
Bijlage X Paradigms: It’s all in the game 82

Paradigms: It’s all in the game

Kees van der Laan

1 BLUe’s Design VI
Hi folks. In 1989 Greene contributed ‘Playing in TEX’s
mind’ to TUG 89. Having fun with TEX has been on my
mind all the time. Of late, I thought of tic-tac-toe as an
exercise in programming dialogues in TEX, in a simple
and elegant way, with hopefully some paradigms emerg-
ing, suited for educational purposes. The play is simple but
nevertheless entails essential aspects in dialoging. Below
I first strip the play to the essentials and from there build
the user-friendly but otherwise modest code. At the end the
TEXing peculiarities are summarized.

2 The play
Tic-tac-toe is played by two persons on a board with 3×3
fields. Each player marks a field in turn and the one who
has first three marks in a row has won.

+ o +
o +

o +

3 Prototyping
The dialogue with TEX goes through the log file, also called
transcript.

The board is represented by the defs \1, . . .\9 row-
wise. Each player owns a mark called\markplayer and
\markopponent. A user is prompted to input a value—
1, 2, ... or 9—which indicates the field where to put his
mark. The program keeps track of the kind of mark, via
a toggle. To end the game the user can input 0.

The above resulted in the following bare-to-the-bones im-
plementation of tic-tac-toe.

\def\showboard{\immediate\write0{\1\2\3}
\immediate\write0{\4\5\6}
\immediate\write0{\7\8\9}}

\def\initialize{\def\1{-}\def\2{-}\def\3{-}
\def\4{-}\def\5{-}\def\6{-}
\def\7{-}\def\8{-}\def\9{-}}

\def\play{\initialize \loop\showboard
\ifx\mark\markplayer

\let\mark\markopponent\else
\let\mark\markplayer\fi

\immediate\write0{Supply index for \mark:}
\read0to\index \expandafter
\xdef\csname\index\endcsname{\mark}

\ifnum\index>0 \repeat}%end \play
\def\markplayer{+}\def\markopponent{o}
\endlinechar-1 %TB20.18
\play \bye

Remarks. Because of the toggling of the\mark an \xdef
was needed.

One could code that the player and opponent are both tak-
ing care of during each traversal of the loop. However,
apart from that it makes the code longer it is also clumsy,
and if careless one has to account for multiple exits of the
loop. I assumed states in which the loop is traversed. The
next steps are not for the faint of heart.

4 Real-life version
Given the above prototype implementation we can refine,
add more bells-and-whistles. Basically these add-ons are
in two directions
• improve the user interface
• let the program do more, such as deciding who has won.

4.1 Improving the user interface
Explain the conventions adopted, especially what the in-
dices stand for.

Always nice is to allow for personalization, i.e. the system
prompt asks for YOU, with your name. This entails that
the players must be asked to identify themselves and that
the toggling must be extended.

Another feature is that the program prompts the remaining
indices to choose from.

And what about robustness? I decided not to implement ro-
bustness with respect to lowercase or uppercase y or n, for
example. I also refrained from checking whether the sup-
plied index is allowed.1

4.2 Let the program do more
The most important aspect is to add intelligence to the pro-
gram to check for a winner.

The play restarts automatically.

4.3 The code
The board is represented by the defs\1, \2, . . .\9, the 3×3
board row-wise.

The structure of the program is similar to the
prototype, with \play elaborated and the check
\checkforgameend added.

\immediate\write0{Tic-tac-toe
Aug 1995, cgl@rc.service.rug.nl}

\let\ea\expandafter

1Not that difficult, actually, because the set of allowed indices is maintained.

Bijlage X Paradigms: It’s all in the game 83

\newcount\k\newcount\value\newcount\checksum
\newif\ifsol
\newtoks\set %Index set
\def\del#1{\def\lop##1#1##2\pol{\set{##1##2}}

\ea\lop\the\set\pol}
%
\def\showboard{\immediate\write0{}
\immediate\write0{\1\2\3}
\immediate\write0{\4\5\6}
\immediate\write0{\7\8\9}}
%Initialization
\def\initialize{\set{123456789}\solfalse

\immediate\write0{New names of players?
(default \player\space and \opponent)}

\read0to\yorn
\if y\yorn
\immediate\write0{Name player}
\read0to\player
\immediate\write0{Name opponent}
\read0to\opponent

\fi\k0
\loop\advance\k1

\ea\def\csname\the\k\endcsname{-}
\ifnum\k<10

\repeat
\immediate\write0{Empty board}

}%end initialization
%Test for solution
\def\sol#1#2#3{{\advance\count#1\count#2
\advance\count#1\count#3
\ifnum\count#1=\checksum \global\soltrue\fi}}

