
Bijlage V Paradigms: Just a little bit of PostScript 137

Paradigms: Just a little bit of PostScript

Kees van der Laan

Abstract

It is all about creating EPS—with graphics—
to be merged with (La)TEX scripts. The em-
phasis is on creating raw PostScript for sim-
ple symmetrical pictures. Asides, like incor-
porating accurate graphs of math functions,
typesetting text along curved paths, or ta-
bles set sideways, next to reverse video, clip-
ping and tiling have been addressed. A poor
man’s mftoeps approach is touched upon:
(declarative) METAFONT into (imperative)
PostScript.

1 BLUe’s Design X
Hi folks. The user’s guide which comes with BLUe’s
format system—Publishing with TEX, PWT for short—
is processedcompletelyby TEX, no other tools such as
POSTSCRIPT are needed.1 However, of late I exercised
METAFONT—well, eventually MetaPost with the help of
Jos Winnink—for graphics to be included in TEX docu-
ments, and finally embarked PostScript straightaway to
create EPS pictures, with the help of Joseph Romanovsky.

.ps

dvips, or . . .
� �

 	

.eps

MetaPost
� �

 	

.mp

.dvi

(any)TEX
� �

 	

.tex
(e)psfig

POSTSCRIPT is involuntary needed to (electronically)
paste up the graphics, and as resulting file format.2

If we come to think of graphics as

just doing the ‘right’ strokes or fills

then POSTSCRIPT provides the means for this: lines,
splines and circular arcs, to be drawn or filled.3 I use the
sidestep

METAFONT →MetaPost→ EPS

for general pictures but also for obtaining the right (con-
trol) points explicitly from a decalarative specification in
METAFONT, as shown by Escher’s knot at the end.4

P/G-script
� �

 	

.ps

dvips
� �

 	

.dvi
.eps

(any)TEX
� �

 	

.tex
(e)psfig

editor
� �

 	

With respect to graphics POSTSCRIPT can be seen as a
little language in the UNIX tradition.5 A little bit of POST-
SCRIPT adheres the 80%–20% adage: 80% of the effects
(or more) with 20% of the energy (or less).

One can with a little knowledge of POSTSCRIPT code
graphics immediately andcompletelyin POSTSCRIPT.
The more so because of the ubiquitous public domain
GhostScript previewers to verify the result, next to of
course the POSTSCRIPT laser printers.

Furthermore, text is just a special case of graphics, and
merging just a little bit of text—malenki Russians would
say—with the graphics goes equally simple at first glance.

And to end the lovesong the inclusion of accurate graphs
of mathematical functions goes well via coding these in

1Nobody knows what the future has in store, but for the moment I consider it a good thing that the PWT guide can be processed just
by TEX, well . . . with BLUe’s format.

2For exchange the.tex and (hand-coded).eps files are much better suited because of their conciseness. This can’t be beaten,
not even by Adobe’s PDF—Portable Document Format.

3PostScript II also provides for colors and processing in a network.
4Another way for arriving at the EPS code is to use Jackowski’smftoeps package or to use MetaPost.
5See Bentley’s Little languages in ‘More programming pearls—Confessions from a coder.’ Addison-Wesley.

138 Paradigms: Just a little bit of PostScript Bijlage V

POSTSCRIPT and including these as figures. (Of course
Hobby’s graph extension could be used as well, or other
advanced graphics packages.) This is illustrated by a graph
of the sine function to convey the idea.

PStricks is aboutinterfacing. Not assuming knowledge
of POSTSCRIPT. This note discusses mainlymerging. Is
about extending your TEXpertise with just a little—tsjut-
tsjut Russians would say—knowledge of POSTSCRIPT
rewarded by high returns.

Below I’ll summarize what is needed from POSTSCRIPT,
and illustrate the use of it with a few examples, introducing
en route the operators we need given the example.

2 PostScript
2.1 Processing
POSTSCRIPT comes with a user’s guide (cookbook) and
reference manual, the so-called blue and red books in
the Adobe POSTSCRIPT series. For processing POST-
SCRIPT an interpreter is needed, such as a POSTSCRIPT
laser printer or a GhostScript previewer. For inclusion in
(La)TEX I use the psfig macros.6 Goossens in his Post-
Script and (La)TEX, MAPS 92.1, nicely details about in-
clusion of PostScript.7

As with PDF I consider the post-processing capability
independentlyfrom the tool which created the POST-
SCRIPT source, very powerful and flexible.

2.2 Why writing PostScript?
History has it that POSTSCRIPT programs are not written
by humans but generated by high-level tools, such as Meta-
Post. This is understandable given the low-level nature
of POSTSCRIPT. However, it is feasible to write ‘little’
POSTSCRIPT programs where use is made of the graphic
primitives to perform the right graphic strokes, with little
effort and high gains. The red and blue books don’t pro-
vide the simplest examples—they illustrate the power of
POSTSCRIPT—the codes are frightening and might put
you off. Maybe my backside of the envelope codes will
persuade you to try some gems of your own.

But, . . . the proofing is cumbersome still, alas. This can
be counteracted by a discipline of POSTSCRIPT coding,
hopefully8.

2.3 The audience
This paper is aimed at users of (La)TEX who agree with me
that graphics has all to do with the right strokes. Once we
know those it should be a simple coding problem to draw
these strokes by POSTSCRIPT. The latter is explained

along with simple examples, which are prompted by gen-
erally required functionalities.

On the other hand, as communicated by Nicolaj Tretjakov,
this paper might not be that relevant, because people in
practice receive POSTSCRIPT files along with some rep-
resentation of a script to coerce it into a (translated) book
or so. I don’t know how to address that audience, as yet.

2.4 Documentation
The red book—the reference manual—is generally rec-
ommended, though the blue book—the tutorial and
cookbook—is also nice.9

Example(Pie chart from the blue book)

January Pie Sales

Blueberry

Cherry

Apple

Boston Cream

Other

Vanilla Cream

The invoke is essentially as follows and shows that the
codes can be used straightforwardly.10 It is no longer nec-
essary to mesh around with the picture environment or so,
to achieve the effect.

