
Bijlage 3
TEX in 2003: Part II

Proposal for a \special standard

NTG TEX future working group
P.O. Box 394,
1740 AJ Schagen,
The Netherlands
ntg-toekomsttex@ntg.nl
http://www.ntg.nl

abstract
The text of this article is a proposal for an “endorsed”

\special specification, to be voted on by the assembly of the
TUG98 meeting. Portions of this text are reworks of an original

article by Nelson Beebe, and indeed large portions of the
proposal itself are also based on original work done by Beebe.

Introduction
Most existing drivers have chosen an arbitrary syntax for
the\special strings they support. This is undesirable, for
at least these reasons:

The chosen syntax is usually unique to a particular
driver, and therefore seriously compromises document
portability.
The syntax is usually not extensible in an easy way.
The syntax cannot always be unambiguously parsed.
The output device, or driver, to which the\special
applies is not determinable.
The capabilities are weak, and fail to address many of
the potential uses of the\special command.

The \special syntax that we have developed, which is
really an extension and modification on the work done by
Nelson Beebe, resolves these objections. It has the follow-
ing features:

The\special string is defined to contain a program
written in a small language that consists of an
identification string and a command, followed by
sequences of assignment statements, possibly with
embedded comments.

The \special language isrigorously definedby a
programming language grammar (available on request).
The language isextensible. An assignment statement
consists of a keyword/value(s) pair. Several keywords
are already defined, and new ones can be added without
invalidating existing uses of the language.
Keywords are typed, and constant values assigned to
them must be of the correct type. The supported types
are names, strings, numbers, and dimensions.
Value string concatenation is supported in the style of
ANSI C, avoiding the often severe line length limitations
of text editors, operating systems, and file systems.
Provision is made for encoding all8-bit characters
in the host character set, so that, e.g. binary printer
control sequences can be incorporated asprintable, and
portable, text in TEX documents.
A particular keyword,language, is provided
to permit the user to specify the output device
language, or theDVI driver, to which the
\special command is directed.

By suitable abstractions, it is possible to create a recursive-
descent parser for the language in which commands,
keywords and value storage locations are provided in a
table passed to the parser. The parser code is therefore com-
pletely portable, and independent of the commands and
keywords in the language it parses.

We will write a table-driven parser that will accept all the
commands and keywords we have defined, and this parser,
written in the C language, will be included in theDVIview
program that will serve as a reference implementation. The
parser itself will be available in the public domain soon,
and patches will be made to at leastdvips and xdvi to
support this proposed standard.

A proposed syntax for the \special
command
What does the language look like? Some examples will
give the general flavor before we describe the details of the
grammar. Here are some fragments of hypothetical TEX
input which show some of the\special commands:

20 MAPS

TEX in 2003: Part II Bijlage 3

% Display a picture with the upper-left
% corner at the current point
\special{**include pict.eps}

% Display a picture at its original
% absolute page position
\special{**overlay "pict.001",

filetype metapost}

% Display a figure at half size
\special{**include "pict.eps",

scale 0.5 0.5}

% Switch to a different colour
\special{**colour .09 .06 .6,

model rgb}

Naturally, the details of a\special command invocation
should be hidden away in suitable macros that are easy to
use.

The language grammar
In the original article, Beebe gave a formal grammar for his
language. In the interest of keeping this article as short and
readable as possible to a non-programmer, that grammar
has been deleted and we have not inserted our own. If you
are interested in it, it is available upon request. We will
suffice here with giving a textual explanation.

We will start by defining the various primitive types that
are supported:

Spaces
Whitespace is ignored except as delimiting characters, so
the specification can be formatted for readability, or for
compactness. Token may not contain embedded blanks
(except strings of course).

Comments
Comments are from percent to end-of-line, like in TEX.
Comments cannot occur inside of strings or keywords, so
this is not a comment:

\special{**message "Here % is some text"}

and this is in fact illegal:

\special{**mes% neat eh?
sage "Here % is some text"}

Names
The grammar states that anextended letter is a digit,
letter, hyphen, dot, or underscore. These are the characters

that are allowed in commands, keywords, alternative values
and unquoted strings. Letter case is not significant in these
cases.

