
Bijlage 9
ArabTEX — Typesetting Arabic with Vowels

and Ligatures
Klaus Lagally
Universität Stuttgart, Institut für Informatik
Breitwiesenstraße 20-22, D-70565 Stuttgart
lagally@informatik.uni-stuttgart.de

abstract
We present a TEX macro package for generating the arabic

writing from a standardized ASCII input notation. It can
handle partial or full vocalization, and generates automatically

most of the common ligatures. There is limited support for
Farsi, Urdu, and Pashto. ArabTEX is compatible with Plain TEX
and also most LATEX environments; arabic and other material

can be mixed freely. For special purposes the standard
transliteration can be additionally generated.

ArabTEX uses no preprocessor and thus should be compatible
with any TEX implementation that allows dynamic loading of

additional macro files and fonts.

1 Introduction

This is a personal story. The author, interested in the arabic
language since he was a young boy, some time ago by acci-
dent found out about an evening course on Arabic at a local
school, and decided to join in. The course was designed
for people wishing to visit an arabic country with some
knowledge of Arabic, and as the teacher would not recom-
mend any suitable and easily affordable textbook for that
purpose, he handed out his own handwritten notes. This
intrigued the author, and so he bought an arabic grammar
book from a renowned publisher [Fischer87]. Upon closer
inspection the arabic examples looked somewhat strange,
and after contacting the author of the book it turned out that
the latter had added the vowel signs to the arabic examples
on the printing plates by hand!

This came as a great surprise, especially when consider-
ing the fact that the underlying printed arabic text looked
beautiful. Apparently there remained some unsolved prob-
lems in the printers’ business, and knowing the power of
TEX[Knuth84], the author decided to try doing something
about it.

The result of that effort is now called ArabTEX, a system
consisting of a large macro package and several fonts.

2 Design goals
The typical user of ArabTEX, as we imagine her/him,

knows some Arabic,
is interested in high quality writing,
has little money to spare,
cannot afford specialized equipment,
is willing to learn some simple rules, but:
is not, and is not willing to become, a TEX expert.

This description fits well onto several linguists we know.
Alas, not every one of them can even afford a simple PC.

From this projected user profile follow some require-
ments for the system:

it should be inexpensive,
it should not require specialized equipment,
it should be easily portable,
it should be sufficiently powerful to generate any
reasonable arabic text with high quality,
it should, after some training, be usable by a person who
is not a computer expert.

However,

it need not be extremely efficient,
it need not support everyday office use,
it need not be interactive.

As it happens, our starting point was TEX (in fact,
LATEX[Lamport86]), and we noticed that there are two quite
different populations of TEX users:

the experts, in full control of all specialized features,
constantly finding new applications, and
the everyday users, getting their work done by filling in
some forms designed by a expert, and letting TEX do the
rest.

Our hypothetical user definitely belongs to the second cat-
egory. Therefore, for him it is extremely important to have
a convenient user interface. Devising such an interface
turned out to be a major task.

108 MAPS

ArabTEX — Typesetting Arabic with Vowels and Ligatures Bijlage 9

3 Characteristics of the Arabic script

The arabic script, like the scripts for all semitic languages,
runs from right to left. This fact, whereas leading to some
complications in connection with line-breaking whenever
we want to mix arabic and non-arabic texts, turned out
to be an absolutely minor problem in comparison with the
fact that the arabic script is a cursive style, extremely well
adapted to hand-writing. As far as we know, this has al-
ways been so [Endress82b], and contrary to common be-
lief the script is very easy to write; even a motivated be-
ginner can acquire a fair hand-writing style within a few
weeks. Calligraphic excellence, of course, is a different
matter [Schimmel70].

In a cursive hand, we do not assemble character after
character on a common baseline, but try to join adjacent let-
ters into a softly flowing curve. This makes for ease of writ-
ing, and also for aesthetic beauty, but has the consequence
that the script, although still arranging the individual words
in a horizontal sequence, is essentially two-dimensional.
Another consequence is that the form of a letter depends on
the context, and if adjacent letters are combined into ligat-
ures a surprising manifold of different forms may emerge.
Most of these are not mandatory, but their omission will
lead to a serious loss of quality that can easily be noticed
even by an outsider, and quality has always been considered
very important.

A script of that characteristic is not very convenient to
print, and indeed the arabic script has resisted mechan-
ization for a long time [Endress82a]. The first attempts
to print Arabic with movable type were undertaken about
1500 A.D., surprisingly in central Europe, but the printing
tradition of Arabic seriously started in1727 when the “Ot-
toman printing agency” in Istanbul was founded. It had
the types made in the Netherlands where the technology
existed, and for several decades only official documents
and scientific works were allowed to be printed. Religious
works like the Qur’an and its commentaries still were re-
produced by hand-writing, and later by lithography from
hand-written originals; thus the risk of misprints in the
Holy Scriptures was avoided. A second official printing
agency was founded1821 in Cairo; others followed, and in
1906 a new typeface standard was adopted, with remark-
ably good results, that is still in use today.