%preliminary matter
(January Pie Sales)

24 12 %... array size
[[(Blueberry) .12]

[(Cherry) .30]
[(Apple) .26]
[(Boston Cream) .16]
[(Other) .04]
[(Vanilla Cream) .12]

] 306 396%translate center to
140 %size
DrawPieChart

showpage

6Courtesy Trevor J. Darrell.
7See also the LATEX Companion.
8Well, professionally there is no other way then to resort on the high-level tools.
9I used the POSTSCRIPT I red book and this is well-suited to get the flavour. For TEX and METAFONT this is similar. To grasp

the basic ideas Knuth’s first book is a more concise survey of the main lines of thought than The TEXbook andhe METAFONTbook.
10It is not standard POSTSCRIPT. We have to construct some kind of library to use the PostScript programs from. Maybe the CTAN

as global network library? Copied on the various CD-ROMS?

Bijlage V Paradigms: Just a little bit of PostScript 139

2.4.1 PostScript FAQ

There is also a POSTSCRIPT-FAQ, consult

ftp wilma.cs.brown.edu:
pub/comp.lang.postscript .

It contains an annotated bibliography as well.

The examples from Adobe’s blue book are available on the
net.

2.5 Subset 0 from the language
POSTSCRIPT is stack-oriented. This means that opera-
tions are prescribed in polish-reverse notation, also known
as postfix notation, similar to the HP pocket calculators.
Addition—use of operatoradd—for example is notated
as follows.

2 3 add%yields 5 on the stack, 2 3 consumed

POSTSCRIPT is artificially structured via structure infor-
mation in comments, double %-ed comments. Programs
which obey the Adobe structure are called conforming and
this is usually needed for inclusion within (La)TEX, espe-
cially the BoundingBox line is required.

Example(Conforming EPS structure)

%! PS EPS
%%Title: <name>
%%Creator: <name>
%%CreationData: <date>
%%BoundingBox: <llx> <lly> <urx> <ury>
%%DocumentFonts: (atend)
%%EndComments
<prolog>
%%EndProlog
%%Page: 0 1
<page 1>
%%Page: 1 2
<page 2>
%%Trailer
<...>
%%DocumentFonts: Times-Roman ...
%%Pages: 3
%%EOF

Creating and drawing paths is done by separate operators.
For creating paths operations likemoveto are provided
while drawing goes viastroke .

0 0 moveto 0 10 lineto%create path
stroke%draw a v-line of 10pt height

Variables—names to be associated with their values—are
handled via the so-called dictionaries. The functionality
can also be obtained via procedures.

/size {10} def

The so-called literal name is preceded by a slash to distin-
guish the declaration from its invoke. The invoke is done

by just the name, also called executable name. The pro-
cedure text is surrounded by curly braces. Parameters are
absent too. The (operand) stack is used.

For graphics we have a CurrentTransformMatrix—
CTM—which maps the user space on the device space,
the printer or screen. Equally powerful is the concept of
encapsulating graphics viagsave andgrestore , that
is the graphics state is local—encapsulated—aftergsave
until grestore .

Next to the CTM POSTSCRIPT maintains the currentpoint
and currentpath.

Batagelj, MAPS 95.1—Combining TEX and
POSTSCRIPT—provides an in a nutshell overview.11 An-
other introduction is in Fokker en van Oostrum’s ‘Plaatjes
in een tekst,’ MAPS 94.2, next to a survey of drawing
software.

2.5.1 Snapshot of (graphics) commands

The following summary is borrowed from Gurari, well
. . . alittle modified.12 Its main purpose is to show that the
number of relevant graphic primitives is low. The func-
tionalities will be dealt with in the examples along the way.
For the details of the commands or the list of operators see
the red book.13

Arithmetic and math operators
〈num〉 〈num〉 mul num

〈num〉 sinenum
Path construction operators

currentpointx y
〈x〉 〈y〉 moveto

〈dx〉 〈dy〉 rmoveto
〈x〉 〈y〉 lineto

〈dx〉 〈dy〉 rlineto
〈q1x〉 〈q1y〉 〈q2x〉 〈q2y〉 〈p2x〉 〈p2y〉 curveto

〈cx〉 〈cy〉 〈r〉 〈ang1〉 〈ang2〉 arc
String operators

〈string〉 〈num〉 〈num〉 getinterval
Character and font operators

/〈 f ontname〉 findfont
〈 f ontsi ze〉 scalefont setfont

〈string〉 show
{〈body〉} 〈string〉 kshow

Graphics state operators
〈num〉 setgray

〈num〉 setlinewidth
Dictionary operators

/〈de f name〉 {〈body〉} def
Coordinate system and matrix operators

〈num〉 〈num〉 translate

11Nice are the hints to remove repeated parts from files which are generated by CorelDRAW and Mathematica, in order to reduce
the size of the automatically generated and to be included files. (The idea is to remove duplicate ‘dictionaries’ which are included with
each result.) The example of how to include graphs of math functions in a document isveryuseful. However, with respect to his first
picture I would prefer to use the inherent symmetry in the data as opposed to providing all the data.

12Gurari E.M (1994): TEX & LATEX—Drawing & Literate Programming. McGraw Hill. ISBN 0-07-025208-4.
13A complete list with functional summaries is in the red book Section 6.2 Operator summary.

140 Paradigms: Just a little bit of PostScript Bijlage V

〈num〉 〈num〉 scale
〈num〉 rotate

Relational, boolean, and bitwise operators
〈num1〉 | 〈string1〉 〈num2〉 | 〈string2〉 le bool
Control operators

〈bool〉 {〈truepart〉} {〈 f alsepart〉} ifelse
〈num〉 {〈body〉} repeat

〈 f rom〉 〈step〉 〈to〉 {〈body〉} for

With postfix notation a sentence like the following is ele-
gant, and close to the familiar input→ output.

〈in〉 〈operator〉 〈result〉
2.6 What is not allowed as EPS?
I’m not knowledgeable enough to answer that question,
nor do I know of a full-blown definition of EPS.14 For
the moment I consider EPS as some subset which works
with all interpretors, with my subset 0 in there. When one
restricts oneself to the basics of graphics, arithmetics and
similar operations then the boundary between EPS and full
POSTSCRIPT—or its various implementations—is not in
sight.

