
Bijlage 4
Toolbox: let’s keep things plain

Maarten Gelderman

abstract
This Toolbox follows the eclectic approach that most readers

will know from previous ones. Without aiming to give a
comprehensive oversight of the logic behind them, I present
some plain TEX-commands that can be used directly in LATEX.

As the editors of this journal decided to make English the
preferred language for contributions, this column is no longer

in Dutch. However, as far as my limited command of the
language allows, I will try to keep the tone informal and the

discussion accessible to novice users.

Keywords: plain TEX in LATEX

Some background
Most readers of this journal will be familiar with the fact
that TEX and LATEX are not the same thing. TEX, the pro-
gram is the ‘machine’ that runs LATEX. LATEX, the macro-
package, is the system that is run by most of us in order to
process our documents. Instead of LATEX, we may run any
other macro package. The most well-known are Context,
eplain, and plain. Context is a monolithic system which in-
stantaneously provides functionality LATEX can only offer if
combined with a whole bunch of packages. Plain is the ori-
ginal TEX macro-package developed by Donald Knuth and
eplain is an extension of plain that provides some LATEX-
like functionality without sacrificing any of the original
plain possibilities

The last sentence already indicates that other macro-
systems may make some plain-TEX functionality inaccess-
ible, and indeed this is the case. LATEX-makes some of the
plain TEX macro’s unavailable or unusable. Fortunately, the
majority of those commands still works and LATEX-users
may well use them to their advantage. This column will
sketch the possibilities of some plain-TEX macro’s. If will
mainly focus on some commands and parameters that influ-
ence low-level formatting. The information in this column
is based on documentation inltplain.dtx and the TEX-
book (especially Chapter14).

Line breaking and overfull boxes
One of the most advantageous areas for application of plain
macro’s is in manipulating hyphenation and justification.

As long as you stick to the computer modern fonts most of
the standard settings work just fine. However, when you
switch to some other font (say “times” by e.g. issuing the
command\usepackage{times} or \rmdefault{ptm}) you
may almost feel drowned by the amount of overfull boxes.
Of course, you will finally get rid of those by carefully
checking all hyphenation possibilities. However, while on
a document this is too much work and the overfull boxes
can become a real nuisance. One possible measure is to
use LATEX’s sloppypar-environment. However, this will
affect the look of your document rather negatively. A more
subtle correction can be made by\emergencystretch.
Emergencystretch is the amount by which the spaces in a
single line may be enlarged in order to avoid overfull boxes
when the ordinary line-breaking algorithm fails. By issu-
ing \emergencystretch=1em you should be able to get rid
of the majority of those annoying messages.

Another way to avoid messages without improving your
document is adapting the value of\tolerance. TEX will
only produce overfull boxes if it finds no way to break a
paragraph into lines without
creating ugly lines like
the ones you just have been reading. In order to de-
termine whether a line is too ugly to be acceptable,
TEX compares the ugliness of a line with the value of
\tolerance. Standard LATEX sets tolerance at200, by
setting e.g.\tolerance=400 uglier lines (more like the
ones commercial word-processors produce) are permitted
and fewer overfull boxes will be produced.

A final small trick that may save you the trouble of
manually correcting a lot of bad hyphenation is\slash.
It is simply used to produce a slash (/) that functions
like a hyphen. Hence “automatisering\slash mech-
anisering” will be hyphenated as “automatisering/
mechanisering”, if necessary (I forced it to be
necessary here by adding yet another\break).
You may make commands like\slash your-
self. Just use \def\en{--\discretionary{}{}{}}
to get xxxxxxxxxxxx–
xxxxxxxxxxxxx.

Changing the length of paragraphs
In the previous section we were concerned about the ease
with which acceptable output can be produced. This sec-

28 MAPS

Toolbox: let’s keep things plain Bijlage 4

Table 1. Automatically generating a font-inventory.
\input multido
{\font\test pzdr at 10pt \multido{\i=0+1}{255}
{ \i: {\test\char\i},}\ 255: \char255}.

