
When METAFONT does it alone

Ji�r�� Zlatu�ska

Faculty of Informatics

Masaryk University

Bure�sova 20

602 00 Brno

Bohemia

zlatuska@informatics.muni.cz

Abstract

Combining METAFONT and TEX when typesetting text and graphics together has been

shown on several occasions to bring very impressive results. A. Hoenig presented a method

for communication between TEX and METAFONT in order to solve two problems otherwise

di�cult to handle within TEX or METAFONT alone: label placement for diagrams gener-

ated by METAFONT, and curvilinear typesetting. We show that the method for curvilinear

typesetting (involving three passes in Hoenig's approach) can be considerably simpli�ed by

using the extended ligature mechanism of TEX 3, and that a single METAFONT pass is ac-

tually su�cient, with quite a simple interface on TEX's side. Institutional seal text placement

can be realized as a simple METAFONT application using this method. While PostScript

o�ers ready-to-use easy solutions to this class of problems, METAFONT solutions can still

be preferable to PostScript because of the ability of adding META-ness, e.g., by introduc-

ing second-order magnitude corrections/distortions to the letters and/or logos in order to

enhance legibility when used in smaller sizes.

1 Introduction

There are several methods available for including graphical information into TEX docu-

ments. Some of them rely on the \special primitive of TEX and consists in combining

pictures created by tools independent of TEX on the level of dvi drivers. Within the TEX

world, the METAFONT program can be used for de�ning graphic objects by using its

capabilities as in the case of de�ning letterforms, resulting in a `font' containing graphic

images as `letters' which can be typeset within a TEX-composed document.

There are interesting possibilities arising from combination of METAFONT and TEX

especially when it comes to typesetting text material along curved baselines and/or

431

432 Ji�r�� Zlatu�ska

combined with other pieces of graphical information. E�ects of this kind can also be

prepared using PostScript transformations as prepared by, e.g., the pstricks collection by

Timothy van Zandt. Nonetheless, reasons can be found for preferring a solution using

just the combination of METAFONT and TEX, excluding e�ects caused by combination

of the dvi driver and the underlying printing language. One of them can be the necessity

of using either a printer or a previewer which does not understand PostScript. Another

may be the need to use non-linear e�ects within the generated pictures, e.g., scaling the

proportions of letters used within them similarly as they change when changing design

sizes for METAFONT-generated fonts.

One of the problems of using METAFONT easily for creating pictures involving also

text parts, is the lack of `typesetting' capabilities (solved in John Hobby's metapost gen-

erating PostScript output from an input formulated in a language extending METAFONT)

which would allow e�cient incorporation of typeset text into METAFONT-generated �g-

ures. Alan Hoenig [1, 2] de�ned a scheme for bidirectional communication between TEX

and METAFONT allowing TEX to submit requirements for special e�ects under which

METAFONT would generate particular instances of the letters (e.g., rotated and/or

scaled) and TEX would place these letters onto the appropriate place within the type-

set material. One particular application of this TEX and METAFONT `working together'

was curvilinear typesetting when typesetting centred text around the circumference of a

circular area as used for institutional seals or logos. In this paper we show an approach

for tackling this problem within a simpler scheme than the three-step method described

by Hoenig. We use the capabilities of the ligature programs of METAFONT to create

composite pictures which can be then invoked from within TEX documents with a cer-

tain level of `intelligence' built into them. This can be simpler to use than the three-step

method and the composition steps embedded into the font de�nition corresponding to

the particular piece of graphics.

2 Typesetting along curved baselines with Metafont

When typesetting parts of a text using METAFONT in non-standard ways such as placing

the text along a curve and/or combined with other graphic objects, it is often necessary

to break the picture into separate parts stored as individual characters within a font

which METAFONT generates as its output. There are several reasons for doing this.

The resulting METAFONT picture comprising the picture as a whole may be too large

for METAFONT's memory limitations. We may also want to be able to use parts of the

picture independently of the others, or to select just a few of them in particular cases.

On the level of typesetting the pictures in TEX, it is necessary to be able to typeset the

fragments of the picture (characters from the font representing it) at the proper places

in the typeset material.

We can illustrate some of the requirements which should be handled by a META-

FONT-based de�nition of an institutional logo for the author's home institution { a logo

When METAFONT does it alone 433

of the Faculty of Informatics of Masaryk University consisting of an Escher-like graphic

based on a design by Petr Sojka, encircled by a pair of Latin inscriptions typeset around

the circumference with di�erent orientation each. The logo as such looks as follows:

} w��������
��
������������� !"#$%&'()+,-./012345<vIxBvIyA|
The basic variations we may have in mind may be typesetting just the graphics

drawing inside the seal, typesetting just the inscription alone, skipping out the shaded

parts { hence obtaining variants of the picture looking as follows:

� yAvIxBvIyA| } w��������
��
������������� !"#$%&'()+,-./012345<z } w��������
��
������������� !"#$%&'()+,-./012345<yA|

2.1 Hoenig's method

A. Hoenig proposed a method for combining METAFONT and TEX in such a way that a

sequence of three steps of communication takes place between METAFONT and TEX.