2.7 Proofing
For previewing or printing,as suchI have to include a shift
to move the picture away from the lower left corner, say

300 500 translate

2.8 Inclusion
I usually build a figure symmetrically around the origin
and then include it in my TEX document via

$$\psfig{file=<name>,height=<number><unit>}$$

A unit can bein (ch), cm, and ilks. \psfig is very
vulnerable to spaces because of TEX’s parsing. So no
spaces in there. Now and then I forget to inactivate the
translate needed while previewing. No real problem.

2.8.1 BoundingBox

Providing the right BoundingBox coordinates has all to
do with proper placement within context, the look-and-
feel. Default POSTSCRIPT assumes the origin—in user
space—at the lower left corner of the paper—in device
space.

Surround the picture by as-if lines and supply the coor-
dinates, in points as units in user space coordinates, of
the lower left corner and the upper right corner in the
BoundingBox specification. Simple is to build a picture
around its symmetry point—and let this coincide with the
origin—with as pleasing result that the horizontal posi-
tioning comes out centered, when used within math dis-
play. Vertically, I add a 10 or so extra on either side in the

BoundingBox specification, but that depends on the char-
acter of the picture.

Some preview systems can measure the BoundingBox and
allow adjustment interactively.15

2.9 Writing PostScript
A line bundle and a variant of it are introduced to show
how to create simple EPS.

2.9.1 A line bundle

How to do this in POSTSCRIPT? A line as such is simple.
First amoveto and then alineto . So a way is to cre-
ate a loop and repeatedly draw from the origin to the end
of the various lines. This can be done elegantly by using
appropriately the CTM.

%! PS EPS
%%Title: Line bundle
%%Creator: cgl
%%CreationDate: June 4 1996
%%BoundingBox: -40 -45 40 45
%%Pages: 1
%%EndProlog
%%Page: 1 1
/r 36 def
10{0 0 moveto r 0 lineto

36 rotate
}repeat stroke showpage

Explanation. The idea is that first a simple line is draw,
for example along the x-axes. What happens if after that
we rotate? Right, the mapping is changed. And what
happens if we supply thesameline after this? Indeed,
it will show up rotated. Because POSTSCRIPT is an in-
terpretive language we can realize this specification af-
ter the rotate via a loop, which for this simple case reads
10{...}repeat .16

Appropriately maintaining the CTM for symmetrical
pictures can yield simple looking POSTSCRIPT pro-
grams.

2.9.2 A flower

14Gurari has pointed to some information on the net but it looks informal to me.
15For a summary of tools to assist finding the BoundingBox coordinates see, Reckdahl K (1995): Using EPS graphics in LATEX

documents. reckdahl@leland.stanford.edu or his 1996 TUGboat tutorial.
16Do you see the variant for drawing a polygon? This duality line bundle and polygon has been used by Gabo and is about what he

called stereometry versus perimetry, the structure versus the surface

Bijlage V Paradigms: Just a little bit of PostScript 141

This exercises the use ofarc .

%! PS EPS
%%Title: Flower
%%Creator: cgl (Courtesy Papert)
%%CreationDate: June 4 1996
%%BoundingBox: -40 -45 40 45
%%Pages: 1
%%EndProlog
%%Page: 1 1
/r 36 def
10{r r moveto%begin drawing point

r 0 r 90 180 arc
currentpoint%origin
0 r r 270 360 arc
36 rotate

}repeat stroke showpage

Explanation. We have the same structure as the previous
program but the ‘line’ is now a little more elaborated: two
arcs of a circle. POSTSCRIPT provides an operator for
drawing circular arcs, called arc. The arc has(x, y) as
centre, r as radius,ang1 the angle of a vector from(x, y)

of lengthr to the first endpoint of the arc, andang2 the
angle of a vector from(x, y) of lengthr to the second end-
point of the arc.17 These arguments are expected to be on
the stack.
x y r ang1 ang2 arc

Important is to realize that arccountsits angle from (x, 0)
and that thedrawingstarts from the point on the stack

The specification of the flower in METAFONT/MetaPost
reads essentially as follows.

for k:= 1 upto 10:
draw(origin{up}..{right}(up+right){down}..

{left}origin) rotated 36k;
endfor

Explanantion. METAFONT allows for specification of the
directions18 up = (0, 1), right = (1, 0).

IMHO, with all respect the METAFONT and POST-
SCRIPT programs are similar modulo some syntactic
sugar. However, the extra possibility of specifying the di-
rections is more convenient than using control points. But
perhaps that is a matter of taste, although the handling of
control points is powerful as B´ezier himself has shown in
the past. From this I conclude that for these simple kinds
of pictures we can as well use POSTSCRIPT straightaway.

3 Some more Graphics
Example(Malbork window)

This is all about usingcurveto , especially choosing suit-
able control points.

%! PS EPS
%%Title: Malbork Window
%%Creator: cgl
%%CreationDate: May 21 1996
%%BoundingBox: -40 -40 40 40
%%Pages: 1
%%EndProlog
%%Page: 1 1
45 rotate 10 0 moveto
4{20 0 37.5 12.5 25 25 curveto

12.5 37.5 0 20 0 10 curveto
90 rotate

}repeat%inside lops next
5 0 moveto
4{5 35 35 5 0 5 curveto

90 rotate
}repeat%enclosing circle next
36 0 moveto
0 0 36 0 360 arc
stroke showpage

Explanation.translate changes the CTM, with the ef-
fect that the device coordinates are shifted. (Useful for use
of POSTSCRIPT alone out of context.)

rotate changes the CTM, and because of being an inter-
pretive language the various loop traversals map thesame
user coordinates on the rotated device coordinates.

〈number〉{. . .} repeat is a loop to be traversed
〈number〉 of times.

curveto adds a spline to the current path from the cur-
rentpoint to the last point on the stack. The first two points
are the so-called control points of the spline.19

arc adds a circular arc to the current path from the cur-
rentpoint.

The details of the arguments for the operators are nicely
documented in the red book.