Of the several different writing styles that exist, Naskhi
was adopted for printing as it is very easily readable, and
mostly adheres to the baseline. Still, even printing Naskhi
is a formidable task; whereas a european printer’s box con-
tains less than100 different letter forms including capitals,
digits, and special characters, you need far more than500
different forms for good quality arabic printing.

The situation improved in the1970’s when photo-
typesetting equipment became available and the first

computer programs to typeset Arabic were developped
[MacKay77]. Now also other writing styles like Nasta‘liq,
as used mainly in Iran and the adjacent countries, could
be handled, and many new typefaces, e.g. for newspapers,
were developped. But you can still find headlines which
have obviously been reproduced from a hand-written ori-
ginal. The calligrapher’s profession is still alive (see, e.g.,
[Hāšim80]).

Even if the technology for printing arabic texts
nowadays exists, some problems remain. In the Arabic
language, as in all semitic languages, the main information
resides in the consonants and the long vowels, and usually
only these are written explicitly. Short vowels, the doub-
ling of a consonant, and the like are either not indicated at
all or expressed by diacritical marks placed above or below
the characters. A native speaker generally does not need
this additional information as he can deduce it from the
context; it is only required when introducing new words,
for resolving ambiguities, and in religious texts where the
exact pronunciation is considered important. Considering
the already very large number of different letter forms in
a printer’s box, also storing all the possible combinations
would be prohibitively expensive, and thus manual correc-
tions are necessary. This is awkward and expensive, so it is
avoided whenever possible, and thus the religious texts we
have seen all have been reproduced from manuscripts.

3.1 Transcription and Transliteration
If we want to generate the arabic writing of a given text
automatically, we have to denote the text in a way that
can readily be processed by our computer. There exists
no standard suitable for our purpose, so we have to in-
vent one; and since linguists always had related problems
and also are among our prospective users, we try to imitate
their solutions as closely as possible. In this context there
exist two concepts that are closely related (and therefore
frequently confused): transcription and transliteration.

“Transcription” means: representing thesoundsof the
given language as closely as possible. This can even be
done in the language itself, e.g., transcribing the sound of
the english word “enough” as “enuff”; on the other hand
there exists a language independent standard, the Interna-
tional Phonetic Alphabet.

“Transliteration” on the other hand means: representing
the writing of the given language by using a different set
of characters. In theory, just a unique representation is
needed; in practice it is also required that the translitera-
tion be easily readable, and also give some indication of the
sounds. Therefore some compromises are usually made,
with the consequence that deducing the writing from the
transliteration requires some knowledge of the language in
question.

For Arabic and some other languages using the arabic

Voorjaar 1998 109

Bijlage 9 Klaus Lagally

script, there exist two nearly identical international stand-
ards [DIN31635, ISO/R233] for transliteration in the given
loose sense. As there are more arabic letters than in the
Latin alphabet, these conventions make heavy use of dia-
critical marks, and so we cannot use them directly for our
purpose.

3.2 Input notation
If we want to typeset arabic texts with TEX, we have two
possibilities:

either have a preprocessor transform our input text into
some intermediate notation that can be processed by
TEX,
or enhancing the power of TEX by adding suitable
macros so that it can process our input text directly.

The first possibility is extremely flexible, as far as the
possible input codings are concerned, and can be made
very efficient. It has been used in some existing systems,
e.g. ScholarTEX [Haralambous91]. However, every user
now needs a version of the preprocessor tailored to her/his
computer system and cooperating well with the local TEX
implementation. Thus we may run into portability and
maintenance problems, and possibly a complicated install-
ation procedure.

The second possibility, which we adopted, by itself is as
portable as TEX itself is; but, writing the needed algorithms
in TEX macro language is no easy task, and the macros
might not run as efficiently as a preprocessor system. Like
everywhere, here also is a tradeoff between generality and
speed.

If, as we did, we choose the macro solution then TEX
must be able to read our input notation directly, therefore
we should better use only the standard7-bit ASCII char-
acters (there are extensions to TEX using 8-bit characters
but these are in no way standardised so we could run into
severe compatibility problems). We want to keep the input
notation easily readable, but we have the problem that we
need about30 different letters, and some of them sound
very much alike. Even when also using the capital letters
for coding (Arabic needs no capitals), we could not find a
one-to-one correspondence between ASCII characters and
arabic sounds that is easy to read and remember.

The solution we finally found was to use both one-
character and two-character encodings, and to adhere
closely to the standard transliteration. The rules are
simple:

whenever the transliteration uses just a single letter, we
also use that letter;
whenever the transliteration uses a letter with a
diacritical mark, we use the same letter andprecedeit

with the punctuation mark most closely resembling the
diacritic.

