def\Composer{\TownOfBirth}*Mozart2* *

The latter may seem too much if it is used only once, but imagine the possibilities if the

referencing is repeated. For instance, with these three templates

\def\Mpiece{\Comp}%

\def\Composer{\TownOfBirth}%

\def\Town{\Country}%

the result of *hsome music piecei* * will be the country where one can �nd the town

where the composer was born, assuming that one �lled the proper �elds in the proper

databases with the proper types and the proper three-starred identifying strings c.q.

data. In the next section we will do this explicitly as an illustration of the ��T format

for storing data.

For repetitive tasks, however, it is immediately clear that the template is the perfect

tool. A template is put implicitly in the document by *han identifying stringi* * as

above; writing three \Composers

Bach *

Mozart2 *

Beethoven *

(or as one line *Bach* **Mozart2* **Beethoven* *) gives three times the expansion

of \Composer, in the �rst case separated by spaces. This repetition is done automatically

by \Filter. In ��TEX the \Filter command �lters a data �le according to a certain

\Type, i.e. it considers every entry in consecutive order and, if the \Type corresponds to

the given \Type, e.g. \Composer, it expands the template, in this case \Composer. So

this is the way to perform mail merges, in which a form letter, the template, is merged

with a data �le that contains the data of the persons that are supposed to receive the

letters. The exact description and an example can be found in Section 7.

Explicitly asking for one or more �elds of a certain entry, as in

The composer \Of *Mozart2* * \Initials{} \Name{} ...

At that time, \YearOfBirth, the town \TownOfBirth{} was ...

298 Andries Lenstra, Steven Kli�en and Ruud Koning

follows the rule that should be obvious from the use of \Of: all �eld names give the

contents belonging to the last identi�ed entry, which means that as soon as \Of *ha

di�erent identifying stringi* * appears, \Of *Beethoven* * say, all �eld contents are

of the new entry, Beethoven; those of Mozart2 are forgotten. If Mozart2 has a �eld

\YearOfBirth, but Beethoven has not, then after the appearance of \Of *Mozart2* *

the text \Of *Beethoven* * \YearOfBirth will cause the error message

Use of \YearOfBirthOf doesn't match its definition.

and if the same text is not preceded by any \Of *hstring identifying an entry which has

a �eld \YearOfBirthi* *, then it will cause the error message

! Undefined control sequence.

With the help of the ��TEX command \IfField\YearOfBirth\Exists such embar-

rassing moments can be avoided. Tools like this one can be found in Section 5.

Under circumstances to be explained later, it will save time to tell TEX in which

database it should look for the desired identifying string. Such a speci�cation may take

the place of the space between the second and the third *, as in

*Mozart2*c:/music/data/comp.dat*

or in

\def\Dpath{c:/music/data/}%

\Of *Mozart2*\Dpath comp* \YearOfBirth

the extension .dat being supplied by ��TEX if no extension has been speci�ed.

3 Storing data

��TEX has its own way of storing data, the ��T format. In order for data to be accessible

to ��TEX, they should be stored according to this format, for instance in a ��T �le. The

user of ��TEX may use his own data base programs as long as they are capable of

producing intermediate ASCII �les; these are the subject of Section 6. As soon as the

composition of the identifying string has been speci�ed, the conversion to the ��T format

can be taken care of by ��TEX.

Data base programs other than ��TEX often o�er facilities, such as sorting, that

until now for ��T �les only exist in cooperation with such a data base program via an

intermediate �le, or with the operating system. (Sorting inside TEX is possible; see [3].)

The ��T format, on the other hand, is very simple, versatile, and easy to learn, while

��TEX has a very powerful sorting-out mechanism. Files according to the ��T format are

as portable as ordinary TEX document source text �les; in fact, they can be integrated,

wholly or partially, into the document, as we shall see.

In the ��T format data are stored in data blocks. A ��T �le has a name with a

one, two, or three character extension, but not necessarily with the extension .dat, and

consists of a number of data blocks. Before and between these data blocks one should

put only \NoDefaults and \Default commands (to be described shortly) or comments,

Data with ��TEX 299

and after the last data block a ��T �le should be empty { at least until one exactly knows

what is going on.