Example(Escher’s impossible triangle)

This is all aboutwrongprojections. However, these kinds
of pictures are intriguing and fun. I consider them well-
suited to illustrate POSTSCRIPT’s drawing capabilities.

%! PS EPS
%%Title: Escher’s impossible triangle
%%Creator: cgl (inspired by Guy Shaw)
%%CreationDate: May 23 1996
%%BoundingBox: -40 -40 40 40
%%Pages: 1

17The arc is drawn counter clockwise.arcn draws clockwise.
18There is also a quartercircle which apart from orientation is drawn similarly.
19Much similar as in METAFONT. Choosing for the inner lop the control points in this way is borrowed from Haralambous Y (1995):

Some METAFONT techniques. TUGboat 16.1, 46–53. It is also supplied in the description ofcurveto in the red book.

142 Paradigms: Just a little bit of PostScript Bijlage V

%%EndProlog
%%Page: 1 1
3{25 34 moveto

25 -34 lineto
17 -38.2 lineto
17 20 lineto

-17.6 0 lineto
120 rotate
}repeat stroke showpage

5 points, the right stroke and a rotation or two, that’s it.
End of story.

However, it is all about finding those 5 points.

5

4

3
2

1

%! PS EPS
%%Title: Essential stroke
%%Creator: cgl (inspired by Guy Shaw)
%%CreationDate: May 23 1996
%%BoundingBox: -40 -40 40 40
%%Pages: 1
%%EndProlog
%%Page: 0 1
25 34 moveto currentpoint
0 -68 rlineto currentpoint%down

-120 rotate
25 34 lineto%preserve symmetry

120 rotate currentpoint
17 20 lineto currentpoint
-17.6 0 lineto currentpoint
%labels
/Courier findfont 8 scalefont setfont
moveto -5 -3 rmoveto (5) show
moveto 1 1 rmoveto (4) show
moveto 2 -5 rmoveto (3) show
moveto 2 0 rmoveto (2) show
moveto 2 0 rmoveto (1) show
stroke showpage

Explanation. The essential stroke figure also illustrates the
integration of text in this case digits.currentpoint
pushes the point on the stack. The lastmoveto -s pop
these coordinates up.rmoveto movesrelatively.

And what about their relationships, and what about the
minimal information to be prescribed?

Looking more closely it turns out thatonly the first point
is all that is needed. The rest is implicit to the nature of the
figure.20

%! PS EPS
%%Title: Escher’s Impossible triangle II
%%Creator: cgl
%%CreationDate: May 23 1996
%%BoundingBox: -40 -40 40 40
%%Pages: 1
%%EndProlog
%%Page: 1 1
%Parameterized over p1
/point {25 34} def%note x<y
%
3{point moveto
currentpoint neg lineto%down

-120 rotate
point lineto%preserve symmetry

120 rotate
currentpoint 2 div neg lineto
currentpoint 3 sqrt mul sub 0 lineto
120 rotate
}repeat stroke showpage

Explanation.currentpoint yields the coordinates of
the current point of the path on the stack. The other opera-
tions do what their names suggest. The temporarily change
of the CTM within the loop expresses the rotation symme-
try relation between points 1 and 3.

Example(Bentley’s polygon)

This code is all about a double loop and using the loop
variable from the stack, next to using thegsave and
grestore advantageously.

%! PS EPS
%%Title: Bentley’s double loop
%%Creator: cgl
%%CreationDate: May 30 1996
%%BoundingBox: -100 -105 100 105
%%EndProlog
10{1 1 9{100 0 moveto

gsave
36 mul rotate%loopcount*36
100 0 lineto stroke
grestore

} for
36 rotate

}repeat showpage

Explanantion.gsave andgrestore are needed to draw
locally, that is at the end the graphics state—currentpoint,
currentpath and CTM—is restored with the values at the
beginning. 1 1 9 stand for beginvalue step and endvalue of
thefor counter.

Example(Another double loop)

A set of nested polygons provide also a double loop situa-
tion.

%! PS EPS Nested pentagons
%%Title: Pentagons
%%Creator: cgl
%%CreationDate: June 17 1996
%%BoundingBox: -100 -100 100 100
%%Pages: 1

20Of course one can also think of other equivalent parameters like size and thickness.

Bijlage V Paradigms: Just a little bit of PostScript 143

%%EndProlog
%%Page: 1 1
10 10 100{dup 0 moveto

5{72 rotate
dup 0 lineto
}repeat

}for stroke showpage

Example(Polygons with splines as sides)

This generalization of polygons was introduced by Jack-
owski at EuroTEX 95. A special case of METAFONT’s
interpath functionality is shown en-passant.

%! PS EPS Nested ‘squares’
%%Title: polygon.eps II
%%Creator: cgl
%%CreationDate: June 17 1996
%%BoundingBox: -100 -100 100 100
%%Pages: 1
%%EndProlog
%%Page: 1 1
/r 100 def
/r1 {r .25 mul} def
/r3 {r .75 mul} def
25{r 0 moveto

4{r3 r3 r1 r1 0 r curveto
90 rotate
}repeat

.9 .9 scale
}repeat stroke showpage

Example(Barn window)

This is all about playing with circles and circular arcs.21

%! PS EPS
%%Title: Barn Window II
%%Creator: cgl
%%CreationDate: May 29 1996
%%BoundingBox: -45 -45 45 45
%%Pages: 1
%%EndProlog
%%Page: 1 1
/l 36 def
/r {l 22.5 sin mul} def
/m {l 22.5 cos mul} def
8{r .5 mul 0 moveto

l 0 lineto
currentpoint %begin circular arc
22.5 rotate m 0%center
r %radius
-90 90 arc
22.5 rotate

}repeat

%inner circle
/rin {r .5 mul} def
rin 0 moveto
0 0 rin 0 360 arc
%outer circle
/rout {r m add} def
rout 0 moveto
0 0 rout 0 360 arc
%extra circles
/rin {r .25 mul} def
22.5 rotate
8{m rin add 0 moveto

m 0 rin 0 360 arc
45 rotate

}repeat stroke showpage

I’m sure I’ll come back some day and look again through
this window, but then pastel colored.

Example(Baker’s inspiration)

Courtesy Woody Baker

This example is similar to Escher’s impossible triangle.
Find the essential stroke and rotate.