\def\checkforgameend{%
\sol123\ifsol\message{\who\space won}\k0 \else
\sol456\ifsol\message{\who\space won}\k0 \else
\sol789\ifsol\message{\who\space won}\k0 \else
\sol147\ifsol\message{\who\space won}\k0 \else
\sol258\ifsol\message{\who\space won}\k0 \else
\sol369\ifsol\message{\who\space won}\k0 \else
\sol159\ifsol\message{\who\space won}\k0 \else
\sol357\ifsol\message{\who\space won}\k0 \else
\fi\fi\fi\fi\fi\fi\fi\fi}
%Play
\def\play{\initialize\begingroup
\loop\showboard

\ifx\who\player\value-1 \checksum-3
\let\who\opponent
\let\mark\markopponent

\else\value1 \checksum3
\let\who\player
\let\mark\markplayer

\fi
\immediate\write0{\who, supply index

for \mark:}
\immediate\write0{Choose from: \the\set.

(0 terminates)}
\read0t\ea o\csname\who\endcsname
\k\csname\who\endcsname
\ea\xdef\csname\the\k\endcsname{\mark}
\count\k\value
\checkforgameend

\ifnum\k>0 \ea\del\ea{\the\k}
\repeat\endgroup
\immediate\write0{Play another game?}
\read0to\newplayyorn
\if y\newplayyorn\ea\play\fi}%end Play
%Defaults
\def\player{Kees} \def\opponent{Ina}
\def\markplayer{+} \def\markopponent{o}
%
\immediate\write0{}
\immediate\write0{Board numbering}
\immediate\write0{123}

\immediate\write0{456}
\immediate\write0{789}
\play \bye

Remark. In order to get the personalized prompts \Kees,
or \Ina the following coding was needed.
\read0t\ea o\csname\who\endcsname

The few lines that follow look unnecessary complex but are
entailed by the above.

5 What more?
It is intriguing to ponder about adding even more intelli-
gence. For example to let the game prompt for obligatory
moves, or to let the program terminate when draw is in-
evitable, that is when there is no possible solution left. In
order to achieve this I chose to
• maintain the set of possible solutions, instead of check-

ing all possible solutions2

• update the set of solutions after each move, and look for
a solution or a draw
• look for obligatory moves.

With respect to robustness the input can be checked for
whether the index is allowed, casu quo a y(es) or n(o).
\immediate\write0{Tic-tac-toe

Aug 1995, cgl@rc.service.rug.nl}
\let\ea\expandafter \let\nx\noexpand
\newcount\k\newcount\kk
\newcount\value\newcount\checksum
\newcount\feasible\newcount\prompt
%Solution lines
\newcount\hi\newcount\hii\newcount\hiii
\newcount\vi\newcount\vii\newcount\viii
\newcount\di\newcount\dii
\newif\ifsol
\newif\ifnotfound
%Index set and deletion from index set
\newtoks\set %Index set
\def\del#1{\def\lop##1#1##2\pol{\set{##1##2}}

\ea\lop\the\set\pol}
\def\showboard{\immediate\write0{}
\immediate\write0{\1\2\3}
\immediate\write0{\4\5\6}
\immediate\write0{\7\8\9}}
%Initialization
\def\initialize{\set{123456789}\solfalse

\hi0 \hii0 \hiii0 \vi0 \vii0\viii0
\di0 \dii0 \feasible8 \prompt0

%Cell no associated with solution subsets
\ea\def\csname solset1\endcsname{%

\ls\hi\ls\vi\ls\di}
\ea\def\csname solset2\endcsname{%

\ls\hi\ls\vii}
\ea\def\csname solset3\endcsname{%

\ls\hi\ls\viii\ls\dii}
\ea\def\csname solset4\endcsname{%

\ls\hii\ls\vi}
\ea\def\csname solset5\endcsname{%

\ls\hii\ls\vii\ls\di\ls\dii}
\ea\def\csname solset6\endcsname{%

\ls\hii\ls\viii}
\ea\def\csname solset7\endcsname{%

\ls\hiii\ls\vi\ls\dii}
\ea\def\csname solset8\endcsname{%

\ls\hiii\ls\vii}
\ea\def\csname solset9\endcsname{%

\ls\hiii\ls\viii\ls\di}
\immediate\write0{New names of players?

2This entails that non-feasible candidates are eliminated from the set of candidate solutions.