The characters permitted are chosen such that for in-
stance simple filenames can be used without surrounding
quotes (see below for more info on strings and alternative
values).

An “alternative value” is actually a string with some pre-
defined values.

Numbers
Numeric constants are parsed by the ANSI C library
routine, strtod(), which expects to see numbers in the
form:

[whitespace][sign][digits][. digits]
[{e|E}[sign]digits]

Dimensions
Dimensions can be given in any absolute unit known to
TEX (bp cc cm dd in mm pc pt sp). Note that the font-
specific em and ex are not allowed. Since tokens may
not contain embedded blanks,210mm is legal input, but
210mm is not.

Any keyword that accepts dimensions as arguments will
also accept numbers. In the absence of a dimensional unit,
a default value will be used. This default can be defined
with a separate\special (see below underdefaultunits
for important usage information), or, in the absence of that
\special, the driver will presume scaled points (sp).

Strings
The grammar supports unquoted strings and two kinds of
quoted strings.

An unquoted string has to be one word only (since there
are no spaces allowed), and can only use the characters that
are legalextended letters as defined above.

Thenormalkind of quoted string is delimited by double
quotes, and inside it are recognized all the escape se-
quences supported by the C language. Theraw kind is
delimited by single quotes; only escape-single-quote pairs
are recognized inside it. This is more convenient when it is
necessary to have strings with several backslashes, since it
then avoids having to double all of them. Once normal and
raw strings are parsed, they are stored identically.

Backslashes in literal strings and filenames pose a small
problem for the user, because TEX will ordinarily try to in-
terpret control sequences triggered by backslashes in the
argument of the\special command. Although it would
have been possible to choose another escape character than
backslash for such strings, this would likely prove confus-
ing to those users who are used to C andUNIX , where the
backslash escape character is firmly entrenched.

Najaar 1998 21

Bijlage 3 NTG TEX future working group

Fortunately, the solution is not difficult, because TEX
does not have backslash hardcoded as a control sequence
prefix; you can change it by altering TEX’s catcodes.

In the descriptions of the\specials below, the character
n andm used to indicate a value from a fixed set of altern-
atives,s is used to indicate all sorts of strings,x, y andz
(possibly with numeric tags) are used for dimensions, and
a throughj are used for numbers.

Now let us move to the portions of a\special that actu-
ally define things. The structure of a\special command
is as follows:

ID bytes
The first2 characters in every\special are to be the two
tokens**. The rationale behind this is that a convention
like this makes it easier to adjust programs that have to
remain backward-compatible with their old private syntax.
As far as we know, this particular sequence of tokens is
never used in current\specials.

Command
The next word is the principal command for this\special.
Depending on the command itself, it may have arguments
or it may be a single command.

Assignments
Optionally, the command can be followed by a series of
keywords that supply extra information. Keywords follow
the same syntax as commands, so there can be zero or more
arguments to a keyword.

In a series of assignment statements, the order of
the keywords is not significant, except that if duplicate
keywords are specified, the value of the last one is used.

Every keyword-value group needs to be separated from
the previous one by a separator, which may be either a
semicolon or a comma. This is correct:

\special{**include "pict.eps";
scale 0.5 0.5}

And this is not:

\special{**include "pict.eps"
scale 0.5 0.5}

Separating items
Finally, the assignment statement may use either the equals
or colon operator, or the operator may be omitted alto-
gether. This supports the common forms:

\special{**include=pict.eps}
\special{**include:pict.eps}
\special{**include pict.eps}

Because the values have very limited syntactical possibilit-
ies, there is no ambiguity created by this.

The \special language
The preceding section defined the grammar for the
\special language. We now need to define what com-
mands and keywords will be recognized. As emphasized
above, the language isextensible, and the parser that we
will implement for it makes it easy to add new commands
and keywordswithout touching a single line of the parser
code itself.