%! PS EPS
%%Creator: cgl (inspired by Woody Baker)
%%CreationDate: May 1996
%%BoundingBox: -80 -80 80 80
%%Pages: 1
%%EndProlog
%%Page: 1 1
4{-15 25 moveto

0 -10 rlineto
60 0 rlineto

0 -30 rlineto
10 0 rlineto

0 40 rlineto
-70 0 rlineto

0 10 rlineto
80 0 rlineto

0 -60 rlineto
-30 0 rlineto

0 10 rlineto
10 0 rlineto

%
35 -25 moveto

0 -10 rlineto
20 0 rlineto
10 10 rlineto

%
45 15 moveto
10 10 rlineto

90 rotate
}repeat stroke
%
/Courier findfont 10 scalefont setfont
-55 -75 moveto
(Courtesy Woody Baker)show
showpage

21The first example in the blue book collection provides a similar picture with gradually changing scales of grey.

144 Paradigms: Just a little bit of PostScript Bijlage V

Example(Romanovsky’s real Escher)

Grey scales can be obtained simply via〈number〉
setgray , with 〈number〉 ∈ [0, 1]. 0 denotes black and
1 is white. The idea is to construct the essential path—the
stroke denoted by a grey scale—and to use this 3 times.

4 Math graphs
In (La)TEX documents it is a problem22 how to include
accurate graphs of mathematical functions. Because of
POSTSCRIPT’s arithmetic and graphics capabilities it is
handy to use POSTSCRIPT.

Example(Sine function)

x

sin

%! PS EPS
%%Title: Sine function
%%Creator: cgl (inspired by Batagelj)
%%CreationDate: May 27 1996
%%BoundingBox: -200 -110 200 110
%%EndProlog
/Courier findfont 15 scalefont setfont
%x-axes and label
-200 0 moveto 200 0 lineto
-15 -15 rmoveto (x) show
%y-axes and label
0 -110 moveto 0 110 lineto
-35 -10 rmoveto (sin) show
%function
-180 0 moveto
-180 10 180{%from step to

dup sin 100 mul%(x, 100sin x)
lineto

}for stroke showpage

The invoke might read as follows.

$$\psfig{file=sine.eps,height=1in}$$

5 Text set along curved paths
A teaser. With the advent of scalable and rotationable out-
line fonts this is possible too.23

Example(Along a circle)

h
a

p
p

y b i r t
h

d

a
y

%! PS EPS
%%Title: Typesetting along arcs
%%Creator: cgl
%%CreationDate: June 4 1996
%%BoundingBox: -100 50 100 125
%%Pages: 1
%%EndProlog
%%Page: 1 1
/Courier findfont 10 scalefont setfont
/text (happybirthday) def
50 rotate
0 1 12{0 100 moveto

text exch 1 getinterval show
-10 rotate

}for stroke showpage

Joseph Romanovsky communicated thatkshow —kerning
(and more general positioning) under user control—is
available which allows a general def to be executed be-
tween two characters of a string.

Example(Along a spiral)

The blue book provides an example of typesetting along
a path—a quotation of Woody Allen—where the path ac-
centuates his filmmaker profession. The example below
shows a nice effect with little knowledge of POSTSCRIPT,
essentially the use ofkshow .

O

lg
a Grinev

a

m
y

c
h
a

rming

St

P
e
t
e
r
b
u

rg
 hostess

%! PS EPS
%%Title: Text along spiral
%%Creator: J.V. Romanovsky
%%CreationDate: Adapted from JVR June 96
%%BoundingBox: -100 -90 60 70
%%EndProlog
/Courier findfont 20 scalefont setfont
-100 0 moveto 50 rotate
{-10 rotate 3 0 rmoveto .98 .98 scale}

(Olga Grineva my charming
St Peterburg hostess)kshow

showpage

22Communicated by Nico Temme. He solved the problem by doing the calculations in PASCAL. For advanced manipulations
Mathematica or Mapple are generally used where the resulting EPS is pasted up in the (La)TEX script as usual.

23Disclaimer: Typesetting math along curved paths is something different.

Bijlage V Paradigms: Just a little bit of PostScript 145

Example(Seals)

The problem has been discussed by Hoenig at EuroTEX 92,
and Zlatuška at EuroTEX 95, both biased by METAFONT.
POSTSCRIPT alone is suited too with an overall simpler
process. Combining two earlier supplied examples yields
Zlatuška’s seal in principle.24

%! PS EPS
%%Title: Seal, in principle
%%Creator: cgl
%%CreationDate: June 6 1996
%%BoundingBox: -110 -45 110 100
%%Pages: 1
%%EndProlog
%%Page: 1 1
%150 650 translate
/Courier findfont 10 scalefont setfont
/text (happy postscripting to you) def
/r 100 def
gsave

90 rotate %begin orientation
0 r moveto%begin point

{-7.04 rotate 0 r moveto} text kshow
grestore%next the central Escher
3{25 34 moveto

25 -34 lineto
17 -38.2 lineto
17 20 lineto

-17.6 0 lineto
120 rotate
}repeat stroke showpage

h
a

p
p
y

p

o
s
t s c r i p t i

n
g

t
o

y
o

u

Remark. The difference of fonts in the main text and that
used by POSTSCRIPT is no longer there when POST-
SCRIPT fonts are used throughout, be it the POSTSCRIPT
version of the CM family.

Example(Gurari’s squares)

%! PS Gurari squares
%%BoundingBox: -200 -110 200 110
%%Creator: cgl
%%CreationDate: June 20 1996
%%EndProlog

/r 22 def
/square {1 1 4{0 r rlineto

90 rotate}for} def
0 0 moveto 90 rotate
50{r 0 rmoveto square

-30 rotate .9 .9 scale
}repeat stroke showpage

Example(Gurari’s ABC)

Very nice this suggestion of motion.