A data block consists of a number of entries. An entry starts with **hthe identifying

stringi* followed by any number of �elds and occurrences of this three-starred identifying

string. A �eld consists of optional spaces followed by a control word denoting the �eld

name (a control word is of the form \ha string of letters without spacesi) followed by

the �eld contents followed by a semicolon,

h�eld namei h�eld contentsi;

and an entry ends with the occurrence of **ha di�erent identifying stringi*, with

which a new entry starts, except when this last string is zzzz. The string zzzz is

supposed to be di�erent from all strings used for entries; after **zzzz* the data block

ends. The �elds may be broken by the identifying strings; the entry minus all occurrences

of **hthe identifying stringi* should be a sequence of �elds. So

**Mozart2*\Name Mozart;\Type\Composer; \ChristianNames Wolfgang%

Mozart2* Amadeus ;Beethoven* \Name Van Beethoven;\Type \Composer

; **Beethoven***Salzburg*\Type\Town;\Country Austria;

**zzzz*

is a data block, albeit a somewhat untidy one. The rationale for allowing the identifying

strings breaking the �elds is that **hthe identifying stringi* should occur at the beginning

of every line of the entry and nowhere else, so that no two entries share the same line.

For such data blocks some manipulations with the data are possible with the help of

common outside tools. Before we discuss these possibilities, let us clean up the above

data block, adding some data and \Defaults.

\NoDefaults

\Default\Type\Composer;

\Default\Name\Ident;

**Mozart2*\Name Mozart;\TownOfBirth *Salzburg* *;

\ChristianNames Wolfgang%

**Mozart2* Amadeus ;

**Mozart2* \YearOfBirth1756; \YearOfDeath 1791;

**Beethoven* \Name Van \Ident;

**Bach*

**Salzburg*\Type\Town;\Country Austria;

**KV 488*\Type\Mpiece;\Key \Amaj;\Comp *Mozart2* *;

**zzzz*

Now with the de�nitions from the previous section *KV 488* * will indeed give `Austria'.

The control word \Ident always expands to the identifying string of the entry. For

the entry Bach two �elds exist (by \Default), the �eld with �eld name \Name and

contents \Ident, and the �eld with �eld name \Type and contents \Composer. In

the entry Mozart2 the contents of the �eld with �eld name \ChristianNames are

300 Andries Lenstra, Steven Kli�en and Ruud Koning

Wolfgang Amadeus , with a space at the end. Without the %-sign there would have

been two spaces between these names.

In practice, one probably would not mix up so many di�erent \Types in one data

block, and one would add a list of �eld names for every \Type, just to be sure that

no such things happen as using together \Forenames and \ChristianNames. But one

has the complete freedom to invent new �elds on the spot and to list them in any

order, independent from other entries, as long as all �elds are closed by the delimiter ;

(semicolon). This should be carefully checked, apart from the explicit data themselves.

Vice versa, as soon as a semicolon appears, chances are high that it terminates the

�eld contents. If one needs the semicolon in the contents of a �eld, one should use

\Semicolon. The typeset asterisk, `*', is available as \Star.

The choice of the identifying string is free, as long as it identi�es the entry (i.e.

all entries have di�erent strings), is not empty, and only contains letters, digits, spaces,

and no two spaces in a row. ��TEX will only check this to a limited extent.

Whole, closed data blocks can be put anywhere in the document. A ��T �le can

be absorbed, i.e. memorized, searched for an entry, or \Filtered; a data block in the

document is always absorbed.

3.1 Manipulations with data blocks

If all entries of a data block have their **hidentifying stringi* at the beginning of every

line and nowhere else, then sorting the block on the �rst column means sorting the data

on the identifying string. This is useful in its own right and also a means of bringing

together the di�erent parts of an entry that is scattered around the block. A way of

taking care of broken �elds would be by inserting sorting dummies like \zz1, \zz2,

\defined as {}.

Moreover, with the help of the grep command, well known to Unix users, one can

sort on �eld contents by having \Filter make a list of these contents paired with the

identifying strings,

h(possibly processed) �eld contentsi hidentifying stringi

sorting the list on �eld contents, and asking grep to rearrange the data block according

to the new order of the identifying strings.

Finally, grep allows preprocessing of TEX documents in which ��TEX is invoked. The

searching of �les for strings by grep will be faster than by ��TEX, so that having grep

search the document for three-starred identifying strings, search the ��T �les for the

lines on which these occur, and putting these lines in the document (taking care of the

proper \Defaults and the closing of the data block by **zzzz*) will sometimes save

time.

Data with ��TEX 301

4 System set-up

For simple ��TEX tasks there is nothing left to learn except the use of a few tools, and

the fact that the size of data blocks in documents is limited because they are absorbed

(how much TEX can absorb, depends on the local implementation). If ��TEX has to

search unspeci�ed ��T �les, however, ��TEX has to know these �les and may need some

guidance in their treatment. The

\TheDataFiles h�rst �le namei(x) ... \InSearchOrder

command tells ��TEX which ��T �les should be absorbed ((x)=(a)), which ��T �les

should be searched if no search-�le has been speci�ed after the second star ((x)=(s) or

(x)=()) and in what order they should be searched, and which of these default search-

�les get a `search-only' treatment ((x)=(s)) under \DefaultMemoryProtection.