This is easily remembered, fairly readable, and works well
because punctuation marks (except hyphen) never occur
within a word.

Using this coding scheme we get an additional bonus:
if, for some reason, we want to also typeset the standard
transliteration of an arabic word, we have to code the dia-
critical marks used; and whereas this can be done in TEX
using existing commands, these look awkward and are not
easy to learn and remember. On the other hand it turned
out not to be too difficult to derive the transliteration from
our coding scheme, and so we can use it for both purposes,
thereby avoiding the danger of constantly confusing two
closely related, but different, notations.

In fact, the description we gave is somewhat oversimpli-
fied. There are some (fortunately rare) exceptions to the
transliteration rules, and sometimes words written differ-
ently are transcribed identically, so in these cases we have
to code additional information.

4 Processing Arabic Text
In the following we give a general overview of the tasks
our system has to perform when typesetting Arabic. We
discuss this in the context of a simplified model: viz., that
a text as seen by TEX is a sequence of paragraphs, each
of which is a sequence of words. TEX will transform each
word into an internal representation and will arrange these
word images into lines. The sequence of lines thus gener-
ated will be broken up into pages which will be sent to a
device-independent output file, later to be viewed or prin-
ted by a device-dependent driver program. There is indeed
much more to it but the details are not relevant to our ex-
position.

4.1 Overall structure: Quotations, Paragraphs
If we want to typeset a document containing arabic text, we
will distinguish two different cases:

short arabic quotations inside a line of text in some
european language,
longer arabic passages consisting of one or several
paragraphs.

An in-line quotation is handled as a whole. We process the
arabic words in reverse order, one word at a time, and insert
the results into the normal output. This could lead to prob-
lems if a quotation would be split across a line boundary,
because in that case the two parts should be individually
reversed. We ought to do the line-breaking first and the
reversal afterwards, but we know of no easy way of doing

110 MAPS

ArabTEX — Typesetting Arabic with Vowels and Ligatures Bijlage 9

that with TEX. To handle this problem, an extension of TEX,
TEX–XET, has been proposed [Knuth and MacKay87], but
it is not generally available, and also not compatible with
the standard printer driver programs. So we have to forbid
line-breaking within a quotation, and for technical reasons
quotations have to be very short anyway.

Longer arabic passages are handled differently. Here
we process the individual words in their natural order, ar-
range the results in reverse order, and do the line-breaking
ourselves. Inside an arabic paragraph we can again have
insertions, e.g., short quotations (now of non-arabic text),
or even in-line mathematical formulas. For the same reas-
ons as above, we have again to forbid line-breaks inside an
insertion.

In both cases we have to take care of the fact that num-
bers in Arabic are written like in the european languages,
i.e., the sequence of digits is not reversed. We could have
put the responsibility for indicating what is considered to
be a number on the user; however we decided just to define
a number as a sequence of characters starting with a digit
and ending with a space, and to typeset this sequence in the
natural order.

4.2 Numbers, Words, Subwords
As we saw, every arabic word or number is processed in-
dividually, and the result is a description of its graphical
representation given in terms of symbols from a given font
arranged in a two-dimensional pattern. There is no unique
correspondence between these symbols and arabic charac-
ters; a character image might be built up from several sym-
bols, and it also sometimes happens that a symbol repres-
ents more than one character. The reason behind this is that
the arabic characters may be collected into several classes
whose members are closely related and differ only in a few
features that can be separated out. Fortunately the same is
true for the ligatures, and we can also handle the vocaliz-
ation by the same mechanism, so that a single font of less
than256 characters is sufficient for expressing a much lar-
ger set of graphical symbols and combinations.

When we want to typeset a number in the arabic script,
we just arrange the isolated graphical symbols correspond-
ing to the digits from left to right and we are done.

Typesetting a word of text is more involved. Logically, a
written word consists of a sequence of character images
connected to each other as far as possible, and possibly
changing their shape depending on the context. In addi-
tion, these character images may carry diacritical marks.
Not all characters can be joined to their successors (prob-
ably because the writing would become ambiguous other-
wise), and thus we can consider a word being a sequence
of subwords, whose characters are all connected. To each
subword corresponds a graphical representation, and these
are arranged side by side. In this step they are possibly dis-

placed vertically such that their last (i.e. leftmost) charac-
ter has its normal position on the baseline, and horizontally
such that their spacing looks pleasant.

�
è �PA&

�
Ôg� �ð A

�
m�

Figure 1. Character assembly with components shown.

4.3 Characters, ties, diacritics
Depending on its position in a subword, a character might
take on one of several shapes: the isolated, initial, medial,
and final shape. This forms might still be modified if the
character enters into a ligature. Fortunately, as far as ligat-
ures are concerned all characters of a class perform alike,
thus the number of different cases, although large, remains
manageable.