ABC
ABC
ABC
ABC
ABC
ABC
ABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABC
ABC
ABC
ABC
ABC
ABC
ABC

ABC
ABC
A

BC
A

BC
A

BC
A

BC

%\PS EPS
%%Title: Gurari’s ABC
%%BoundingBox: 0 -45 100 75
%%Creator: Gurari
%%CreationDate: copied June 17 1996
%%Pages: 1
%%EndComments
%%EndProlog
%%Page: 1 1
/Times-Bold findfont 45 scalefont setfont
-40 rotate
1 -.03 0{setgray

0 0 moveto
(ABC) show
3 rotate

} for
0 0 moveto -4 rotate
1 setgray (ABC) show
showpage

Example(Walking along the S-curve)

In The METAFONTbookex13.10 is about drawing over-
lapping disks along a path, the S-figure. How to do this in
POSTSCRIPT straightaway? There is no ‘point of’ a path
operator so the best we can attain is to walk along a math
function.25

%\PS Sine with overlapping disks
%%BoundingBox: -200 -110 200 110
%%Creator: cgl (METAFONTbook ex13.10)
%%CreationDate: June 17 1996
%%EndProlog
newpath
-180 10 180{dup sin 100 mul%(x, 100sin x)

24The blue book also provides a seal—Symphony No.9—but that is more complex and ipso facto requires more knowledge of POST-
SCRIPT to understand what is going on, IMHO, with all respect. To set this poster from the blue book is no more difficult than the use
of arc , however. My example gives you the feeling that you understand what is going on.

25Or specify a path explicitly of course.

146 Paradigms: Just a little bit of PostScript Bijlage V

12.5 0 360 arc
gsave 1 setgray fill grestore
stroke

}for showpage

Explanation.1 setgray fill is the erase functional-
ity, encapsulated to yield what we want.

6 Reverse video
Let us go back to the flower picture as given at the begin-
ning of this note and reuse the leaves.

Example(reverse video)

The above is obtained via

%\PS Reverse video
%%BoundingBox: -30 -35 120 35
%%Creator: cgl
%%CreationDate: Aug 1996
%%Pages: 1
%%EndProlog
%%Page: 1 1
/r 30 def
/filling {fill} def
/tile {4{r 0 moveto

0 0 r 0 90 arc
currentpoint
r r r 180 270 arc
filling
90 rotate
}repeat

} def
/frame {r neg r moveto

r 2 mul 0 rlineto
0 r -2 mul rlineto
r -2 mul 0 rlineto
closepath

} def
%
%tile
%
gsave

tile frame stroke
grestore
%
%reverse video tile
%
r 3 mul 0 translate
frame
gsave fill grestore%background
stroke
/filling{gsave 1 setgray fill

grestore}def
tile stroke showpage

Reverse video in POSTSCRIPT can be obtained via pro-
viding a black background and for the picture replace
fill by gsave 1 setgray fill grestore .

7 Tiling
Tiling is all about copies of an element, shifted and/or ro-
tated, to fill up space traditionally in the plane. Below a

leave is ‘copied’ four times and the resulting tile is ‘copied’
four times. The copying comes down to redoing the fig-
ure at the prescribed place eventually rotated. The latter
is possible by modifying the CTM viatranslate or
rotate .

Example(Tiling)

The above is obtained as follows.

%\PS Tiling and reverse video
%%BoundingBox: -45 -40 40 45
%%Creator: cgl
%%CreationDate: Aug 1996
%%Pages: 1
%%EndProlog
%%Page: 1 1
/r 20 def
/tile {4{r 0 moveto

0 0 r 0 90 arc
currentpoint
r r r 180 270 arc
fill
90 rotate
}repeat

}def
/frame {r neg r moveto

r 4 mul 0 rlineto
0 r -4 mul rlineto
r -4 mul 0 rlineto
closepath

} def
%
frame stroke%no clipping necessary
2{2{tile r 2 mul 0 translate

}repeat r -4 mul r -2 mul translate
}repeat

r r neg translate
showpage

8 Clipping
The clipping functionality is different in spirit from
METAFONT. In POSTSCRIPT we have to adjust the
frame to draw within via creating a path and clip this path,
that is make this path the drawing boundary, that is all.

Example(Clipping)

The above is obtained via

%\PS Tiling fourthree
%%BoundingBox: -100 -100 100 100
%%Creator: cgl

Bijlage V Paradigms: Just a little bit of PostScript 147

%%CreationDate: Aug 1996
%%Pages: 1
%%EndProlog
%%Page: 1 1
%300 500 translate
/a 10 def
/ha {a .5 mul} def
/tile {% rhombus + 90 rotated rhombus

ha 3 sqrt mul 0 moveto
0 ha lineto
ha 3 sqrt mul neg 0 lineto
0 ha neg lineto
closepath
ha 1 3 sqrt add mul ha 3 sqrt mul lineto
ha 2 3 sqrt add mul 0 lineto
ha 1 3 sqrt add mul ha 3 sqrt mul neg lineto
closepath

} def
/tena {a 10 mul}def
/frame {tena neg tena moveto

tena 2 mul 0 rlineto
0 tena -2 mul rlineto
tena -2 mul 0 rlineto
closepath

} def
/dotiling {

a -11 mul tena neg translate
9{gsave

11{tile a 1 3 sqrt add mul 0 translate
}repeat stroke

grestore
gsave ha 1 3 sqrt add mul dup translate
11{tile a 1 3 sqrt add mul 0 translate

}repeat stroke grestore
0 a 1 3 sqrt add mul translate

}repeat
} def
%
%tile
%
frame clip dotiling showpage

9 Tables set sideways
Another teaser is to set tables rotated. Rokicki provided
rotate macros along with hisdvips , among others. I have
borrowed the essence from his rotate macros and recast
into the following.

\def\rotate#1%stuff
#2%degrees in PS direction

{\setbox\abox=\hbox{#1}%
\adim\ht\abox\advance\adim by\dp\abox
\hbox to\adim{\vbox to\wd\abox
{\vskip\wd\abox
\special{ps: gsave

currentpoint currentpoint translate
#2 neg rotate
neg exch neg exch translate}%

\box\abox\vss}\hss}%
\special{ps: currentpoint

grestore moveto}%
}%end rotate

The point is that it is not much. Theps: is dependent on
the system still, alas.

Example(Rotated table)

The example works under UNIX with Rokicky’sdvips .

