
132 Paradigms: Sorting Bijlage U

Paradigms: Sorting

Kees van der Laan

1 BLUe’s Design IX
Hi folks. A strong anduniquepoint of BLUe’s format sys-
tem is its indexing on the fly. Be it for a total document or
just for a chapter. One of the requisites for indexing on the
fly is the possibility to sort within TEX.

Sorting has always been an important topic in computer
science. In TEX I needed sorting on several occasions es-
pecially for sorting numbers such as citation lists, words
such as addresses, and index entries.

This note is devoted to paradigms encountered while im-
plementing and applying sorting in TEX.

Sorting can be characterized by
- the set to be sorted (numbers, word. etc.)
- the addressing of elements of the set
- the ordering for the set
- the comparison operation, and
- the exchange operation.

To do some sorting of your own please load from
blue.tex the index macros via\loadindexmacros .
Below parts have been extracted from that collection of
macros to make this note as intelligible as possible.\ea
is my shortcut for\expandafter .

2 Linear sorting
A simple sorting method is repeatedly searching for the
smallest element. In the example below the set is defined
as a def with list element tag\\ .

\def\lst{\\\ia\\\ib\\\ic}
\def\ia{314} \def\ib{1} \def\ic{27}
%
\def\dblbsl#1{\ifnum#1<\min\let\min=#1\fi}
%
\loop\ifx\empty\lst\expandafter\break\fi

\def\\{\let\\=\dblbsl\let\min=} %space
\lst%find minimum
\min%typeset minimum
{\def\\#1{\ifx#1\min \else\nx\\%

\nx#1\fi}\xdef\lst{\lst}}%
\pool%Inspired upon van der Goot’s

%Midnight macros.
\def\loop#1\pool{#1\loop#1\pool}
\def\break#1\pool{}

The coding implements the looping of the basic steps
- find minimum (via\lst , and suitable definition of

DeK’s list element tag\\)
- typeset minimum (via\min)

- delete minimum from the list (via another appropri-
ate definition of the list element tag, and the use of
\xdef .

Remark. The kludge for using\ifx instead of\ifnum
in the deletion part is necessary because TEX inserts a
\relax .

3 Sorting in an array
If we adopt array addressing in TEX for the elements to be
sorted then we can implement bubble sort in TEX too.1

3.1 Array addressing
When we think of associating values to (index) numbers—
1 → \value{1} —then we are talking about an array.
A mapping of the natural numbers on . . . for example the
natural numbers. The\value control sequence can be
implemented as follows.

\def\value#1{\csname#1\endcsname}

The writing to the array elements can be done via

\def\1{<value1>} \def\2{<value2>}...

In general this must be done via

\ea\def\csname<number>\endcsname{<valuenumber>}

3.1.1 To get the hang of it

The reader must be aware of the differences between
- the index number,〈k〉
- the counter variable\k , with the value〈k〉 as index

number
- the control sequences\<k> , k = 1,2, . . . , n, with

as replacement texts the items to be sorted.

When we have\def\3{4} \def\4{5} \def\5{6}
then
\3 yields4,
\csname\3\endcsname yields5, and
\csname\csname\3\endcsname\endcsname
yields6.

Similarly, when we have
\k3 \def\3{name} \def\name{action} then
\the\k yields3,
\csname\the\k\endcsname yieldsname, and
\csname\csname\the\k\endcsname\endcsname
yieldsaction.2 To exercise shortcut notation the last can
be denoted by\value{\value{\the\k}} .

1The above example of linear sorting can be seen as sorting in a so-called associative array.
2Confusing, but powerful.

Bijlage U Paradigms: Sorting 133

Another \csname... will execute \action , which
can be whatever you have provided as replacement text.3

4 Bubble sort
This process looks repeatedly for the biggest element
which is swapped to the end. This is done for the com-
plete array, the array of sizen − 1 et cetera. The pseudo
code reads as follows.

for n := upbdownto 2 do

begin for k := n− 1 downto 1 do

if a[n] < a[k] then

exchange(a[n], a[k]);

end;

The TEX macro reads as follows.