When we process a word, we perform the following
steps:

we sequentially process the input representation to break
it up into a sequence of individual characters, each with
accompanying diacritical information;
we process this sequence in reverse order to determine
the shape of each character depending on its position in
the subword and on the surrounding characters;
starting on the baseline, we position these character
shapes so that they join smoothly, either directly or by
means of connecting strokes. To each character, we add
the appropriate diacritical marks (there may be none or
even more than one per character). For an example, see
Figure1.
Whenever the next character considered (this is the
preceding one, when writing by hand!) cannot be joined
to its logical successor, we have reached a subword
boundary; we reposition this character so it will again
sit on the baseline, and add suitable spacing.

The resulting graphical representation of the word is passed
back to the caller to be inserted into the output.

5 User Interface
In the following we shall only describe the main fea-
tures; for more details, see the ArabTEX documentation
[Lagally92].

Voorjaar 1998 111

Bijlage 9 Klaus Lagally

5.1 Activating ArabTEX
To use the ArabTEX package with a file to be processed
by Plain TEX, load it via\input arabtex; with LATEX, in-
cludearabtex as a document style option. In both cases,
several additional files and the default font will be installed.

5.2 Mode control
As there are several language-dependent writing conven-
tions, you have to select a language by one of the com-
mands\setarab, \setfarsi, \seturdu, \setpashto,
or \setverb (no special processing in this case).

There are three different modes of handling short vow-
els:

\vocalize: short vowels written in the input will be
indicated in the output by diacritical marks;
\fullvocalize: also the absence of a short vowel will
be indicated;
\novocalize: short vowels will show up in the
transliteration, but will be omitted in the arabic writing.
You can locally override this feature.

By \arabtrue, \arabfalse, \transtrue,
\transfalse you can switch on and off the generation of
the arabic writing and/or the standard transliteration. By
default, the arabic writing is on, and the transliteration is
off.

Bold-face can be selected by\setbold; \setnormal
will revert to normal.

5.3 Arabic text
Short arabic quotations in normal text are included in angle
brackets. These thus have a special significance (outside
of mathematical mode) and can no more be used for other
purposes, e.g., for normal text or in local macros. This
special behaviour is switched on by language selection, and
can be switched off again by\setnormal.

An arabic paragraph is started by the com-
mand\begin{arabtext} and ends with\end{arabtext}.
This looks like, and nearly operates like, a LATEX envir-
onment even when working with Plain TEX. However,
neither displayed mathematical text nor other LATEX
environments may be nested in an arabic paragraph.

Inside an arabic paragraph we can have non-arabic quo-
tations delimited by angle brackets, and in-line mathemat-
ical formulas delimited by single dollar signs. These inser-
tions must fit on one output line.

5.4 Input coding
The input notation, the arabic writing in the isolated form,
and the transliteration of the characters used for Arabic and
Persian are given in Table1. For Urdu, Pashto, and for

Table 1. Coding of arabic characters

a @ a b H. b p H� p t �H t

_t �H t
¯

ˆg ` ǧ .h h h. _h p h
˘

c
h c ˆc x č ,c

�h ć d X d

_d
	X d

¯
r P r z R z ˆz T ž

s � s ˆs � š .s � s. .d � d.

.t t. .z ¤ z. ‘ ¨ ↪ .g
	̈

ġ

f ò f q ô q v ö v k ¼ k

g À g l È l m Ð m n 	à n

h è h w ð w y ø
 y T
�è t

special purposes there are some additional codings. Note
also the following:

<T> is tah marbouta, <N> is tanwin, <Y> is alif
maqsoura.
<A>, <I>, <U> denote the long vowels,<a>, <i>,
<u> the short vowels if required.
<’> (right quote) ishamza(glottal stop). After
\setarab, its carrier will be determined by the context
according to the fullhamzarules, otherwise by a
following short vowel.
<’A> generatesmadda.
Doubled consonants are written twice (shadda).
<|> will break unwanted ligatures,<-> joins two words
and will only show up in the transliteration, and<-->
will elongate the connection between two adjacent
letters (kashida).
The definite article is always written<al-> (with
hyphen), even if it precedes a (double) “sun letter”.

5.5 Special features
For Farsi, Urdu, Pashto and some other languages using the
arabic script, the coding conventions are slightly different,
and not described here. Furthermore, the language-specific
processing may be locally overridden, and there is also a
verbatim mode capable of representing unusual or archaic
ways of writing. Mode-changing commands may also oc-
cur inside an arabic paragraph thus allowing local mode
changes.