First, TEX makes basic measurements of the text parts to be typeset. Second, META-

FONT reads this information, generates the pictures and/or transformed letterforms

and passes this back to TEX as a font together with numeric information (e.g., positions

onto which the characters should be typeset) encoded as kerns between pairs of special

structure. Third, TEX reads the metric information associated with the font, extracts

any encoded data which are needed and then typesets the generated characters onto

speci�ed positions.

Although the communication between METAFONT and TEX is solvable in this way,

the resulting process is rather complicated. It is hard to imagine the technique becoming

so easy to use that the resulting graphics could regularly be invoked in non-expert users'

documents.

2.2 Leaving the placement to Metafont

The �nal composition of the picture is left to TEX in Hoenig's `METAFONT cooperates

with TEX' method, and this is also the reason that communication between METAFONT

and TEX is introduced.

There is a simpler possibility of leaving the whole job of placing the parts of the �nal

picture to METAFONT alone. METAFONT can generate characters which are placed

correctly with respect to the resulting picture and use a common point of the resulting

graphic composition as the reference point of each of the characters generated as parts

of it. METAFONT knows this information in any case, so it can just use it for changing

434 Ji�r�� Zlatu�ska

the currenttransform transformation in order to move the character to the desired

place. (Note that METAFONT will not exceed its memory limits if it just moves the

picture within the coordinate system without actually setting on pixels far away of it.)

The resulting font METAFONT generates consists of characters which should be

superposed one on top of another. The point where this should occur from TEX's point of

view is the common reference point of the generated characters. A TEX loop independent

of the structure of the picture can be used for this { just reserving space for the picture

within the typeset document and overprinting all the characters from the font within

the loop. In order for this to work, the widths of the individual characters in such a font

are set to zero so that sequencing the characters on TEX's input actually means printing

them on top of each other.

First four characters needed to typeset the upper part of the curved inscription

above are (the dot indicating the reference point):

.� .� .� .�
Overprinting them on top of each other yields:

.����
2.3 Character de�nitions

In order to generate these characters, we have to modify the METAFONT program �les

so that the letterforms are properly transformed and to add the code for computing

their parameters.

The basic change in the METAFONT programs for characters can be done following

the way A. Hoenig used, with just a few extra parameters added because the placement

of the calculations should be based on them.

The code de�ning letters of the form

cmchar "The letter F";

beginchar

(n,11.5u#-width_adj#,cap_height#,0);

...

endchar;

will be replaced by METAFONT macros of the form:

width.F:=11.5u-width_adj;

def F_(expr n, rotation_angle,

position_shift) =

When METAFONT does it alone 435

currenttransform:=identity

rotated rotation_angle

shifted position_shift;

def t_=transformed currenttransform enddef;

cmchar "The letter F";

beginchar

(n,11.5u#-width_adj#,cap_height#,0);

...

endchar;

In this transformation we extracted the width information concerning the character

(which will be needed for proper character placement) and de�ned a macro gener-

ating an instance of the letter as slot number n in the generated font consisting of

the letter rotated by angle rotation_angle and moved to position given by vector

position_shift.

Note that currenttransform in this de�nition may be further modi�ed by other

transformations needed. When typesetting texts in circular logos, it is for example good

to stretch the letters a bit when the size of the logo becomes smaller. This can be

achieved by introducing a global parameter taller_letters (e.g., to depend on the

second order of logo size change), and modifying the currenttransform setting to

currenttransform:=identity

yscaled taller_letters

rotated rotation_angle

shifted position_shift;

2.4 Computing character positions

For character position calculations it is enough to incrementally move the reference point

of the text characters along the circle and to compute the positions and angular shifts

of the letters to be typeset. These calculations can be carried out analytically, and use

of the solve macro is not needed (in contrast with Hoenig's method).

For the upper arch of the circular text, the character position calculations are based

on the widths of the characters only, and for the lower arch also on the height of the

caps height (because the characters should be shifted out of the basic circle by this

distance).

