
Voorjaar 1998 286

Hans Hagen
pragma@pi.net

Bijlage 30
Pretty printing TEX, MetaPost, Perl
and JavaScript

Keywords
verbatim, MetaPost, Perl, JavaScript, CONTEXT

abstract
Although for real pretty printing of sources one has to use CWEB like environments, TEX can
also do a pretty job rather well. The CONTEXT verbatim environment has pretty printing built
in. One can either use colors of fonts. The latter is used in the MAPS , the former in this article.

A few years ago I implemented a verbatim environment that supports coloring of TEX.
The source code can be found insupp-ver.tex and was presented inMAPS 16. Although
primary meant for CONTEXT, this module is rather generic, which is proved by the fact
that it is used for typesetting verbatim in theMAPS.

In this article I will introduce the successor of this module:verb-ini.tex. This new
module is backward compatible, but offers a more general solution for pretty printing.
The main enhancement is that the pretty printing interpreter is generalized and supports
not only TEX, but alsoMETAFONT andMETAPOST, as well asPERL andJAVASCRIPTcode.
These filters are defined in the filesverb-*.tex.

I needed the extensions because in CONTEXT metagraphics can be included in the
document source. That way users can produce run time and layout dependant graphics.
ThePERLpretty printer was needed after I reimplementedTEXUTIL in PERL. Pretty printing
of JAVASCRIPT came around when I wrote a calculator demo for thePDF platform that
demonstrates how TEX, METAPOSTandJAVASCRIPThave come together.

Before I go into detail, I’ll show some examples of pretty printed code. First a TEX
example.

\def\SomethingBoxed#1%
{\framed[width=10cm,offset=.25cm]{#1}}

\SomethingBoxed{Something Boxed}

In METAPOST the visualization involves special treatment of reserved words. As one can
see, both colors and fonts are used. Keywords likebtex are handled according to their
meaning and disable the interpretation of the following tokens untiletex is met.

beginfig (1);
draw fullcircle xscaled 200 yscaled 100;
label(btex draw a {\em test} shape etex , (0,0));

endfig ;

In TEXUTIL , the next piece ofPERLdeals with stripping unwanted characters from strings.
Making strings healthy is needed for proper sorting of index entries.

sub SanitizedString
{ my ($string) = $_[0]; # my o my

Bijlage 30 Hans Hagen

287 MAPS

if ($ProcessQuotes)
{ $string =˜ s/\\([\ˆ\"\‘\’\˜\,])/$1/gio;

$copied = $string;
$copied =˜ s/([\ˆ\"\‘\’\˜\,])([a-zA-Z])/$ASCII{$1}/gio;
$string =˜ s/([\ˆ\"\‘\’\˜\,])([a-zA-Z])/$2/gio;
$string=$string.$copied }

$string =˜ s/\\-|\|\|/\-/gio;
$string =˜ s/\\[a-zA-Z]*| |\{|\}//gio;
return $string }

When defined, thePERL interpreter also understands special functions, like:

use Getopt::Long;

TheJAVASCRIPT interpreter is implemented on top of thePERL one. The main difference
lays in the way comments are handled://, /* and*/ versus#.

i = 1;
while (i<=100)
{ Stack[i] = ""; // We’re talking about a stack of strings!

i++ } // This is in fact i = i+1;
if (Done)

{ Stack[1] = "in a while" }
else /* such an else is optional */

{ Stack[1] = "at once" }

Due to the fact that the verbatim environment is sort of object oriented, each pretty printer
get’s it own commands:

\startTEX · · · \stopTEX
\startMP · · · \stopMP
\startPL · · · \stopPL
\startJV · · · \stopJV

For plain TEX users these commands are available after loading the macros:

\input verb-ini

The interpreter is enabled by saying:

\setcolorverbatim

The current meaning of this macro takes care ofPOSTSCRIPTcolors, but tuning the visua-
lization to his or her personal needs, is not that hard.

In CONTEXT, users can not only use the\start.. commands mentioned, but also
adapt some characteristics of each individual verbatim environment, like:

\setuptyping[MP][margin=2em,space=on]

Of course one can use the commands\starttyping, \typefile, and\typebuffer. These
obey the settings of the general typing environment, like:

\setuptyping[option=TEX,margin=1em]

The command\typefile uses the file extension to automatically determine the pretty
interpreter to be used.