However, we presume that there will be a maintainer or
maintenance group assigned to take care of this specifica-
tion, and this person has the right to refuse to accept exten-
sions that do not fit in.

Generic keywords
The full set of commands and keywords that are recog-
nized is given below, but we will start off with some gen-
eral keywords. These keywords can be used within any
\special, and also be used as a command. They will
not be mentioned separately in the descriptions of the other
\specials:

Keyword Value Action

message s Supply an operator message
to be sent to the terminal and
log file.

id n Supplies a name that uniquely
identifies this\special.

use n Supplies a name that iden-
tifies a previously defined
\special.

Themessage string provides a means for operator com-
munication; for example,

message "Thesis bond paper for this job"

The message is sent verbatim to the terminal and the log
file.

The id allows identification of the\special it occurs
in. The command and the keywords and values associated
with this \special, are saved and available for later reuse
throughuse. The current location in the file is also saved,
for later retrieval by one of the cross-link\specials.

The usage ofuse is as follows: first, all of the data from
the \special it refers minus theid value are inserted in
the current\special, and other any values that occur in
the current\special are used to override the inherited op-
tions. An example is probably the best way to show this.

22 MAPS

TEX in 2003: Part II Bijlage 3

After

\special{**include "pic1.eps";
scale 0.5 0.5;
id mypic}

The following command re-does precisely the same in a
later portion of the document:

\special{**use mypic}

and

\special{**use mypic;
scale 1 1;
id mypic2}

inserts the same figure, but at a different scale. It also as-
signs a newid to this current\special. The following is
also allowed

\special{**include "pic2.eps";
use mypic;
id mypic2}

but it is not legal to switch to an entirely different com-
mand, likeoverlay.

Drivers are allowed to set an upper limit to the number of
distinct ids that can be used in a document, but this limit
should not be lower than256. There is never a point to
limit the total amount ofids, since later definitions will
just overwrite the previous one with the same name.

There is at the moment exactly one command that affects
the\special parser itself:

Keyword Value Action

defaultunits n Sets the default units to one of
the defined dimension types
instead ofsp.

Commands for graphics inclusion
There are three possible ways of including a graphic figure
file from disc:

Keyword Value Action

include s Insert file contents with relat-
ive page positioning.

overlay s Insert file contents with abso-
lute page positioning.

underlay s Insert file contents with abso-
lute page positioning.

The filename string can be used for normal local files, but
it can also be used for URLs, following the normal rules
for URL specification. If no explicit protocol (likehttp or
ftp) is given, the name is assumed to be a local file. Even
non-networked drivers are required to correctly handle one
protocol:file://.

In all these three cases, drivers can opt to give a default
search path for figure files with relative path names, but this
is not required nor encouraged. The driver is not required
to include any file type exceptdvi.
overlay and underlay are supposed to start from the

lower-left corner of the physical page, with coordinates as
in PostScript: up and right are positive values for x and y.
In cases where there is no obvious lower-left corner (as
may be the case for on-line backends), the lower-left corner
is defined to be at the end of the output medium.
include places the top-left corner of the image at TEX’s

current point. Here coordinates are as inDVI : down and
right are positive values for x and y.

The difference betweenoverlay andunderlay should
be clear: overlays can actually obstruct other images and
text on the page (depending on where precisely on the page
the\special was given), underlays can never do this, but
a second underlay might be on top of the previous one.

If the file cannot be opened, or for relative positioning,
the bounding box cannot be determined, a warning mes-
sage is issued and the\special command is ignored.

There is also a\special command available for the in-
clusion of literal drawing commands:

Keyword Value Action

graphics s Execute the graphics primit-
ives in string (defined below).

The graphics keyword value is used to insert simple
generic graphics commands in one of the existing (mini-
)languages for graphics. These are properly handled by us-
ing thegraphics andtype keywords together.

\special{**graphics = "...",
type = tpic }

The driver will issue an error if there is agraphics com-
mand without atype specified as well, and the correspond-
ing \special will be ignored. The driver is not required to
executegraphics except if thetype is dvi.