\def\bubblesort{%Data in defs \1, \2,...\<n>.
%Result: \1<=\2<=...<=\<n>.
{\loop\ifnum1<\n{\k\n

\loop\ifnum1<\k \advance\k-1
\cmp{\deref\k}{\deref\n}%

\ifnum\status=1 \xch\k\n\fi
\repeat}\advance\n-1

\repeat}}%end \bubblesort
%with auxiliaries
\def\deref#1{\csname\the#1\endcsname}
\let\cmp\cmpn %from blue.tex or provide
%\def\cmp#1#2{%Comparison. Yields
% \status=0, 1, 2 for =, >, <
%...}
%\def\xch#1#2{%exchange
%#1, #2 counter variables
%...}

5 Heap sort
We can organize the array as a heap. A heap is an or-
dered tree. Loosely speaking for each node the siblings
are smaller or equal than the node.

The process consists of two main steps
- creation of a heap
- sorting the heap

with a sift operation to be used in both.

In comparison with my earlier release of the code in MAPS
92.2, I adapted the notation with respect to sorting innon-
decreasingorder.4

What is a heap? A sequencea1, a2, . . . , an, is a heap if
ak ≥ a2k ∧ ak ≥ a2k+1, k = 1,2, . . . , n ÷ 2, and because
an+1 is undefined, the notation is simplified by defining
ak > an+1, k = 1,2, . . . , n.
A tree and one of its heap representations of 2,6,7,1,3,4
read

2

6 7

1 3 4

heap−→

7

6 4

3 2 1

In PASCAL-like notation the algoritm, for sorting the ar-
ray a[1:n], reads

{ heap creation}
l := n div 2 + 1;

while l 6= 1 do

begin l := l − 1; sift(a, l, n)end;

{ sorting}
r := n;

while r 6= 1 do

beginswap(a[1], a[r]);

r := r − 1; sift(a,1, r)

end;

{ sift arg1 through arg2}
j := arg1;

while 2j ≥ arg2 and

(a[j] < a[2j] or a[j] < a[2j + 1])

do beginmi := 2j + if a[2j] > a[2j + 1]

then 0 else1;

exchange(a[j], a[mi]); j := mi

end;

5.1 Purpose
Sorting values given in an array.

5.2 Input
The values are stored in the control sequences\1 , . . . ,
\<n> . The counter\n must contain the value〈n〉. The pa-
rameter for comparison,\cmp , must be\let -equal to
- \cmpn , for numerical comparison,
- \cmpw , for word comparison,

3My other uses of the\csname construction are: to let TEX accept an outer defined macro name in a replacement text, to check
whether a name has already been defined, and to mimic a switch selector.

4It is true that the reverse of the comparison operation would do, but it seemed more consistent to me to adapt the notation of the
heap concept with the smallest elements at the bottom.

134 Paradigms: Sorting Bijlage U

- \cmpaw , for word comparison obeying the ASCII
ordering, or

- a comparison macro of your own.

5.3 Output
The sorted array\1 , \2 , . . .\<n> , with
\value1 ≤ \value2 ≤ . . .≤ \value 〈n〉.
5.4 Source
%Non-descending sorting
\def\heapsort{%data in \1 to \n
\r\n\heap\ic1
{\loop\ifnum1<\r\xch\ic\r

\advance\r-1 \sift\ic\r
\repeat}}
%
\def\heap{%Transform \1..\n into heap

\lc\n\divide\lc2{}\advance\lc1
{\loop\ifnum1<\lc\advance\lc-1

\sift\lc\n\repeat}}
%
\def\sift#1#2{%#1, #2 counter variables

\jj#1\uone#2\advance\uone1 \goontrue
{\loop\jc\jj \advance\jj\jj

\ifnum\jj<\uone
\jjone\jj \advance\jjone1
\ifnum\jj<#2 \cmpval\jj\jjone

\ifnum2=\status\jj\jjone\fi\fi
\cmpval\jc\jj\ifnum2>\status\goonfalse\fi

\else\goonfalse\fi
\ifgoon\xch\jc\jj\repeat}}
%
\def\cmpval#1#2{%#1, #2 counter variables
%Result: \status= 0, 1, 2 if
%values pointed by
% #1 =, >, < #2

\ea\let\ea\aone\csname\the#1\endcsname
\ea\let\ea\atwo\csname\the#2\endcsname
\cmp\aone\atwo}

%
\def\cmpn#1#2{%#1, #2 must expand into

%numbers
%Result: \status= 0, 1, 2 if
% \val{#1} =, >, < \val{#2}.