Whenever

*han identifying stringi*hoptional ��T �le speci�cationi*

or

\Of *han identifying stringi*hoptional ��T �le speci�cationi* \h�eld namei

invoke ��TEX to retrieve data, ��TEX will normally try to remember these. If the data

block was absorbed in which the identifying string occurs, or if ��TEX has looked up

the data already once before, it will succeed in searching its memory and �nd the data.

Otherwise the data are looked up in the search-�le speci�ed after the second star or, if

there is no such �le, in the default search-�les, i.e. all non-absorbed �les of the list of

\TheDataFiles.

So the normal way is that the more strings ��TEX looks up, the more data it will

remember. This means that when ��TEX is invoked for many di�erent strings, TEX

may run out of memory. Therefore \DefaultMemoryProtection allows for something

special: if a ��T �le has been speci�ed in the list as (s), `search-only', and has been

speci�ed between the second and third star, as in *han identifying stringi*hname of a

search-only ��T �lei*, then ��TEX will not try to remember the data but will look them

up immediately in the speci�ed �le, use them, and forget them.

In the \DefaultMemoryProtection mode the protection of the memory has to

be activated by specifying a search-only �le after the second star. However, in the

\StrongMemoryProtection mode the memory is always protected; the only way to

have ��TEX search its memory immediately is by specifying an absorbed, (a), �le after

the second star. In this mode the speci�cation of any non-absorbed �le makes ��TEX

act as after the speci�cation of a search-only �le in the default mode. If there is no

speci�cation at all, ��TEX will not try to remember the data (this would involve the

forming of a control sequence, and the number of control sequences that TEX can see in

a single run is limited), but search the default search-�les for them. If it �nds the data,

it uses them and forgets them; in the absence of success it will conclude that the data

must have been absorbed and only then search its memory.

��TEX always starts in \DefaultMemoryProtection but the user can alternate

between this mode and \StrongMemoryProtection.

302 Andries Lenstra, Steven Kli�en and Ruud Koning

4.1 File speci�cation

When between the second and third star an absorbed �le or a search-only �le is speci�ed,

taking the place of the space, then in order for ��TEX to be able to recognize this �le

as absorbed or search-only, it is not only necessary that the \TheDataFiles command

has been executed already, but also that the `canonical' �le name of this �le on this

place in the document is the same as when it was listed in the list of \TheDataFiles.

The canonical �le name is the result of the following reduction: ��TEX expands all

control sequences in the typed-in �le name, e.g. \Dpath in \Dpath comp in Section 2,

then it tries to remove possible spaces at the beginning and at the end, and checks if

the result has an extension, i.e. ends on .x or .xy or .xyz, with x, y, and z letters. If

there is an extension then this is preserved, otherwise the extension .dat is attached.

So always writing the same name is by no means necessary, but for the same ��T �le

one should not switch between �le name with full path included, and �le name.

If the expansions of the control sequences in the typed-in �le names do not begin

or end with a space and there are no + signs in �le names, then there will most probably

be no problems with spaces around the �le names or around the delimiters (a), (s),

and (). For instance, one can write *hidentifying stringi* \Dpath comp * as well as

hidentifying stringi\Dpath comp* and

\TheDataFiles

\Dpath comp.dat (a)

\Dpath mpiece(s)town ()

\InSearchOrder

as well as

\TheDataFiles

\Dpath comp.dat(a)\Dpath

mpiece (s)

town()\InSearchOrder

{ \TheDataFiles, for that matter, provides a check-list.

5 Tools

5.1 Default �elds

The \NoDefaults and \Default commands, introduced in Section 3, may only be given

outside a data block, so when one wants to change the default contents of a �eld, or

wants to add a default �eld, then one should �rst put **zzzz*. The syntax of \Default

is

\Defaulth�eld namei hdefault �eld contentsi;hspacei

which is the same as \Default hdefault �eldi hspacei. The necessary space after the

semicolon could be provided by giving every \Default a line of its own. ��TEX puts the

default �elds immediately behind the �rst **hidentifying stringi* of an entry in the given

Data with ��TEX 303

order (new default �elds behind the old ones), before the �elds that are explicitly typed

in. The contents of a �eld are overridden by those of a subsequent �eld with the same

�eld name. This holds for all �elds, default or explicitly typed in, so that by

\Defaulthsame �eld namei hnew default �eld contentsi;hspacei

one can change the default contents of a �eld. ��TEX starts with an empty list and will

not change this list unless it is told to do so by a \Default or \NoDefaults command.