All four graphics\specials accept the following op-
tions:

Keyword Value Action

boundingbox x1 y1 x2 y2
Defines the four dimensions

Najaar 1998 23

Bijlage 3 NTG TEX future working group

of the lower-left and upper-
right corners of the box which
bounds the figure.

clipbox x1 y1 x2 y2
If present, clipping to the
specified four dimensions
should occur.

position n m Specify the reference point on
an inserted figure which is to
be mapped to the current page
position.

size x y z three values that are absolute
dimensions for the size of the
figure.

type s gives a way to specify the type
for files with non-standard
extensions.

boundingbox also applies tographics, since it can be
used to decide whether and where clipping should occur.
Note that this is essentially the same value as the Post-
Script BoundingBox for (E)PS figures. For clipping pur-
poses, this statement overrules the in-file version of such a
BoundingBox. In the absence of aboundingbox keyword,
(E)PS and similar file formats where it is legal to draw out-
side the box shouldalwaysbe clipped to the in-file values.

The position keyword specifies two values. The first
should be one oftop, middle, or bottom, and the second
should be one ofleft, center, or right. These words
may be abbreviated to a single letter if desired. Together,
they select on the bounding box one of nine points (four
corners, four edge centers, and the box center) which is to
be placed at the TEX current point. If this keyword is not
given, the default is

position = top left

The point selected by this keyword (or by default) will be
thereference pointfor the insertion of the graphic file.

In the values ofsize, negative dimensions means that
size in that direction should be ignored.

The string argument totype is used to give informa-
tion about the type of file orgraphics. This value should
be either the ‘normal’ three-letter extension for this type
of file or the name of a graphics description language.
The following language names are predefined:dv, dvi
(ordinary binarydvi commands),epic, encapsulated
postscript (also eps), eepic, emtex, fig, metapost
(alsomp), pcl, pdf, postscript (alsops), tektronics,
tpic, xpic.

Generic graphics keywords
There are three keywords that define transformations. Ac-
tually these belong to the graphics language, but they can
also appear inside figure\specials, which is why they are
explained here.

Keyword Value Action

translate x y Defines two dimensions that
shift the figure’s reference
point from the default value.

scale a b one or two numbers that are
relative to the ‘normal’ size of
the figure.

rotate a rotation angle in degrees.
Counterclockwise is positive.

These three keywords can be used as stand-alone com-
mands, in which case they apply until explicitly stopped
by means of one of the commands we will define below,
or they can be included inside one of the four\specials
for figure inclusion, in which case they only apply to the
subject of that\special.

The keywordsize is processed before taking any trans-
formation commands within the same\special into ac-
count.

Rotations etc. that were in force at the time the figure
\special was encountered,are taken into account before
the calculations for inclusions are done. Here is a small
example that demonstrates possible usage:

\special{**gsave}
\special{**scale=2 2}

Some large text here
\special{**rotate=45}

Large and rotated text
\special{**include test.eps,

rotate = 45}
This figure is rotated 90 deg CCW
and twice as large.

\special{**grestore}
Back to normal

Command for colour specifications
There is only one command defined for colour specification
(well, actually two, since the American spellling “color” is
also accepted), and one optional keyword:

24 MAPS

TEX in 2003: Part II Bijlage 3

Keyword Value Action

colo(u)r ? The value should be the
numbers or tokens that specify
the color in the defined colour
model

model s The value should be a recog-
nizable color model name

Every driver is required to recognize the following six
named values for the option string ofmodel. These are
the ones that define the four most commonly used colour
models:rgb, cmyk, gray, (also known asgrey) andmono
(bitmap).

For all these predefined colour models, a colour is
defined as one or more real numbers between0 and1. In
the absence of amodel keyword, drivers should take the
following guess as default action: if there is one number in
colour’s value, the colour model isgrey. If there are three
numbers, the model isrgb, and if four, the model iscmyk.
All other non-qualified values signify a syntax error.

