
Bijlage 34
Perl and TEX a simple application

Gilbert van den Dobbelsteen
gilbert@login.iaf.nl

abstract
A simple application where perl is used to extract data from
log-files and create output using TEX. The perl-scripts in this

article run under perl 4.036 and should also run under perl 5.

1 Introduction
I am a software engineer programming embedded systems.
Embedded systems are found everywhere in your envir-
onment, From a programmable calculator to dish-washers,
coffee-machines, electric razors and GSM telephones.

Most of the time our projects involve communications
with another system, usually aPC. Communication soft-
ware usually involves one or more large state-machines
which should ensure reliable transmission and reception.
But since it’s still software an implementation could be
faulty. Timers could be to tight or retransmissions occur to
frequently with no cause or the checksum algorithm fails
on some weird occasion.

Since communications (and real-time error-free commu-
nications in specific) are difficult to debug we use log files
where usually the raw data on the link is logged. The log-
files are kept simple and straight and usually they are hard
to read for normal humans.

Last year I engineered a project for Douwe Egberts Cof-
fee Systems which involved communications with several
other parties. The protocol used was a standard protocol
used by many parties in the vending industry. The protocol
is used to configure the vending machine and to read out
the transactions made. Our company made a data-logger
and some other party included similar functionality inside
their vending machine.

Both parties made a simplePCfor verifying the commu-
nications protocol. The specifications were not clear on all
points so sometimes we needed to make choices in the im-
plementation. After we both finished our product and our
tools, we exchanged software and hardware to cross-verify
each-others efforts.

That’s where the trouble started. Their tool couldn’t talk
with our product, and vice-versa. So what to do? The log-
files where extensive and I didn’t had the time to spend
hours explaining to the other party what was going on. So I
decided to create a perl script which extracted vital inform-

ation from the log-file and generated a file that could easily
be processed by TEX.

I had some experience with perl and text-processing so
this would be reasonably easy to do. It seems to me that
perl is very well suited for data processing and TEX is a
decent tool to create visual output.

2 Log-files
Almost all the programs we develop generate log-files.
These are handy when a client calls with some problem.
If it can’t be supported by phone I ask them to email the
log-file. Examining the log-files usually unfolds a bug in
the software or a bug in somebody else’s software.

Since most applications deal with communications I al-
ways have trouble examining the log-files. Sometimes the
information is so large it is possible to overlook an error.

Here’s an example of the data from the log-file:

> 04 05 01 56 A8 FA
< C4 67 13 62 E3 CC 00 00 2A 3F

The angular brackets indicate the direction of the transfer.
Examining this data is not easy because most log-files are
thousands of lines in size.

Perl is not only an excellent tool for processing this type
of data, it can do more. It can actually analyze the protocol
and point out some positions where the data is not right.
This is very handy if the log-file is a few megabytes in
size. You could even use colored output (in red?) for pin-
pointing potential errors.

3 Basic protocol stuff
Skip this section if you’re not interested, it contains some
background information.

So what’s a communication protocol? How do you trans-
fer data from one system to antoher and make sure no errors
occur? Many books have been written on this subject, and
many examples are available. I’ll stick with some simple
things in a point-to-point1 connection.

First of all you need to detect if the data you receive is
correct. The easiest way to do this is to add redundant in-
formation. We always use cyclic redundancy checks. This

1. point-to-point: In this article a communication link between two
computers.

302 MAPS

Perl and TEX a simple application Bijlage 34

is a reliable method of determining if received data is cor-
rect. Incorrect data is simply discarded.

Then comes the real trouble: When you send data, you
want to make sure your data arrives at the other side. How
to do that? Although this is easy, many machines I’ve seen
have an incorrect implementation. The solution is to send
an acknowledge message back, informing the sender the
data arrived OK. The sender then sends the next available
data.

Several things can go wrong here. The acknowledge-
ment could get lost due to some error on the link (for ex-
ample you manually disconnected the modem). The sender
is waiting for an acknowledgement and when it does not ar-
rive within a certain amount of time it simply re-transmits
the data. This can go wrong too. Suppose you have a very
slow link2. The acknowledgement arrives, but it is simply
too late. The sender retransmits the data and you end up
with the same data twice. When the data contains a com-
mand such asturn on the coffee machinethis is no problem.
The coffee machine is turned on while it was already on.
But if the data contains a command likepour a can of coffee
you end up with two cans of coffee when in fact you wanted
only one. You can imagine what mess this gives since the
person requesting a can of coffee expected only one.

How to solve that? Again this is simple. And it is the
last thing I’ll tell you about protocols. Make sure each data
packet carries a unique number. When you re-transmit the
data it contains that same number. The acknowledments
from the receiver also return the number of the data ac-
knowledged. So now the sender sends1: pour a can of
coffee, the receiver replies:ack:1 and pours a can of coffee.
If the acknowledgement is lost, the sender re-transmits:1:
pour a can of coffee. The receiverknowsit has already seen
data #1 so it simply sends backack:1 and doesnot pour an-
other can of coffee. Is this simple or what? The unique
numbers can easily be generated by a counter, which is in-
cremented each time new data is sent. The receiver also
has a counter so it knows which number should be the next
to receive. Data arriving with another number is simply
acknowledged and discarded.