In order to know the exact contents of this list at every moment and to avoid surprise

results when ��TEX absorbs or searches a sequence of ��T �les, one should have it

emptied often by the \NoDefaults command { for instance at the beginning of every

��T �le.

5.2 Conditionals

We introduce three \If... commands. Like TEX's ordinary \if...s, they have an

optional \else part, are closed with \fi, and may be nested. ��TEX allows \Fi instead

of \fi. All examples refer to the second data block of Section 3.

The de�nition of a control word can be inspected by the command

\IfCshcontrol wordi\IsDefinedAs{ha stringi}

After \Of *han identifying stringi* * the control word \Ident is de�ned as hthis

identifying stringi, so that the typeset result of

\Of *Mozart2* *

\IfCs\Ident\IsDefinedAs{Mozart2}%

{\bf\Name}%

\Fi

is `Mozart'. With \Of *hany other identifying stringi* * the result will be nothing.

The possibility of checking on the existence of �elds was announced already in

Section 2. The condition

\IfFieldh�eld namei\Exists

is true for all entries for the �eld names \Type and \Name, e.g.

`\Of *Bach* * \IfField\Name\Exists' is true;

`\Of *Bach* * \IfField\TownOfBirth\Exists' is false.

Finally, here is a facility for testing if an existing �eld looks like a given �eld:

\IfExistingField\LooksLikeh�eld namei hgiven �eld contentsi;

In this comparison the �eld contents are left untouched by TEX, i.e. they are not expanded

or processed otherwise. So the typeset result of

\Of *Mozart2* *

\IfField \TownOfBirth \Exists

\IfExistingField\LooksLike \TownOfBirth*Salzburg* *;%

{\bf\Name}%

\Fi

\Fi

304 Andries Lenstra, Steven Kli�en and Ruud Koning

is `Mozart'. With \Of *hany other identifying string from our data blocki* * the result

will be nothing. Furthermore:

\Of *Mozart2* * \IfExistingField\LooksLike \Name Mozart; is true,

\Of *Beethoven* * \IfExistingField\LooksLike\Name Van \Ident; is true,

\Of *Beethoven* * \IfExistingField\LooksLike\Name Van Beethoven; is false,

\Of *Bach* * \IfExistingField\LooksLike \Type \Composer ; is true.

The comparison of a given string with processed �eld contents is a di�erent matter.

Consider, for instance, the string Van Beethoven. This string is equal to the result

of processing the �eld contents Van \Ident in the following way: expand all that is

expandable until there is nothing expandable left. After \Of *Beethoven* * the process

of producing out of \Name the �eld contents Van \Ident themselves, also only involves

expansion. Therefore, for the control word \nAme the e�ect of

\Of *Beethoven* * \edef\nAme{\Name}%

is the same as

\def\nAme{Van Beethoven}%

All other �elds \Name in our data block also have contents that can be expanded com-

pletely, i.e. until there is nothing expandable left. This means that in this case we are

back to the \IfCs technique learnt above. The typeset result of

\Of *Beethoven* * \edef\nAme{\Name}%

\IfCs\nAme\IsDefinedAs{Van Beethoven}%

{\bf\Name}%

\Fi

is `Van Beethoven', and with \Of *hany other identifying stringi* * the test will work

but the result will be nothing. (We could have used \Name itself instead of \nAme, but

then the protection against misuse of the �eld name \Name, as exposed in Section 2,

would have disappeared.)

Field contents of the form *han identifying stringi* * cannot be expanded com-

pletely; they cannot be put in an \edef without TEX having to stop and complain, or

behaving in some other undesirable manner. If in our data block there had been an entry

of which the \Name had contents of this form, the above test would not work properly

and the \IfExistingField\LooksLike test should be preferred.

Now for processed �eld contents where the processing involvesmore than expansion.