Commands for the in-line graphics language
First there are the commands that change the state of the
graphics system’s default values:

Keyword Value Action

setlinejoin n Select method of joining
lines.

setlinecap n Selects the line ending
method. One ofbutt, round,
square

setdash offset values
Select the dashing pattern for
drawing lines.

setlinewidth x Selects the line-width.
setmiterlimit a Sets the miter limit for draw-

ing.
setoverprint n Value isyes or no
setvisible n Value isyes or no

Note that the commandsscale, translate, rotate and
colour also belong to this category.
setvisible andsetoverprint are supposed to com-

pensate for overlays and underlays as well as for the back-
ground colour of the page (defined below in the section on
paper settings).

Then there are commands that draw stuff:

Keyword Value Action

moveto x y Moves the cursor position to
(x,y).

lineto x y Draws a line to (x,y).
curveto x1 y1 x2 y2 x3 y3

Draws a Bézier curve where
(x1,y1) and (x2,y2) are the
control points and (x3,y3) is
the end-point.

All three commands draw relative to the current point, and
in fact, they even move the driver’s idea of ‘current point’
just like the regularDVI commands do. If this side-effect
is undesirable, the commands should be part of an expli-
cit drawing, which is defined and drawn with one of the
following commands:

Keyword Value Action

startgraphic Indicates the beginning of a
graphic.

stopgraphic Analogously ends a graphic.

Inside one of those explicit figures, the drawing commands
do not actually draw anything. Instead, one of the following
commands should be used:

Keyword Value Action

newpath Discards any present paths
and start a new one.

closepath Closes the current path.
stroke Draws all the lines with the

current selected pen.
clip Selects the current path as the

clipping path.
fill Fills the current path with the

current selected color.

Of course you are allowed to use the other commands too,
and there might be intermixed text. Page breaks are not
allowed though, since the entire graphics state will be re-
stored to it’s default state at the beginning of the page. Us-
age of these commands is analogous to PostScript.

Alternatively, the graphics state can be saved and re-
stored explicitly, again as in PostScript:

Keyword Value Action

gsave Saves the graphics state. Po-
sition, current color, current

Najaar 1998 25

Bijlage 3 NTG TEX future working group

path, current clipping path,
current transformation matrix,
and the current pen-type is
saved.

grestore Restores the graphics state.

Commands for hyper-referencing
There are not that many keywords explicitly involved with
hyperlinks, since they can use the keywordid to mark
either pages or locations. in the document. The link spe-
cification decides whether the specificid indicates a loca-
tion marker or a page marker.

Linking re-uses the option keywordsposition, size,
filename andtype that are defined elsewhere in this paper.

Keyword Value Action

linktopage n The name has to be defined
though anid elsewhere

linktoloc n The name has to be defined
though anid elsewhere

linkend Ends an HTML style link
position n m Specify the reference point of

the link area.
size x y z three dimensions that are

width, height and depth of the
link area.

filename s This is the url in case an
external file is linked to

type s gives a way to specify the type
for files with non-standard
extensions. The value should
be the ‘normal’ three-letter
extension for this type (like
pdf or dvi).

The value ofsize, if available, gives the borders of the
‘clickable area’. An example:

\special{**id=1}This is a
\special{**linktoloc=1,

size=16pt 6pt 1pt}link.

If size is not explicitly given,linkto... functions ana-
logous to the HTML style syntax, andlinkend is used to
stop the area. Here is an example of the this approach:

\special{**id=1}This is a
\special{**linktoloc 1}link%
\special{**linkend}.

It is a syntax error to end a link withlinkend if that link
was started with an explicitsize, and the entire link spe-
cification will be ignored by the driver.

It is not an error if there is a line or even line break in
the case that is supposed to end withlinkend. These cases
have to be handled correctly by the driver (the clickable
area will probably have to be split in separate parts).

Commands for meta-information
A number of keywords is available to pass information to
the processing application. This information can be used to
fill <meta> tags or for debugging purposes.