So that is a simple way to create error-free communic-
ations. There are several other aspects but I won’t bother
you with the details.

4 Processing log-files
See thePERL script below for processing the data.

while($line = <STDIN>) {
if($line =˜ /ˆ\>.*/) {

&process_right(substr($line, 1));
}
elsif($line =˜ /ˆ\<.*/) {

&process_left(substr($line, 1));
}

}

The above script processes input from standard input and
calls the functionprocess right if the line starts with a>
or process left if the line starts with<. Before the call is
made, it strips of the first character usingsubstr (similar
to basic’sMID$). Don’t be alarmed by amount of rubbish
present. The $ sign indicates a simple string variable, the
& indicates a function call. The forward slashes indicate a
regular expression. The rest looks like a C program.

So what to do now? I’ll give the details of the
process right function, the process left is omitted
since it is similar:

sub process_right{
local($data) = @_;
local(@values);
local($local_ns,$local_nr);

$data =˜ s/ˆ\s+//; # omit leading white space

@values = split(/[\s\n]+/, $data);

@values is an array with the seperate hexa-
decimal values. Convert them to decimal.

foreach $value (@values){
$value = hex($value);

}

if($values[0] == 1){ # START command?
print "\\r {START}\n";

}elsif($values[0] == 2){ # ACK command?
$local_nr = $values[1];
print "\\r {ACK $local_nr}\n";

}elsif($values[0] == 3){ # NACK command?
$local_nr = $values[1];
print "\\r {NACK $local_ns}\n";

}elsif($values[0] == 4){ # DATA
$local_ns = $values[1];
print "\\r {DATA $local_ns}\n";

}else{ # Unknown command
print "\\r {UNKNOWN}\n";
&print_data("\\rt", @hexvalues);

}
}

I omitted the various checking functions here which are
present in the actual perl-script. This is just to illustrate how
to do such things. First the leading white-space is stripped
with a regular expression. Then$data is converted into

2. I know you use internet so you know what I’m talking about.

Voorjaar 1998 303

Bijlage 34 Gilbert van den Dobbelsteen

an array ofvalues. Arrays in perl are arrays of scalars
(variables that start with a $-sign). Scalars can be strings or
numbers. When you apply an operation, perl automagically
converts them to the correct type.

So now we are left with an array of hexadecimal val-
ues. This is not too bad, perl provides thehex gunction for
conversion. Theforeach statement converts the values to
decimal.

After that the program finds out what the command is
and prints a converted line on standard out. That’s all there
is to it. Note: you can use variables directly in print strings,
perl expands the variables for you.

5 Output
The output of the script contains lines like this:

\STARTPROTOCOL
\l {START}
\lt{Start of protocol}
\r {STACK}
\rt{Ackowledge}
\STOPPROTOCOL

So the arrow drawing stuff is left to TEX. These are simple
macro’s:

\startTEX
\def\BOXSIZE{\hsize}
\def\STARTPROTOCOL{\bgroup

\def\l##1{\hbox to \BOXSIZE{\leftarrowfill
\ {\tt ##1}}}

\def\r##1{\hbox to \BOXSIZE{{\tt ##1}\
\rightarrowfill}}

\def\lt##1{\hbox to \BOXSIZE{\hfill ##1}}
\def\rt##1{\hbox to \BOXSIZE{##1\hfill}}
\obeylines }

\def\STOPPROTOCOL{\egroup}

6 Example
Below is an example of a complete and correct communic-
ation session:
RECEIVER SENDER
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− START

Communication start
STACK −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Acknowledgement
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− WhoAreYou

Sec:0x2342, Pass:0x7326
WhoAreYou Accepted −−−−−−−−−−−−−−−−−−−−−−−−→
Serial#:385682445
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− FINISH
ACK −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

The WhoAreYou command identifies the terminal, and
after it is accepted configuration commands can be given.

Here’s an extensive example with several errors in it:
RECEIVER SENDER
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− START

Communication start
STACK −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Start Acknowledged
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− START

Communication start (duplicate!)
STACK −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Start Acknowledged (duplicate!)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− DATA 1

WhoAreYou
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− DATA 1

WhoAreYou (retry!)
ACK 1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
DATA 1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
WhoAreYou Accepted)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ACK 1
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− DATA 2

Finish
NACK 1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(Finish) not received!
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− DATA 2

Finish
ACK 2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

As you can see the tool finds errors which are hard
to spot by humans. TheSTACK response is not received
by the sender so theSTART command is sent again. The
WhoAreYou command is not received by the receiver so the
sender sends a retry. Near the end, theFinish command
was received but it contained an error. This is signalled by
theNACK. The sender retries the operation.

7 Conclusion
Perl is a good tool to processASCII data. When used in
combination with TEX, the tool can create nice output. The
power of perl is completely unlike C. Although it looks a
lot like C it has much more power. In specific the string
processing is supurb. For almost anything you want there
is a perl internal function available. And if there’s not you
can roll your own.

I didn’t discuss perl5 which adds many more features
and object oriented programming. Perhaps I’ll discuss that
the next time. Perl is also well equipped for systems pro-
gramming. It is possible to write a complete web-server in
perl.

The program described in this article helped us locating
bugs quick and easy. It’s a convenient way to look at data.
Since the original specifications included similar diagrams,
verifying the diagrams was easy too.

304 MAPS