Bijlage X Paradigms: It’s all in the game 84

(default \player\space and \opponent)}
\read0to\yorn
\if y\yorn
\immediate\write0{Name player}
\read0to\player
\immediate\write0{Name opponent}
\read0to\opponent

\fi\k0
\loop\advance\k1

\ea\def\csname\the\k\endcsname{-}
\ifnum\k<10

\repeat
\immediate\write0{Empty board}

}%end initialization
%Test for solution
\def\ls#1{%#1 is a solution counter
\ifnum#1=0 \advance#1\value
\else\ifnum\sign#1=\value \advance#1\value

\else\advance\feasible-1
\delete#1 %from solution sets
\ifnum\feasible=0 \showboard

\message{***Draw***}\k0
\fi

\fi
\fi
%Check for solution
\ifnum#1=\checksum \showboard

\message{***\who*** won}\k0
\fi}

\def\sign#1{\ifnum#1>0 1\else -1\fi}
\def\solsetk{\csname solset\the\k\endcsname}
\def\delete#1{%#1 is a solution counter to be

%deleted from all solution sets
{\kk0
\def\ls##1{\ifx#1##1\else\nx\ls\nx##1\fi}
\loop\advance\kk1
\ifnum\kk<10
\ea\xdef\csname solset\the\kk\endcsname

{\csname solset\the\kk\endcsname}
\repeat}}%end \delete
\def\fifo#1{\ifx#1\ofif\ofif\fi

\process#1\fifo}
\def\ofif#1\fifo{\fi}
\def\lstry#1{%#1 is a counter denoting

%a solution
\ifnum#1=0
\else\ifnum\sign#1=\value

\advance#1\value
%Check for solution
\ifnum#1=\checksum \global\prompt\k
\fi\fi

\fi}
\def\process#1{\ifnum\prompt=0
{\k=#1 \let\ls\lstry \solsetk}\fi}

\def\readprocess#1{\if#1\csname\who\endcsname
\notfoundfalse\fi}

\def\readindex{{\let\process\readprocess
\loop\read0t\ea o\csname\who\endcsname
%\who value in \set?
\notfoundtrue\ea\fifo\the\set0\ofif
\ifnotfound
\immediate\write0{Please supply index

from \the \set}
\repeat
\global\k\csname\who\endcsname}}

%Play
\def\play{\initialize\begingroup
\loop\showboard%\show\ the\solset

\ifx\who\player\value-1 \checksum-3
\let\who\opponent
\let\mark\markopponent

\else\value1 \checksum3
\let\who\player
\let\mark\markplayer

\fi
%Is there a winning move?
%(Prefails obligatory move)
{\prompt0 \ea\fifo\the\set\ofif
\ifnum\prompt>0 \global\prompt0 \fi}
%The idea is that the player must see it
%him/herself. Of course the program knows
%about the winning move.
%Obligatory move? (criterion 0<\prompt (<10)
\ifnum\prompt>0 \immediate\write0{Sorry \who,

obligatory move \the\prompt}\k\prompt
\else

\immediate\write0{\who, supply index
for \mark:}

\immediate\write0{Choose from: \the\set.
(0 terminates)}

\readindex
\fi
%put mark on board
\ea\xdef\csname\the\k\endcsname{\mark}
%update solutions associated with \k
\solsetk

%k=0 is stopping criterion
\ifnum\k>0 \ea\del\ea{\the\k}%
%Look ahead for obligatory move:
% Can \who gain in next turn?
\prompt0 \ea\fifo\the\set\ofif
\repeat\endgroup
\immediate\write0{Play another game?}
\read0to\newplayyorn
\if y\newplayyorn\ea\play\fi}%end Play
%Defaults
\def\player{Kees} \def\opponent{Ina}
\def\markplayer{+} \def\markopponent{o}
%And off we go
\immediate\write0{}
\immediate\write0{Board numbering}
\immediate\write0{123}
\immediate\write0{456}
\immediate\write0{789}
\immediate\write0{}
\play \bye

6 Is this all?
Especially the code in the last section has become com-
plex. Should we make it more complex? For the moment
I stopped. However, it is tempting to increase the order to
4, and to extend the play to 3 dimensions. My case rest.

7 Paradigms
The following functionalites have been encountered and a
way how to code these in TEX have been worked out.
• loop traversal in various states
• global Boolean, \global\soltrue
• maintaining an index set, deleting an element from a set
• test for an empty set
• high-level parameterization, for example a personal-

ized prompt within a state-dependent loop
• \read with a reference to a prompt through
\read0 t\ea o\csname\who\endcsname
• check on what is read is allowed.

Starting from the bare-to-the-bones prototype it is quite
something to arrive at a solution, which carries some intel-
ligence and robustness .

Have fun, and all the best.