\ifnum#1=#2\global\status0 \else
\ifnum#1>#2\global\status1 \else

\global\status2 \fi\fi}
%
\def\xch#1#2{%#1, #2 counter variables

\edef\aux{\csname\the#1\endcsname}\ea
\xdef\csname\the#1\endcsname{\csname

\the#2\endcsname}\ea
\xdef\csname\the#2\endcsname{\aux}}.

%with auxiliaries
\newcount\n\newcount\lc\newcount\r
\newcount\ic\newcount\uone
\newcount\jc\newcount\jj\newcount\jjone
\newif\ifgoon

Explanation.
\heapsort The values given in\1 ,. . .\<n> , are
sorted in non-descending order.
\heap The values given in\1 ,. . .\<n> , are rear-
ranged into a heap.
\sift The first element denoted by the first
(counter) argument has disturbed the heap. Sift re-
arranges the part of the array denoted by its two
arguments, such that the heap property holds again.
\cmpval The values denoted by the counter val-
ues, supplied as arguments, are compared.

Example(Numbers, words)

\cmpn , and \cmpw stand for compare numbers and
words. \prtn , and\prtw stand for print numbers and
words, and work the way you expect.\accdef takes care
that accents are properly defined.

\def\1{314}\def\2{1}\def\3{27}\n3
\let\cmp\cmpn\heapsort
\beginquote\prtn,\endquote
%
\def\1{ab}\def\2{c}\def\3{aa}\n3
\let\cmp\cmpaw\heapsort
\beginquote\prtw,\endquote
and
\def\1{j\ij}\def\2{ge\"urm}\def\3{gar\c con}
\def\4{\’el\‘eve}\n4
\let\cmp\cmpw {\accdef\heapsort}
\beginquote\prtw\endquote

yields within the context ofblue.tex

1, 27, 314,

aa ab c,

andélève, garc¸on, geürm, jij.

6 Quick sort
The quick sort algorithm has been discussed in many
places, The following code is borrowed from Bentley.5

procedureQSort(low,up);

if low< up then

begin

{ choose suitable median}
Swap(X[low], X[RandInt(low,up)]);

T := X[low]; M := low;

{ Invariant loop

X[low + 1..M] < T and X[M+ 1..I − 1] ≥ T }
for I := low+ 1 to updo

if X[I] < T then

beginM := M+ 1;

Swap(X[M], X[I]);

end;

{ exchange median}
Swap(X[low], X[M]);

{X[low ..M − 1] < X[M] ≤ X[M + 1..up] }
QSort(low, M− 1); QSort(M+ 1, up);

end;

5Programming Pearls, Addison-Wesley. It contains also diagrams which keep track of the invariants.

Bijlage U Paradigms: Sorting 135

6.1 Purpose
Sorting of the values given in the array\<low> , . . . ,
\<up> .

6.2 Input
The values are stored in\<low> , . . . , \<up> , with 1 ≤
low ≤ up ≤ n. The parameter for comparison,\cmp ,
must be\let -equal to
- \cmpn , for number comparison,
- \cmpw , for word comparison,
- \cmpaw ,for word comparison obeying the ASCII

ordering, or
- a comparison macro of your own.

6.3 Output
The sorted array\<low> , . . . , \<up> , with
\val 〈low〉 ≤ . . . ≤ \val 〈up〉.
6.4 Source
\def\quicksort{%Values given in
%\low,...,\up are sorted, non-descending.
%Parameters: \cmp, comparison.

\ifnum\low<\up\else\brk\fi
%\refval, a reference value selected
%at random.