112 MAPS

ArabTEX — Typesetting Arabic with Vowels and Ligatures Bijlage 9

6 Implementation

The ArabTEX system consists of a large number of mac-
ros, and their interaction is surprisingly complex. They are
grouped into several packages, each devoted to a separate
task. As ArabTEX can be considered a translator, we im-
itate the usual modularization of a compiler. In that view,
ArabTEX consists of a Driver Module calling a number of
auxiliary modules for specialized tasks, and finally passing
the output back to the normal TEX paragraph mechanism.
Thus arabic text can also appear inside most LATEX envir-
onments, including moving arguments. However, LATEX is
no prerequisite for running ArabTEX.

6.1 The Driver Module
The Driver Module,arabtex.sty, is loaded by LATEX or
by a small Loader Module,arabtex.tex, when using
Plain TEX. The latter module simulates the (few) LATEX
features used by ArabTEX.

The Driver Module, when executed, defines and ini-
tializes some common variables and loads the remaining
files constituting ArabTEX. It also implements the mode-
changing commands, and contains several local submod-
ules:

the Insertion Processor for arabic quotations,
the Paragraph Processor for arabic paragraphs,
the Output Processor,
the Word Processor.

Both the Insertion Processor and the Paragraph Processor
pass single arabic words to the Word Processor to generate
the graphical representation (and/or possibly the transliter-
ation) and process the resulting output further.

The Insertion Processor breaks up short quotations into
individual words and feeds both the resulting arabic rep-
resentation and the transliteration into the normal output
stream.

The Paragraph Processor also breaks up the input into in-
dividual words; the output of the Word Processor, however,
is now handled differently. The transliteration, if generated,
is fed into the normal output stream; the arabic representa-
tion is passed to the Output Processor.

The Output Processor lines up the arabic representations
from right to left in a local buffer. Whenever a line is com-
pleted, it is interleaved with the normal output, if any. At
the end of an arabic paragraph, the buffer is flushed, and
the paragraph is finished by the normal TEX paragraphing
mechanism. For an example, see Figure4.

The Word Processor passes the input to the Scanner
Module, ascan.sty, to generate a standardized internal
representation independent of the external coding. This in-
ternal representation is then passed to the Transliteration

Module,atrans.sty, if the transliteration is wanted. Oth-
erwise, or additionally, it is passed to the Parser Module,
aparse.sty, to isolate the individual graphical compon-
ents. The output of the Parser Module is further processed
by the Assembly Module,awrite.sty, to generate the ar-
abic representation.

6.2 The Scanner Module
The main task of the Scanner Module is to break up the
input stream into tokens denoting individual arabic charac-
ters; should the input notation be changed, then only the
Scanner Module would have to be adapted accordingly.
There is one case handled in a special way: forhamzathe
character preceding it is repeated after it to ease further pro-
cessing.

6.3 The Transliteration Module
This module has to transform the sequence of tokens into
the external representation of the standard transliteration.
As the transliteration does not always follow the arabic
writing closely, some special cases have to be considered,
e.g., in connection with endings and with the definite art-
icle whose spelling depends on the first consonant of the
following word. Also sometimes an initial vowel has to be
suppressed (wasla).

ǧuh. ā wa-h. imāruhu
↩atā s.adı̄qun ↩il ā ǧuh. ā yat.lubu minhu h. imārahu li-
yarkabahu f¯ı safratin qas. ı̄ratin wa-qāla lahu: sawfa↩u-
↪̄ıduhu ↩ilayka fı̄ ’l-masā↩i , wa-↩adfahu laka ↩uǧratan.
fa-qāla ǧuh. ā: ↩anā ↩āsifun ǧiddan ↩annı̄ lā ↩astat.ı̄ ↪u ↩an
↩uh. aqqiqa laka raġbataka, fa-’lh. imāru laysa hun¯a ’l-
yawma. wa-qabla↩an yutimmu ˇguh. ā kalāmahu bada↩a ’l-
h. imāru yanhaqu f¯ı ’s. t.ablihi. fa-qāla lahu s.adı̄quhu: ↩innı̄
↩asma↪u h. imāraka yā ǧuh. ā yanhaqu. fa-q¯ala lahu ǧuh. ā-
: ġarı̄bun ↩amruka yā s.adı̄qı̄! ↩atus.addiqu ’l-h. imāra wa-
tukad

¯
d
¯

ibunı̄?

Figure 2. Arabic transliteration.

6.4 The Parser Module
The Parser Module has to break up the token sequence
into a backward sequence of “writing syllables”. A “writ-
ing syllable” is not to be confused with a syllable in the
usual sense, but consists of a single consonant or long
vowel with additional diacritical information denoting e.g.,
a short vowel, consonant doubling,tanwin and hamza.
Whereas the basic algorithm is straightforward, there is a
surprisingly large number of special cases since the various
languages supported by ArabTEX have different notational
conventions, and there are also some options (not described
here) to locally modify the writing. A typical example is

Voorjaar 1998 113

Bijlage 9 Klaus Lagally

the handling ofhamza, the glottal stop. Whereas denoting
a distinctive sound, it is not considered a letter, and thus
a carrier for it has to be determined which depends on the
context in a rather complicated way.