The comparison of

1. �eld contents that refer to other entries, but of which the stage that is to be

compared is completely expandable, with

2. strings in which nothing expandable is left,

is possible with \xdef (=\global\edef). Consider, for instance, the string Austria,

the result of *KV 488* * with the templates of Section 2. After \Of *Salzburg* * ,

the process of producing Austria out of \Country only involves expansion, but after

\Of *KV 488* * the process of producing Austria out of \Comp involves more than

sheer expansion, and

Data with ��TEX 305

\Of *KV 488* * \edef\cOmp{\Comp}%

is not recommended. The \Comp �eld contents *Mozart2* * refer to other entries, but

the stage \Country, that is to be compared, is completely expandable. The solution is

to have TEX do its work, but put the result aside for later testing, wrapped in a control

word: when

\def\Town{\xdef\cOuntry{\Country}}*KV 488* *%

hence

\IfCs\cOuntry\IsDefinedAs{Austria}%

is true. Of course, more would be needed to make the test work for arbitrary \Mpieces.

Now the \Comp and all other �elds have to exist down to \Country.

One can also test immediately and export the result. This will be shown for strings

and �eld contents that should not be touched. If the \Country �eld contents are

Austria *, then after

\newif\ifTheRightOne

\def\Town{\global\TheRightOnefalse

\IfExistingField\LooksLike\Country*Austria* *;%

\global\TheRightOnetrue

\Fi

}%

KV 488 *%

it will be seen that \ifTheRightOne is true.

5.3 Wrapping

In the last test only the result of the comparison was available, not a control word

like \cOuntry for further testing or processing. As an analogue to \xdef, the \WrapIn

command provides this facility whenever TEX should not touch the �eld contents to be

compared. After \Of *han identifying stringi* *

\WrapIn hpseudo �eld namei h�eld namei

is equivalent to

\gdef hpseudo �eld namei{h�eld contentsi}

Here is the penultimate example again; the \Country �eld contents are assumed to be

Austria *. The condition in

\def\Town{\WrapIn\cOuntry\Country}*KV 488* *%

\IfCs\cOuntry\IsDefinedAs{*Austria* *}%

is true, and \cOuntry is available for other purposes.

6 Conversion

Most data base programs are capable of reading and producing ASCII data �les. ��TEX

o�ers two utilities that facilitate the cooperation with such programs. The �rst reads

almost all ASCII data �les that the latter may produce, and converts these data �les

306 Andries Lenstra, Steven Kli�en and Ruud Koning

into ��T �les. The second converts, for almost every data base program, a ��T �le into

the particular ASCII format that is readable for the program. These utilities are currently

under construction.

7 Filtering

The \Filter command, announced in Section 2, �lters a ��T �le according to a certain

\Type:

\Filter h��T �le speci�cationi\Type hthe �lter typei

for instance,

\Filter \Dpath comp \Type\Composer

considers every entry of \Dpath comp in consecutive order and, if the \Type is equal

to \Composer, it expands \Composer. ��TEX reduces the ��T �le speci�cation to the

canonical �le name, as explained in Section 4. A space before `\Type' should not cause

any problems.

The restriction to one \Type is not essential. Suppose one has a big ��T �le

mail.dat with many entries of di�erent \Types sorted on some postal code. If all

entries should receive a letter, then \Filtering the ��T �le once for every \Type would

destroy the ordering. The solution is to replace, in mail.dat, all occurrences of `\Type'

by `\ProType' (i.e. to change the �eld name \Type into \ProType), to add, at the top

of mail.dat, the line

\Default\Type\FormLetter;

if there is one template, \FormLetter, or the line

\Default\Type\ProType;

if every old \Type has its own template, and to

\Filter mail.dat \Type\FormLetter

or to

\Filter mail.dat \Type\ProType

respectively. For detailed examples of form letters we refer to [1].

We conclude with an example that �lters a ��T �le of \Composers. If there is a

�eld \TownOfBirth, its contents refer to a ��T �le of towns, i.e. are of the form *ha

towni* *. Every \Town has \Default \Name \Ident;, and a \Country with contents

that are macros to be translated by a translation �le:

\def\Town{\xdef\nAme{\Name}\WrapIn\cOuntry\Country}%

\def\Composer{%

\IfField \TownOfBirth \Exists

\TownOfBirth

\IfCs\cOuntry\IsDefinedAs{\Austria}%

{\bf\Name}, from \nAme, \cOuntry\par

\Fi

\Fi

Data with ��TEX 307

}%

\Filter c:/dat/comp \Type\Composer

The result is a list of all composers in c:/dat/comp.dat that are born in Austria, with

their towns of birth.

References

[1] A. Lenstra, S. Kli�en, R. Koning, and K. Aardal. Tips and tricks with ��TEX. to

appear, 1995.

[2] M. Pi�. Text merges in TEX and LATEX. Taken from the �le textmerg.dtx provided

with the program source code, April 21, 1995.

[3] K. van der Laan. Sorting in BLUe. MAPS, 10, 1992.