\m\up\advance\m-\low%Size-1 of array part
\ifnum10<\m\rnd\multiply\m\rndval

\divide\m99 \advance\m\low \xch\low\m
\fi
\ea\let\ea\refval\csname\the\low\endcsname
\m\low\k\low\let\refvalcop\refval
{\loop\ifnum\k<\up\advance\k1

\ea\let\ea\oneqs\csname\the\k\endcsname
\cmp\refval\oneqs\ifnum1=\status

\global\advance\m1 \xch\m\k\fi
\let\refval\refvalcop

\repeat}\xch\low\m
{\up\m\advance\up-1 \quicksort}%
\low\m\advance\low1 \quicksort}

%
\def\brk#1\quicksort{\fi}

Explanation. At each level the array is partitioned into two
parts. After partitioning the left part contains values less
than the reference value and the right part contains values
greater than or equal to the reference value. Each part is
again partitioned via a recursive call of the macro. The
array is sorted when all parts are partitioned.

In the TEX coding the reference value as estimate for the
mean value is determined via a random selection of one of
the elements.6 Reid’s \rnd has been used. The random
number is mapped into the range [low : up], via the linear
transformation\low + (\up − \low) ∗ \rndval /99.7

The termination of the recursion is coded in a TEX pecu-
liar way. First, I coded the infinite loop. Then I inserted
the condition for termination with the\fi on the same
line, and not enclosing the main part of the macro. On ter-
mination the invocation\brk gobbles up all the tokens at
that level to the end, to its separator\quicksort , and
inserts its replacement text, a new\fi , to compensate for
the gobbled\fi .

6.5 Auxiliaries
Sorting is parameterized by comparison and exchanging.
Also needed is a random number generator. The latter is
not supplied here.

\def\cmpn#1#2{%#1, #2 must expand into
%numbers

%Result: \status= 0, 1, 2 if
% \val{#1} =, >, < \val{#2}.

\ifnum#1=#2\global\status0 \else
\ifnum#1>#2\global\status1 \else

\global\status2 \fi\fi}
%
\def\xch#1#2{%#1, #2 counter variables

\edef\aux{\csname\the#1\endcsname}\ea
\xdef\csname\the#1\endcsname{\csname

\the#2\endcsname}\ea
\xdef\csname\the#2\endcsname{\aux}}

6.6 Ordering
The ordering is parameterized in the ordering table.

Example(Numbers, words)

\cmpn , and \cmpw stand for compare numbers and
words. \prtn , and\prtw stand for print numbers and
words, and work the way you expect.\accdef takes care
that accents are properly defined.

\def\1{314}\def\2{1}\def\3{27}\n3
\low1\up\n\let\cmp\cmpn
\quicksort
\beginquote\prtn,\endquote
%
\def\1{ab}\def\2{c}\def\3{aa}
\def\4{\ij}\def\5{ik}\def\6{z}\def\7{a}\n7
\low1\up\n\let\cmp\cmpw
\quicksort
\beginquote\prtw,\endquote
and
\def\1{j\ij}\def\2{ge\"urm}\def\3{gar\c con}
\def\4{\’el\‘eve}\n4
\low1\up\n\let\cmp\cmpw
{\accdef\quicksort}
\beginquote\prtw.\endquote

yields similar results as with heap sorting.

7 Use
I needed sorting within TEX for indexing and for sorting
address labels.

7.1 Sorting address labels
Suppose we wish to sort addresses on the secondary key
membership number. In order to do so the index must point
to the name of the database entry and the name must point
to its membership number, that is

1 2 . . .→ \<name> x \<name> y . . .→ <no> x <no> y . . .

This can be coded as follows.

6If the array is big enough. I chose rather arbitrarily 10 as threshold.
7Note that the number is guaranteed within the range.

136 Paradigms: Sorting Bijlage U

\loadindexmacros
%
\def\lst#1#2{\advance\k1

\ea\def\csname\the\k\endcsname{#1}%
\ea\def\ea#1\gobbletono#2}

\def\gobbletono#1\no{}
\k0
\input toy.dat %The test database
\n\k %number of items
Membershipno unsorted: \1, \2, ...
%
\let\cmp\cmpn\sort

Sorted on membershipno: \1, \2, ...