�è �PA�Ôg� �ð A�m
�c

�è� �Q
	® �� ú

	̄
�

�é�J.
�
»Q��
Ë�

�è �P A�Ôg� �é 	JÓ� �I.
�
Ê¢��
 A�m

�c ú
�
Í@�

�
õK
Y�

�� ú
��G
�
@

: �é
�
Ë
�
ÈA
��̄ �ð �è�

�Q�
��
��̄

. ��è �Qc
�
@
�
½
�
Ë �é

�	̄ X
�
@ �ð , Z� A ��

�ÜÏ@ ú

	̄
�

�
½J

�
Ë @�

�è �YJ
«�
�
@

�
òñ ��

: A�m
�c �
ÈA ��®

�	̄

, �½��J�J.
	« �P

�
½
�
Ë

�
õ
���® �k

�
@ 	à

�
@ �©J
¢�

��J�
�
@ B

�
B ú

��	G
�
@ @

��Yg.�
�
ó��

�
@ A�	K

�
@

. �Ðñ�J
Ë @ A
�	J �ë ���

�
Ë �PA �Òm�

Ì'A
�	̄

. é�Ê�J.
�
¢�@ ú

	̄
�

�
õ�î 	D�K
 �PA �Òm�

Ì' @
�
@ �Y�K.

�é�ÓC
�
C
�
¿ A�m

�c ��Õ �æ�
�K
 	à

�
@
�
ÉJ.

��̄ �ð
: �é ��®K
Y�

�� �é
�
Ë
�
ÈA ��®

�	̄

. �õ�î 	D�K
 A�m
�c A�K

�
¼ �PA�Ôg� �© �ÜÞ�

�
@ ú

��	G @�
: A�m
�c �é

�
Ë
�
ÈA ��®

�	̄

? ú

	æ�
�K.
��	Y
�
º��K �ð �PA �Òm�

Ì' @
�
ô
��Y ��

���
�
@ ! ù

�®� K
Y�
�� A�K

�
¼ �QÓ

�
@ �I. K
Q�

�	«

Figure 3. Vocalized Arabic text.

6.5 The Assembly Module
Finally, from the reversed sequence of “writing syllables”
produced by the Parser Module, the graphical representa-
tion is determined. Every “writing syllable” consists of a
basic character and diacritical information. Every character
belongs to a character class, represented by a “skeleton”,
and is locally identified by a “modifier” (usually a pattern
of dots).

The further processing of a “writing syllable” proceeds
in several steps:

The skeleton and the modifier are determined.
Depending on context, the appropriate joining form
of the skeleton (isolated, initial, medial, final) is
determined.
Also depending on the context, the skeleton may
take part in a ligature and thus get a different shape.
Generally, and with very few exceptions, ligature
generation is optional; and since it is also complicated
(though not difficult), it has been delegated to a separate
Ligature Module,aligs.sty.

After the definite form of the skeleton has been
determined, it is positioned in the output. If it is
an isolated or final shape, it is generally put on the
baseline with suitable spacing to its left neighbour, if
any. Otherwise it is joined to its left neighbour, either
directly or by means of a connecting stroke whose
form depends on the partners. As the connection point
of its left neighbour need not be on the baseline, the
skeleton possibly must be vertically adjusted, and a new
connection point for its right neighbour, if that exists,
will be determined.
After positioning the skeleton, the modifier will be
added to identify the character in question.
Finally, the diacritical information is added.

6.6 The Ligature Module
This module is called by the Assembly Module for each
character. It will receive as input information a description
of a skeleton shape and the shape of its right neighbour, and
will return a possibly changed skeleton shape, a possibly
changed shape of the right neighbour, and frequently also a
connecting stroke. With the exception of very few, but im-
portant, cases where ligatures are mandatory, the Ligature
Module might return its input information unchanged, and
indeed there is an option to switch most ligatures off. How-
ever, the art of forming ligatures evolved gradually during
many centuries of writing, and their inclusion will greatly
improve the quality of the result; and whereas a good many
cases are handled already, there is still room for improve-
ment.

7 Experiences
One of the reasons for implementing ArabTEX this way
was to test the power of TEX on a large example. We found
that it could be done, but we drastically underestimated the
amount of work involved. The techniques used in the de-
scribed modules are comparatively straightforward; even
the full power of context-free language analysis is rarely
needed. However, due to the great number of special cases
the complexity is considerable, and the macro technique
used is extremely vulnerable to trivial coding errors whose
effects will propagate throughout the system very quickly,
and frequently will lead to very puzzling results. Thus sys-
tematic structuring is a must, and a complete redesign after
having a working prototype payed off very well and led to
a considerable increase of stability. There are still some
errors in the system, but they seem to be well hidden, and
show up at a surprisingly low rate.