\def\data{1\cs2\rs
3\cs4 }

pre
\rotate{\framed

\btable\data}
{90}

post

pre 1
2

3
4

post

Remark. Gurari (1994) has provided some more examples
of POSTSCRIPT↔(Al)DraTEX interaction. Real interfac-
ing. Apart from portability problems it gets quite compli-
cated. For the moment I refrain and code the ‘pictures’ in
raw POSTSCRIPT assisted by METAFONT for prompt-
ing control points of those curves which can be specified
elegantly in a declarative way. And, of course, there is the
wealth of PStricks.

10 METAFONT/MetaPost user interface
Sometimes it is more natural to specify points anddirec-
tions. It is true that specifying a control point along the di-
rection can yield the same effect but the distance between
the point and its control point influences the shape.

Example(Escher’s knot)

This example is all about specifying directions.

In METAFONT the coding would read as follows.

%Escher’s Knot. June 96. cgl@rc.service.rug.nl
def openit = openwindow currentwindow

from origin to (screen_rows,screen_cols)
at (-2r,3r)enddef;

pickup pencircle scaled 1;
tracingstats:=proofing:=1; screenstrokes;
pair p[];
%parameters
r:=100; alfa=90;
%
p2:=(0,.85r); %independent from p1,3,4
p4:=(0,-.5r);
%dependent points because of symmetry
p1:=p4 rotated -120;
p3:=p4 rotated 120;
path q;
q=p1{dir alfa}..{(1,0)}p2..

{dir(-alfa)}p3..{dir(alfa-240)}p4;
draw q;
draw q rotated 120;
draw q rotated-120;
showit;
end

By the nature of the figure not only points are related but
also their directions. How to cope with this in POST-
SCRIPT? It can be done but not so elegantly, honestly
speaking it is quite cumbersome. But . . . there is a solu-
tion or two, hang on.

%! PS EPS

148 Paradigms: Just a little bit of PostScript Bijlage V

%%Title: Escher knot II
%%Creator: cgl (inspired by Knotplot)
%%CreationDate: June 1996
%%BoundingBox: -95 -95 95 95
%%Pages: 1
%%EndProlog
%%Page: 1 1
%
/angle 90 def
/r 100 def
/point {0 -.5 r mul}def
/p1 {-.25 r mul 3 sqrt mul .25 r mul moveto

currentpoint
angle sin 2 mul add exch
angle cos 2 mul add exch
-20 .85 r mul
0 .85 r mul
curveto stroke} def

/p3 { .25 r mul 3 sqrt mul .25 r mul moveto
%Control point
currentpoint
angle sin -15 mul add exch
angle cos 15 mul add exch
%Control point:
% 58.62 -.5 r mul 5 add%angle 90

0 angle -240 add cos -15 mul add
-.5 r mul angle -240 add sin -15 mul add
0 -.5 r mul
curveto stroke} def

3{p1
gsave -1 1 scale p1 grestore%reflect
p3
120 rotate

}repeat showpage

Explanation. The essential curve is split into 3 pieces:
p1,. . . p3. The first two are related by reflection. The third
must properly match. In the Columbus’s egg paragraph the
straight.eps code is given, biased by the knowledge of
the (control) points.

10.1 A teaser
More complicated is when the line is changed into a tube,
and when we have to deal with hidden lines. In META-
FONT the code could read as follows, where use is made
of intersectiontimes and of subpaths.26

Example(Escher’s doughnut)

This example is all about getting from adeclarativespeci-
fication in METAFONT to animperativeEPS code.

First the declarative METAFONT code.

%Escher Knot III. June 96.
% cgl@rc.service.rug.nl
def openit = openwindow currentwindow

from origin to (screen_rows,screen_cols)
at (-2r,3r)enddef;

pickup pencircle scaled 1;
tracingstats:=proofing:=1; screenstrokes;
numeric t, u, v, w;
pair p[]; path q[];
def assignpoints=

p2:=(0,.85r); %independent from p1,3,4
p4:=(0,-.5r);
%dependent points because of symmetry
p1:=p4 rotated -120;
p3:=p4 rotated 120;

enddef;
%
alfa=90;r:=100; assignpoints;
q1:=p1{dir alfa}..{(1,0)}p2..

{dir(-alfa)}p3..{dir(alfa-240)}p4;
%inside

r:=.75r; assignpoints;
q2:=p1{dir alfa}..{(1,0)}p2..

{dir(-alfa)}p3..{dir(alfa-240)}p4;
(t,u)= subpath (2.5,3) of q1

intersectiontimes (q2 rotated -120);
(v,w)= q2 intersectiontimes

(q1 rotated 120);
%showvariable t,u;
draw subpath (0,2.5 + t/2) of q1;
draw subpath (0,2.5 + t/2) of q1

rotated 120;
draw subpath (0,2.5 + t/2) of q1

rotated-120;
%showvariable v,w;
draw subpath (v,3) of q2;
draw subpath (v,3) of q2 rotated 120;
draw subpath (v,3) of q2 rotated-120;
showit;
end

To give the reader an impression of what MetaPost will
yield escherknotIII.eps , the imperative code, is in-
cluded.27

%! PS EPS
%%BoundingBox: -40 -31 40 43
%%Creator: MetaPost and JJW, cgl
%%CreationDate: June 17 1996
%%Pages: 1
%%EndProlog
%%Page: 1 1
3{-21.6507 12.5 moveto
-21.6507 27.74551 -13.78212 42.5003

0 42.5003 curveto
13.78212 42.5003 21.6507 27.74551

21.6507 12.5 curveto
21.6507 -0.24506 16.04897 -12.19249

6.58395 -20.3313 curveto
%
-14.3152 15.86746 moveto
-12.43301 23.58928 -7.45113 29.75021

0 29.75021 curveto
9.64748 29.75021 15.15549 19.42186

15.15549 8.75 curveto
15.15549 -2.07904 9.37823 -12.08548

0 -17.5 curveto
120 rotate
}repeat stroke showpage

As can be seen from the last code it is all about find-
ing the right (control) points and draw the strokes, as re-
marked at the beginning of this note. The difference be-
tween the declarative METAFONT specification and the

26This code works as such on my Mac with Bluesky’s PD METAFONT. For other environments build a character from it, or adapt it
for use in MetaPost, or even simpler copy the bread-and-butter EPS code which is appended at the end.