The amazing thing is that we don’t have to do much extra
because the name will expand to the number, which will
be used in the comparison. I used that\no was the last el-
ement of the database entry, but that is not essential. Each
database entry consist of a triple\lst , \<name> , and
entry proper within braces.

7.1.1 Typesetting

Now we have to redirect the pointer from the name away
from the number to the complete entry, that is

1 2 . . .→\<name> 1 \<name> 2 . . .→entry 1 entry 2 . . .

This is done as follows.

\def\lst#1#2{\def#1{#2}}
\input toy.dat
\1 \2 \3 \4 \5 \6

7.2 Sorting index entries
One of the processes in preparing an index is sorting the
Index Reminders, IRs. This is again a sorting process on
secondary keys, even tertiary keys.

Given the sorting macros we just have to code the special
comparison macro in compliance with\cmpw : compare
two ‘values’ specified by\def s. Let us call this macro
\cmpir .8 Each value is composed of
- a word (action: word comparison)
- a digit (action: number comparison), and
- a page number (action: (page) number compari-

son).

The macros read as follows.

\def\cmpir#1#2{%#1, #2 defs
%Result: \status= 0, 1, 2 if
% \val{#1} =, >, < \val{#2}

\ea\ea\ea\decom\ea#1\ea;#2.}
%
\def\decom#1 !#2 #3;#4 !#5 #6.{%

\def\one{#1}\def\four{#4}\cmpaw\one\four
\ifnum0=\status%Compare second key

\ifnum#2<#5\global\status2 \else
\ifnum#2>#5\global\status1 \else

%Compare third key
\ifnum#3<#6\global\status2
\else\ifnum#3>#6\global\status1 \fi
\fi

\fi
\fi

\fi}

Explanation. I needed a two-level approach. The values
are decomposed into their components by providing them
as arguments to\decom .9 The macro picks up the com-
ponents
- the primary keys, the〈word〉
- the secondary keys, the〈digi t〉, and
- the tertiary keys, the〈page number〉.
It compares the primary keys, and if necessary succes-
sively the secondary and the tertiary keys. The word com-
parison is done via the already available macro\cmpaw .

To let this work with\sort , we have to\let -equal the
\cmp parameter to\cmpir .

8 Sorting in the mouth
Alan Jeffrey and Bernd Raichle have provided macros for
this. The following variant of the linear sorting given at
the beginning of this note is inspired upon Bernd’s ‘Quick
Sort in the Mouth,’ EuroTEX 94. The idea is that a se-
quence is split in its smallest element and the rest by an
invoke of\fifo . The rest is treated recursively as a simi-
lar sequence. Another example of (multiple) nested FIFO.

\def\fifo#1%accumulated rest
#2%smallest
#3%next

{\ifx\ofif#3 #2\ofif{#1}\fi
\ifnum#3<#2

\p{\fifo{#1{#2}}{#3}}\else
\q{\fifo{#1{#3}}{#2}}\fi}

%repeat or terminate
\def\ofif#1\fi#2\fi{\fi

\if*#1*\endsort\fi
\fifo{}#1\ofif}

%auxiliaries
\def\p#1\else#2\fi{\fi#1}
\def\q#1\fi{\fi#1}
%terminator
\def\endsort#1\ofif{\fi}
%test
\fifo{}3{123}8{1943}\ofif

To assure yourself that it is all done in the mouth\write
the test.10

However, in sorting within TEX I prefer a uniform ap-
proach not in the least parameterized over the ordering ta-
ble.

Have fun, and all the best

8Mnemonics: compare index reminders
9Mnemonics: decompose. In each comparison the defs are ‘dereferenced,’ that is their replacement texts are passed over. This is a

standard TEXnique: a triad of\ea s, and the hop-overs to the second argument.
10I don’t know how to ensure correctness. It is tricky to get the braces right. I used\tracingmacros=1 .