The colorization is implemented using the CONTEXT palet mechanism. This mecha-
nism enables users to define collections of colors that can be switched as a whole. So
rather than redefining a specific shade of red, yellow or whatever, one just enables ano-

Pretty printing TEX, MetaPost, Perl and JavaScript Bijlage 30

Voorjaar 1998 288

ther palet that has flavors of them defined. The default colors are defined as:

\definecolor [colorprettyone] [r=.9, g=.0, b=.0] % red
\definecolor [colorprettytwo] [r=.0, g=.8, b=.0] % green
\definecolor [colorprettythree] [r=.0, g=.0, b=.9] % blue
\definecolor [colorprettyfour] [r=.8, g=.8, b=.6] % yellow

\definecolor [grayprettyone] [s=.30]
\definecolor [grayprettytwo] [s=.45]
\definecolor [grayprettythree] [s=.60]
\definecolor [grayprettyfour] [s=.75]

There are two main palets, one for color and one for gray printing:

\definepalet
[colorpretty]
[prettyone=colorprettyone,

prettytwo=colorprettytwo,
prettythree=colorprettythree,
prettyfour=colorprettyfour]

\definepalet
[graypretty]
[prettyone=grayprettyone,

prettytwo=grayprettytwo,
prettythree=grayprettythree,
prettyfour=grayprettyfour]

These palets are inherited by the specific pretty palets, for instance:

\definepalet [MPcolorpretty] [colorpretty]
\definepalet [MPgraypretty] [graypretty]

By default we have:

\setuptyping[MP][palet=MPcolorpretty]

but when needed, one can specify another palet. Of course, such a palet should be defined
first in terms ofprettyone uptoprettyfour.

In CONTEXT one could (and still can) make spaces visible, obey tabs and embed TEX
commands (using a different escape character). New however is the way multiple empty
lines and breaking paragraphs are handled. From now on, by default, multiple empty lines
are concatenated into one. Also, by default, the first two and last two lines are always kept
together.

Another new feature is dedicated to Kees van der Laan, who, as aMAPS author, would
like to see the pretty printer adapt its interpretation to TEX’s current active character state.
The next piece of TEX code shows this feature:

\bgroup
\catcode‘\|=\@@escape %%\|\
\catcode‘\\=\@@active %%\\+
|gdef|dohandlenewpretty#1%

{|def|dodohandlenewpretty##1%
{|getprettydata{\}%
|let|newprettytype=|prettytype
|getprettydata{##1}%
|ifnum|prettytype=|newprettytype

Bijlage 30 Hans Hagen

289 MAPS

|let|next=|newpretty
|else

|def|next{|newprettycommand{#1}##1}%
|fi
|next}%

|def|donohandlenewpretty##1%
{|newprettycommand{#1}##1}%

|handlenextnextpretty
|dodohandlenewpretty|donohandlenewpretty}

|egroup

Without the switch, the first few lines would look like:

\bgroup
\catcode‘\|=\@@escape
\catcode‘\\=\@@active
|gdef|dohandlenewpretty#1%

{|def|dodohandlenewpretty##1%
{|getprettydata{\}%
|let|newprettytype=|prettytype

The redefinitions are invoked by the double comment sign, followed by a backslash. The
next (non space) token will be interpreted as the one following it. In our example the|
will be visualized as the\ and the\ as the+ token.

When followed by a space, the double comment takes the next token as an interpreter
command to be executed. An example demonstrates this feature.

\ziezo{test} %%\ P ##\ B##\ T % enter PERL mode %%\ E
if $test eq "test" ##\ B ##\ B##\ T % begin group (\bgroup) %%\ E
if $test eq "test"; ##\ T %%\ B%%\ T % enter TEX mode %%\ E
\ziezo{test} %%\ M %%\ B%%\ T % enter METAPOST mode %%\ E
draw (0,0)--(10,10); %%\ E ##\ B##\ T % end group (\egroup) %%\ E
if $test eq "test";

this was typed in as (forget the comments):

\ziezo{test} %%\ P
if $test eq "test" ##\ B
if $test eq "test"; ##\ T
\ziezo{test} %%\ M
draw (0,0)--(10,10); %%\ E
if $test eq "test";

When in CONTEXT one wants to pass data from TEX to JAVASCRIPT, one can use the prefix
TEX. This prefix is interpreted aspretty print the next string as a TEX one. Of course the
keywordTEX is stripped before theJAVASCRIPTis shipped out. So:

var MinLevel = -TEX \MinLevel;
var MaxLevel = TEX \MaxLevel;
var Level = 1;

becomes in pretty typography:

var MinLevel = -TEX \MinLevel;
var MaxLevel = TEX \MaxLevel;
var Level = 1;