Furter plans, besides correcting errors, are: designing a
Nasta‘liq font that looks better for Persian, and generally
improving on the still very rudimentary support for non-
arabic languages using the same script.

114 MAPS

ArabTEX — Typesetting Arabic with Vowels and Ligatures Bijlage 9

�è �P A�Ôg� �ð A�m
�c ǧuh. ā wa-h. imāruhu

↩atā s.adı̄qun ↩il ā ǧuh. ā yat.lubu minhu h. imārahu li-
yarkabahu f¯ı safratin
�è� �Q
	® �� ú

	̄
�

�é�J.
�
»Q��
Ë�

�è �PA�Ôg� �é 	JÓ� �I.
�
Ê¢��
 A�m

�c ú
�
Í@�

�
õK
Y�

�� ú
��G
�
@

qas. ı̄ratin wa-qāla lahu:
: �é
�
Ë
�
ÈA
��̄ �ð �è�

�Q�
��
��̄

sawfa ↩u↪̄ıduhu ↩ilayka fı̄ ’l-masā↩i , wa-↩adfahu laka
↩uǧratan.

. ��è �Qc
�
@
�
½
�
Ë �é

�	̄ X
�
@ �ð , Z� A ��

�ÜÏ@ ú

	̄
�

�
½J

�
Ë @�

�è �YJ
«�
�
@

�
òñ ��

fa-qāla ǧuh. ā:
: A�m
�c �
ÈA ��®

�	̄
↩anā ↩āsifun ǧiddan ↩annı̄ lā ↩astat.ı̄ ↪u ↩an ↩uh. aqqiqa laka
raġbataka,

, �½��J�J.
	« �P

�
½
�
Ë

�
õ
���® �k

�
@ 	à

�
@ �©J
¢�

��J�
�
@ B

�
B ú

��	G
�
@ @

��Yg.�
�
ó��

�
@ A�	K

�
@

fa-’lh. imāru laysa hun¯a ’l-yawma.
. �Ðñ�J
Ë @ A

�	J �ë ���

�
Ë �PA �Òm�

Ì'A
�	̄

wa-qabla ↩an yutimmu ˇguh. ā kalāmahu bada↩a ’l-h. imāru
yanhaqu f¯ı ’s. t.ablihi.

. é�Ê�J.
�
¢�@ ú

	̄
�

�
õ�î 	D�K
 �PA �Òm�

Ì' @
�
@ �Y�K.

�é�ÓC
�
C
�
¿ A�m

�c ��Õ�æ�
�K
 	à

�
@
�
ÉJ.

��̄ �ð
fa-qāla lahu s.adı̄quhu:

: �é ��®K
Y�
�� �é

�
Ë
�
ÈA ��®

�	̄
↩innı̄ ↩asma↪u h. imāraka yā ǧuh. ā yanhaqu.

. �õ�î 	D�K
 A�m
�c A�K

�
¼ �PA�Ôg� �© �ÜÞ�

�
@ ú

��	G @�
fa-qāla lahuǧuh. ā:

: A�m
�c �é

�
Ë
�
ÈA ��®

�	̄
ġarı̄bun ↩amruka yā s.adı̄qı̄! ↩atus.addiqu ’l-h. imāra wa-
tukad

¯
d
¯

ibunı̄?

? ú

	æ�
�K.
��	Y
�
º��K �ð �PA �Òm�

Ì' @
�
ô
��Y ��

���
�
@ ! ù

�®� K
Y�
�� A�K

�
¼ �QÓ

�
@ �I. K
Q�

�	«

Figure 4. Arabic text with transliteration.

Acknowledgments
The development of ArabTeX would not have been pos-
sible without the assistance of many people. Apart from my
local team, helpful advice came among others from Ivan
Derzhansky, Wolfdietrich Fischer, Ahmed El-Hadi, Ab-
delsalam Heddaya, Iqbal Khan, Tom Koornwinder, Eber-
hard Krueger, Asif Lakehsar, Jan Lodder, Richard Lorch,
Eberhard Mattes, and Bernd Raichle. I also have to thank
the many users who sent bug reports and comments.

References
[DIN31635] DIN 31 635: Umschrift des Arabischen

Alphabets, Deutsches Institut f¨ur Normung e.V.,1982.
[Endress82a] Gerhard ENDRESS, Die Arabische Schrift,

in [Fischer82], p. 165 ff.
[Endress82b] Gerhard ENDRESS, Handschriftenkunde, in

[Fischer82], p. 271 ff.
[Fischer82] Wolfdietrich FISCHER (ed.),Grundriß der

Arabischen Philologie, Band1: Sprachwissenschaft,
Dr. Ludwig Reichert Verlag, Wiesbaden1982.