The essential piece of information are the widths of the characters (including any

kerning which follows them { as Hoenig notes in [2], it is better not to rely on the default

kerning used for linear text). We de�ne an array for this,

numeric c[];

and �ll in the width information including kerning for the circular text such as

c[1]:=width.F+kkk;

c[2]:=width.A+kk;

436 Ji�r�� Zlatu�ska

c[3]:=width.C;

c[4]:=width.U;

c[5]:=width.L+kk;

c[6]:=width.T+kk;

c[7]:=width.A;

c[8]:=width.S;

...

c[chars_placed_up]:=width.AE;

c[first_down]:=width.U;

...

c[last_down]:=width.A;

Now three arrays will be de�ned,

numeric centering[],

rot_angle[];

pair pos_shift[];

for recording the information concerning rortation angle and position shift of each of

the individual instances of the letter, and an auxiliary array used for centering the texts

along the vertical axis.

Now based on the character widths in the c array we are ready to calculate the

co-ordinates of each of the characters c[1] up to c[chars_placed_up] placed on the

upper arch. Note that two passes are done here. The �rst one starts typesetting at 180

degrees, calculates the overall angle length, and sets centering[0] to the actual angle

where centered text should start from. The second pass then recalculates the positions

and angles starting from this corrected initial setting.

centering[0]:= 180;

for j:=1,2:

pos_shift[1]:= radius*dir(centering[0]);

for i=1 upto chars_placed_up:

half:=1/2 c[i];

halfdist:= radius +-+ half;

centering[i] := centering[i-1]

- 2 * angle (halfdist, half);

pos_shift[i+1]:=radius*dir centering[i];

rot_angle[i] := angle (pos_shift[i+1]

- pos_shift[i]);

endfor;

centering[0]:= 180 - 1/2 centering

[chars_placed_up];

endfor;

When METAFONT does it alone 437

Parameters of the characters placed into the lower arch are calculated in the opposite

direction using the same approach. We just need to align the upper parts of each of the

characters and to move the reference point out of the base circle { hence the di�erence

in calculating pos_shift[i]:

centering[last_down+1]:= 0;

for j:=1,2:

pos_shift[last_down+1]:=

(radius + cap_height

* taller_letters)

* dir(centering[last_down+1]);

for i=last_down downto first_down:

half:=1/2 c[i];

halfdist:= radius +-+ half;

centering[i] := centering[i+1]

- 2 * angle (halfdist, half);

pos_shift[i]:= radius*dir(centering[i])

+ (radius + cap_height

* taller_letters)

* (dir(centering[i+1]

- angle (halfdist, half)))

- radius * (dir(centering[i+1]

-angle (halfdist, half)));

rot_angle[i] := angle (pos_shift[i]

- pos_shift[i+1]) + 180;

endfor;

centering[last_down+1]:=

centering[last_down+1] - 1/2

* (180 + centering[first_down]);

endfor;

2.5 Generating the characters

Now we are ready to generate the actual instances of the characters according to arrays

rot_angle[] and pos_shift[].We just need to pass the information to the appropriate

procedures:

F_(1,rot_angle[1],pos_shift[1]);

A_(2,rot_angle[2],pos_shift[2]);

C_(3,rot_angle[3],pos_shift[3]);

U_(4,rot_angle[4],pos_shift[4]);

L_(5,rot_angle[5],pos_shift[5]);

T_(6,rot_angle[6],pos_shift[6]);

438 Ji�r�� Zlatu�ska

A_(7,rot_angle[7],pos_shift[7]);

S_(8,rot_angle[8],pos_shift[8]);

...

This font can now be used from within TEX by saying, e.g.,

\char1\char2\char3\char4

\char5\char6\char7\char8

in order to generate the following fragment:

��������

2.6 Mounting the pieces together using Metafont

It would still be clumsy to use METAFONT in order to generate the pieces of the picture,

but still to have to compound them together manually within TEX as the example above

suggests. Fortunately we can do better, using the ligature mechanism of TEX fonts. A

similar trick is used within F. Sowa's bm2font or K. Hor�ak's [3] method for decomposition

of big METAFONT pictures.

Combinations of at least two letters from a font occurring adjacent to each other in

the TEX source su�ce for invoking METAFONT's ligature program. Unlike the common

ligatures used in ordinary Latin alphabet fonts, ligatures employed for this purpose make

use of the fact that ligature handling is de�ned as simple rewriting system rewriting pairs

of codes into results consisting of inserting a new character and either leaving the source

characters in, or removing them. Moreover, TEX inserts a special `boundary' character

before and after each word, including points where the font changes. Hence a simple

way to de�ne the full picture composed of the individual pieces is to de�ne a ligature

program combining the boundary character with a single letter triggering generation of

the full picture. There can be several such triggers de�ning several parts of the picture.