27A white lie. I have edited the file and reduced the data—and deleteddtransform , idtransform and the variousset... —
for the 6 strokes into only 2 and rotated these. METAFONT allowed me to declaratively specify the picture while MetaPost provided
me with the essential path data. Well. . . even METAFONT can be asked to provide those (control) points.

Bijlage V Paradigms: Just a little bit of PostScript 149

resulting (unedited) MetaPost code is striking. When the
last code is shown first one would say, ah. . . POSTSCRIPT
is easy just data and some strokes. The resulting code is
equivalent to Woody Baker’s code: just the right stroke
and a rotation or two.

KnotPlot on the net provides a more complicated version
where the light reflection is emulated by shades of grey.
The gzipped file is 64KB, however. A world of difference.

10.2 Columbus’ egg
Why not use METAFONT to create ‘the (control) points’
from the descriptive picture and use these in raw POST-
SCRIPT straightaway?

After assigningprecontrol -s andpostcontrol -s to
pairs and insertingshow-s, METAFONT yielded for the
simple Escher knot the data in the transcript file. A little
editing of this log file resulted in the following imperative
EPS code.

%! PS EPS
%%Title: Escher knot (mf prompted)
%%Creator: cgl
%%CreationDate: June 1996
%%BoundingBox: -80 -80 80 80
%%Pages: 1
%%EndProlog
%%Page: 1 1
3{-43.30139 25 moveto

-43.30139 55.49103 -27.56424 85.00061
0 85.00061 curveto
27.56424 85.00061 43.30139 55.49103
43.30139 25 curveto
43.30139 -5.94014 26.79497 -34.5299
0 -50 curveto

120 rotate
}repeat stroke showpage

I presume the functionality is similar to Jackowski’s
mftoeps . The above method is my Poor Man’s META-
FONT2EPS, with concise, very concise and intelligible
EPS as result.28

11 Acknowledgements
First of all Don Knuth and John Hobby thank you.

Thank you Joseph Romanovsky for showing by example
the power of POSTSCRIPT, and for your cooperation on
the METAFONT↔POSTSCRIPT duality.

Thank you Bogusław Jackowski for your ‘POSTSCRIPT
for TEXies’ at BachoTEX 96, suggesting that POST-
SCRIPT as such is beneficial for TEXies, next to your
mftoeps.

Thank you Eitan Gurari and anonymous TEXies from
whom I borrowed material, not in the least Adobe for pro-
viding POSTSCRIPT to start with.

Piet Tutelaers provided me with a copy of the PSFAQ, and
Erik Frambach traced the file with examples from the blue
book, next to KnotPlot.

As usual Jos Winnink proofed the paper and lend a help-
ing hand in procrusting towards MAPS inclusion if not for

processingescherknot.mf into escherknot.eps
via MetaPost, although I could have done without as dis-
cussed.

Finally, thank you Erik and Wietse for the various discus-
sions about TEX and METAFONT.

12 Conclusion
To code symmetrical and simple curves in raw POST-
SCRIPT is fun and yields elegant scripts and concise files.
To merge text with graphics is fun too, and the teaser to
set along curved paths can be done by POSTSCRIPT ele-
gantly. Another teaser of drawing math curves accurately
along with (La)TEX is solved also by means of POST-
SCRIPT. Powerful too is toextendthe inclusion of .eps
files at the dvi level by a little more interaction between
(La)TEX and POSTSCRIPT. Rotating a box, with as ap-
plications for example typesetting tables in landscape, is
possible in POSTSCRIPT, at the expense of system de-
pendency because of the\special -s.

Merging a little knowledge of POSTSCRIPT with
TEXpertise is powerful. PStricks concentrates oninter-
facing(La)TEX with POSTSCRIPT at the expense of bur-
dening (La)TEX too much, IMHO, with all respect. For
\rotate I interfaced too. However, for typesetting along
curved paths I would not think of interfacing via rotated
boxes or so.

Of course, people who do need advanced features or have
special wishes might better use Adobe Illustrator, Corel-
DRAW, Mathematica, or Adobe Photoshop, and not to for-
get the pleasing MetaPost.

To understand and learn TEX did take me a couple of years.
To acquaint myself with METAFONT did cost me a few
months. Learning just a little bit of POSTSCRIPT was
a matter of weeks, and when concentrating on paths and
(control) points themoveto , arc andcurveto can be
grasped on a late afternoon.

Although the blue book contains also examples of typeset-
ting text, I consider TEX unsurpassed for this. The best of
both worlds is to combine (La)TEX and POSTSCRIPT.

Maybe we should follow Adobe and extend the use of
POSTSCRIPT by PDF—or use the alternative HTML—to
facilitate WWW surfing.

13 What more?
For pictures I use a TEX controlled database with the ben-
eficial side-effect that I don’t have to worry about file sys-
tems when using pictures (tools, references and ilks) on
different machines. I would welcome a similar function-
ality for my collection of POSTSCRIPT pictures to be
used with\psfig . I hope that the examples of the blue
book next to my examples as included here—and those to

28Note that the final digits are ‘noise.’

150 Paradigms: Just a little bit of PostScript Bijlage V

come—will contribute to the.eps library29 for reuse or
inspiration.

My anthology of examples in METAFONT will emerge in
a series of notes with occasionally POSTSCRIPT alterna-
tive (hand) codings added. The first note in the series is
about tiling.

A next step is the manipulation of colors either via Meta-
Post or POSTSCRIPT directly. Jackowski uses Adobe Il-
lustrator for example to enrich interactively the systematic
EPS pictures created by METAFONT. Indeed interesting,
very interesting, but beyond my possibilities for some time
to come. Neither do I have access to color POSTSCRIPT
printers as yet, alas. My case rests.

Have fun, and all the best.

29This library was coined by Jackowski and Ry´cko at EuroTEX 94 to start with their ‘expanded stroke’, ‘removing overlap,’ and
‘updateB(ounding)B(ox)’ if not for their mf2eps package.