[Fischer87] Wolfdietrich FISCHER, Grammatik des
Klassischen Arabisch, 2. Auflage, Verlag Otto Har-
rassowitz, Wiesbaden1987.

[Haralambous91] Yannis HARALAMBOUS, “TEX and
Those Other Languages”,TUGboat, Volume12 (1991),
pp.539–548.

[Hāšim80] �ú
 G. QªË@
�
¡uÌ'@ Y«@ñ�̄ , �HA

�
¢uÌ' @ Y�Òm× Õæ�Aë

(HĀ ŠIM MUH. AMMAD AL -H
¯

AT. T. ĀT. , Qawā‘id al-H
¯

at.t.i
al-‘Arabı̄), Maktaba an-Nahd.a, Baghdad; D¯ar al-Qalam,
Beirut,1400/1980.

[ISO/R233] ISO/R 233 - 1961: International System for
the Transliteration of Arabic Characters, International
Standards Institution,1961.

[Knuth84] Donald E. KNUTH, The TEXbook, Volume A of
Computers & Typesetting, Addison-Wesley, Reading,
Mass.,1984.

[Knuth and MacKay87] Donald E. KNUTH and Pierre
A. M ACKAY, “Mixing right-to-left texts with left-to-
right texts”,TUGboat, Volume8 (1987), pp.14–25.

[Lagally92] Klaus LAGALLY , ArabTEX, a System for
Typesetting Arabic, User manual. Report6/92, Fakultät
Informatik, Universität Stuttgart,1992.

[Lamport86] Leslie LAMPORT, LATEX, a Document
Preparation System, Addison-Wesley, Reading, Mass.,
1986.

[MacKay77] Pierre MACKAY, The KATIB System, a
revolutionary advancement in Arabic Script Typesetting
by means of the Computer, in Scholarly Publishing8,2
(Toronto1977) pp.142–150.

[Schimmel70] Annemarie SCHIMMEL , Islamic Calli-
graphy, E.J.Brill, Leiden, Netherlands1970.

Voorjaar 1998 115

Bijlage 9 Klaus Lagally

Appendix
Installing ArabTEX
ArabTEX uses no preprocessor and thus should be com-
patible with any TEX implementation that allows dynamic
loading of additional macro files and fonts.

The ArabTEX distribution consists of the following com-
ponents:

TEX macro files with extensions.sty and.tex: these
files are installed on the TEX input path for source files.
Font metric files (extension.tfm) and compressed pixel
files (extension.pk) for the fontsnash14 andnash14bf
at several common magnification steps. Installation of
these files is strongly system dependent; in case that
they cannot be used, theMETAFONT sources are also
available (extension.mf) to rebuild the fonts locally.
installation notes, user manual, answers to questions,
demos, and the like: ASCII and/or TEX files for local
printing.

The system is available from the author’s institution (an-
onymous FTP fromftp.informatik.uni-stuttgart.
de, directorypub/arabtex), from the CTAN archive and
also from many other common servers. At the time of this
writing, version3.06h is current.

ArabTEX is copyrighted, but free use for scientific, ex-
perimental and other strictly private, noncommercial pur-
poses is granted. We appreciate receiving a compliment-
ary copy of serious scientific work using ArabTEX, for our
private collection.

Space and time requirements are not negligible; how-
ever, ArabTEX has been used frequently and successfully
even on a PC XT standard configuration.

Post Scriptum 1998

The above report was originally written in1992, and has
been presented at the EUROTEX’ 92 conference at Prague,
but was not widely circulated at that time. When we were
asked for an update to cover the present state, we found
that nearly everything described above is still true, and we
had to do little more than updating a few technical details
about the distribution. Therefore we decided not to rewrite
the present report, but to concentrate instead on preparing
a new edition of the User Manual to cover the many new
features added since.

What has happened in the meantime?
Home computers have meanwhile become large and fast,

and even though some modern Operating Systems tend to
use up the additional resources very quickly, the users will
normally no more notice the large amount of processing
that goes on within an ArabTEX job. Large parts of Ar-
abTEX have been rewritten several times, leading to in-
creased stability and also enabling many extensions for
special purposes.

The basic user interface has not changed, therefore even
this report may still be used as a minimal introduction;
but the system is no more limited to Arabic in transliter-
ation input. Several additional standard encodings are sup-
ported, and the range of languages covered now also con-
tains Uighuric, Old Malay, Sindhi, and Hebrew (in trans-
literation encoding, ISO8859-8, and the machine readable
CCAT format). Several critical editions of Arabic manu-
scripts using ArabTEX have been completed and published,
and we know of some additional ongoing projects. Ar-
abTEX has been used successfully in conjunction with other
packages, e.g. PicTEX, EDMAC, and Babel.

A project like ArabTEX is never finished; we are still
busy on the Urdu mode, and on covering the complete Ar-
abic segment of Unicode.

116 MAPS