Suppose for example that we want to be able to print three parts of the logo

separately { the inscription, the Escher-like drawing inside of the logo, and the color

areas inside of the drawing. Let us select three identi�ers for this purpose { `S' standing

for `seal', `L' standing for `logo', and `C' standing for `color'. In order the ligature

mechanism to work, we add them as empty characters with zero dimensions:

beginchar("S",0,0,0); endchar;

beginchar("L",0,0,0); endchar;

beginchar("C",0,0,0); endchar;

Before designing the ligature program, let's consider one more feature of the re-

sulting picture. So far all the characters generated had zero width so that composing

them did not change the position of the reference point within TEX. This works for every

character inside of the composition of the picture except for the �rst and the last-half

of the `bounding box' of the resulting picture should be inserted there. Using slot 254

When METAFONT does it alone 439

for the half of the bounding box we can de�ne one additional character with non-trivial

dimensions:

beginchar(254,radius#+cap_height#,

radius#+cap_height#,

radius#+cap_height#);

endchar;

Now the ligature program capable of starting everything o� would have the form of:

boundarychar:=255;

ligtable

||: "S" =:| 254,

"L" =:| 254,

"C" =:| 254,

254: "S" |=:|> "S",

254: "L" |=:|> "L",

254: "C" |=:|> "L",

"S": "S" =:| 1,

1: "S" |=:| 2,

2: "S" |=:| 3,

3: "S" |=:| 4,

4: "S" |=:| 5,

5: "S" |=:| 6,

6: "S" |=:| 7,

7: "S" |=:| 8,

8: "S" |=:| 10,

10: "S" |=:| 11,

11: "S" |=:| 12,

12: "S" |=:| 13,

13: "S" |=:| 14,

14: "S" |=:| 16,

...

chars_placed_up: "S" |=:| first_down,

...

last_down-1: "S" |=: last_down,

last_down: "L" |=:|> "L",

"C" |=:|> "C",

255 |=:> 254,

"L": "L" =:| 254,

254: "L" |=: "A", %logo char

"A": "S" |=:|> "S",

"C" |=:|> "C",

255 |=:> 254,

440 Ji�r�� Zlatu�ska

"C": "C" =:| 254,

254: "C" |=: "B", %color char

"B": "S" |=:|> "S",

"L" |=:|> "L",

255 |=:> 254,

The font is intelligent enough to be used in such a way that after saying

\font\L=our-logo at 2cm

we can use the following input in order to de�ne pictures of the form:

{\L S} } w��������
��
������������� !"#$%&'()+,-./012345<z

{\L L} � yA|

{\L C} ~ LxB{

{\L SL} } w��������
��
������������� !"#$%&'()+,-./012345<yA|

{\L LS} � yAw��������
��
������������� !"#$%&'()+,-./012345<z

{\L SC} } w��������
��
������������� !"#$%&'()+,-./012345<vIxB{

{\L SLC} } w��������
��
������������� !"#$%&'()+,-./012345<vIxBvIyA|

When METAFONT does it alone 441

2.7 Driver problems

The scheme outlined above works �ne except for a minor problem with certain dvi drivers

which may slightly distort the resulting appearance of the complete picture. As a general

rule, resetting max_drift to zero may be a good idea with most drivers, or else the �rst

component may be slightly mis-aligned (alternatively one can add an empty character

with zero dimensions to the beginning of every ligature chain in order to compensate for

the drift with a harmless character �rst).

With dvips there's one more problem: it rejects empty characters with non-trivial

dimensions. Before this gets �xed, the remedy may be including one pixel into the 254

character so that it's no longer empty. The pixel should be placed in a position that is

set in any case. In our case there is no pixel shared by all the possible variants, hence

the 254 character had to be split into some six other ones which are used depending on

the context within the activated ligature chain.

Output drivers within the emTEX family exhibit even more peculiar behavior: The

characters to-be-overprinted are o�-paleced by positive horizontal skips so that the re-

sulting picture gets completely distorted. Note this is not a problem with the emTEX

implementation which does generate a correct dvi �le in this case, but purely a problem

with driver handling the somewhat unusual font rather unfaithfully.

3 Conclusion

We have described a method for composing images containing typesetting circular texts

and pictures with su�ciently rich functionality using just the possibilities o�ered by

de�nitions in METAFONT alone. The ideas used mostly derive from A. Hoenig's ideas

from [2], yet are enough to locate all the necessary mechanism into a single META-

FONT pass instead of invoking iterative processes involving communication between

METAFONT and TEX.

3.1 Acknowledgement

This work has been supported by GA �CR grant 201/93/1269.

References

[1] A. Hoenig. When TEX and METAFONT talk: typesetting on curvilinear paths and

other special e�ects. TUGboat, 12:554{557, 1991.

[2] A. Hoenig. When TEX and METAFONT work together. Proceedings EuroTEX 92,

Prague, 1992.

[3] K. Hor�ak. Fighting with big METAFONT pictures when printing them reversely or

landscape. Proceedings EuroTEX 94, Gda�nsk, 1994.