Keyword Value Action

info n Value can be eithermeta,
debug, or comment

title s Name of the current document
subject s Subject of the document
author s The (probably human) author
creator s The generating program
version s Version information
keywords s Keywords for this document
abstract s Short abstract for this docu-

ment
filename s Original filename
lineno a Records original line number

in source
charno a Records character location in

line
byteno a Records location in file
date a b c Date in a fixed format (dd mm

yyyy)
time a b Generation time in fixed (hh

mm) format, assumed to be
GMT

The meanings should be clear from the names. These com-
mands can all be used inside of any other\special in this
same group, and they can be used in the optional part of
the three figure file inclusion\specials and as part of the
linktoloc andlinktopage commands if they refer to an
external file, where they can be used to request a specific
version of a file. (The driver does not have to honour these
latter cases in order to comply, but it is required to give
the usual warning about failing to process the\special
entirely).

Handling paper.
Device initialization can be a complicated business, so it
will usually require thelanguage keyword as well (see
below), but some of the more common keywords can be

26 MAPS

TEX in 2003: Part II Bijlage 3

defined without problems. Paper is fairly simple. There
are two commands available,paper andscreen.

Keyword Value Action

paper s paper form name
screen s screen form name
height x paper or screen height
width y paper or screen width
colo(u)r ? The value should be the

numbers or tokens that specify
the color in the defined colour
model

The paper and screen keywords defines a name that is
used to tag the collected parameters. If the form name
already exists, assignments will replace previous values.
Otherwise, a new form is created.screen is intended for
on-line formats, and is a synonym forpaper that feels more
natural in this case.

The use ofcolour here defines the background colour
of the paper or screen. Printer drivers (or any other driver
where execution of this command might lead to very ex-
pensive output) are supposed to ask confirmation from the
user before executing this\special.

Other processing options
are

Keyword Value Action

imaging type n The type of imaging that is
applied

resolution x Gives the required resolution
for device where there are
more possible resolutions

tray n Tray number for devices with
more then one input tray

duplex n Either on or off

The imaging type can be one of the wordsnormal,
negative, mirror or mirrornegative.

The commands are used for for instance typesetter out-
put, and they always apply to at least one full page (the page
the\special appeared one)

Other device options
Certain drivers might require certain extra commands that
only they understand. There is one command reserved to
handle these things.

Keyword Value Action

language n Name the output-device
language for which this
\special is intended.

literal s Insert literal output device
code.

options s Insert driver option.

Thelanguage keyword determines whether theDVI driver
will process this\special, or ignore it.

Drivers are not required to understandany kind of
language special, and are free to ignore that\special
right after it has seen thelanguage command. However,
any driver that is willing to support this\special, even
in a very minor way,must recognize a generic language
choice relevant to its output device, such asPostScript or
Epson. Also, each driver that tries to handle this\special
mustrecognize its own name as a language value.
literal is allowed to occuronly in combination with

language, and is used to insert literal portions of the com-
mand language used by thelanguage in question.

The options keyword can be used to supply device-
dependent information to the driver; this is only allowed
if the language is the name of a driver.

Correct driver behaviour
Drivers are supposed to correctly interpret and execute all
of the\specials defined in this document, except were we
specifically indicated that this is not needed.

If the program that processes theDVI file does notknow
how to handle a specified\special (other than those
defined in this document), it is allowed to issueat most
onewarning to the user per unrecognized\special type.

Since there is a reasonable chance that thisDVI file at
hand should have been processed by another program all-
together, one warning seems prudent, but that should be
enough. This rule prevents the appearance of miriads of
“unknown special” warnings in documents that have paral-
lel \specials for various drivers.

If the program that processes theDVI file doesknow how
to handle a certain\special, it is allowed to issue mes-
sages, warnings or errors as it sees fit. It is alwaysrequired
to give warnings in the case of a\special that can only
be partly obeyed. It is alsorequired to give user errors for
all \specials that have syntax errors (assuming the driver
is aware of the right syntax, which may not always be the
case, but is definately the case for the\specials defined
here)

Najaar 1998 27