0: , 1: , 2: , 3: , 4: , 5: , 6: , 7: , 8: , 9: , 10: , 11: , 12: , 13: , 14: , 15: , 16: , 17: , 18: , 19: , 20: , 21: , 22: , 23: , 24: , 25: ,
26: , 27: , 28: , 29: , 30: , 31: , 32: , 33: ✁, 34: ✂, 35: ✃, 36: ✄, 37: ☎, 38: ✆, 39: ✇, 40: ✈, 41: ✉, 42: ☛, 43: ☞, 44:
✌, 45: ✍, 46: ✎, 47: ✏, 48: ✐, 49: ✑, 50: ✒, 51: ✓, 52: ✔, 53: ✕, 54: ✖, 55: ✗, 56: ✘, 57: ✙, 58: ✚, 59: ✛, 60: ✜, 61:
✝, 62: ✞, 63: ✟, 64: ✠, 65: ✡, 66: ✢, 67: ✣, 68: ✤, 69: ✥, 70: ✦, 71: ✧, 72: ★, 73: ✩, 74: ✪, 75: ✫, 76: ✬, 77: ✭, 78:
✮, 79: ✯, 80: ✰, 81: ✱, 82: ✲, 83: ✳, 84: ✴, 85: ✵, 86: ✶, 87: ✷, 88: ✸, 89: ✹, 90: ✺, 91: ✻, 92: ✼, 93: ✽, 94: ✾, 95:
✿, 96: ❀, 97: ❁, 98: ❂, 99: ❃, 100: ❄, 101: ❅, 102: ❆, 103: ❇, 104: ❈, 105: ❉, 106: ❊, 107: ❋, 108: ●, 109: ❍, 110:
■, 111: ❏, 112: ❐, 113: ❑, 114: ❒, 115: ▲, 116: ▼, 117: ◆, 118: ❖, 119: ◗, 120: ❘, 121: ❙, 122: ❚, 123: ❛, 124: ❜, 125: ❝,
126: ❞, 127: , 128: , 129: , 130: , 131: , 132: , 133: , 134: , 135: , 136: , 137: , 138: , 139: , 140: , 141: , 142: , 143: , 144: ,
145: , 146: , 147: , 148: , 149: , 150: , 151: , 152: , 153: , 154: , 155: , 156: , 157: , 158: , 159: , 160: , 161: ❡, 162: ❢, 163:
❣, 164: ❤, 165: ❥, 166: ❦, 167: ❧, 168: ♣, 169: ♦, 170: ♥, 171: ♠, 172: ①, 173: ②, 174: ③, 175: ④, 176: ⑤, 177: ⑥,
178: ⑦, 179: ⑧, 180: ⑨, 181: ⑩, 182: ❶, 183: ❷, 184: ❸, 185: ❹, 186: ❺, 187: ❻, 188: ❼, 189: ❽, 190: ❾, 191: ❿,
192: ➀, 193: ➁, 194: ➂, 195: ➃, 196: ➄, 197: ➅, 198: ➆, 199: ➇, 200: ➈, 201: ➉, 202: ➊, 203: ➋, 204: ➌, 205: ➍,
206: ➎, 207: ➏, 208: ➐, 209: ➑, 210: ➒, 211: ➓, 212: ➔, 213: →, 214: ↔, 215: ↕, 216: ➘, 217: ➙, 218: ➚, 219: ➛,
220: ➜, 221: ➝, 222: ➞, 223: ➟, 224: ➠, 225: ➡, 226: ➢, 227: ➣, 228: ➤, 229: ➥, 230: ➦, 231: ➧, 232: ➨, 233: ➩,
234: ➪, 235: ➫, 236: ➬, 237: ➭, 238: ➮, 239: ➯, 240: , 241: ➱, 242: ➲, 243: ➳, 244: ➴, 245: ➵, 246: ➶, 247: ➷, 248:
➸, 249: ➹, 250: ➺, 251: ➻, 252: ➼, 253: ➽, 254: ➾, 255: .

tion takes the opposite approach. In the final stage of doc-
ument preparation fine-tuning of the appearance of pages
will be required. On a global level you may for instance
want to influence the length of your document. When a
book is printed,16 pages are processed at a time. If the
length of the text you are working on is194 rather that
192 pages, sixteen additonal pages have to be printed of
which only two will be used. You may try to reduce the
length of your text by setting\linepenalty=nnn (where
nnn is a number between -10000 en10000). LATEX sets this
parameter at10. By e.g. raising it to100 you discourage
the line-breaking algorithm of TEX from making additional
lines and hence may be able to reduce the overall length of
your printout.

In some cases it may be desirable to manipulate the
length of individual paragraphs. You can use\looseness
to achieve this. If you set\looseness=1 TEX will try to
make the paragraph one line longer than it would other-
wise do. If you use a negative value, paragraphs will be
shortened. In this way widows and orphans can be elimin-
ated manually (see also the final paragraph of this section).

On a micro level, footnotes may cause problems. If you
typeset a book with LATEX, and this book contains foot-
notes, almost inevitably some of them will be split across
pages. Often for, to the human mind, no good reason
at all. Setting\interlinepenalty=10000 locally in the
footnote, will assign infinite badness to such breaking and
hence will keep the footnotetext together (if you set this
variableglobally not a single paragraph in your document
will be split across pages, which may not be exactly what
you want). It is not necessary to set the value to infinite

(10000) you may choose any large value in order to dis-
courage breaking of footnotes (and paragraphs in general)
across pages.

Similar to the footnote-problem is the occurance of wid-
ows and orphans (when the first line of a paragraph is
placed on another page than the remainder, this line is
called a widow, if the same accident occurs to the last line,
it is called an orphan). By setting\widowpenalty and
\clubpenalty to a large value, such behaviour is discour-
aged. LATEX fixes both values at150.

Easy font changes
The subject matter discussed above is mainly concerned
with low level formatting that cannot be done from LATEX
directly. The issue presented in this section, font selection,
can be done rather adequately by LATEX itself. However,
in some cases the LATEX-approach is just too heavy. Take
the case where we have a font file from which we want to
use just a single character (this may be a dingbats font—
a font with symbols rather than letters—or a Metafont-file
generated by GnuPlot). Setting up such a font using the
New Font Selection Scheme (NFSS) requires that you gen-
erate font definition files. The plain TEX approach is far
more simple: you just need your font and the associated
TFM-file.1 For the Zapf DingBats font, the name of the
TFM-file is pzdr.tfm. Issue the command\font\test
pzdr at 10pt (omitting the.tfm part of the file name)

1. TFM-files for PostScript font can be generated by the utility
AFM2TFM.

Najaar 1998 29

Bijlage 4 Maarten Gelderman

to load this font at the required size (10 points in this
case) and the font is ready for use.\test 1234567890
will generate the following output:✑✒✓✔✕✖✗✘✙✐.
A small example of the beautiful Zapf Changery font
is produced just as easily: look up the name of
the TFM-file involved in the directory/texmf/fonts/
tfm/adobe/zapfding (it turns out to be pzcmi) and
enter: \font\test pzcmi at 10 pt \test This is a
beautiful Hamburgefont, isn’s it? which produces
This is a beautiful Hamburgefont, isn’s it?

Multido
In order to be able to use a DingBats font, you will need
to find out where each symbol can be found. You may use
the individual symbols by their corresponding letters (as
was done in the example above), a more straightforward
approach, however, is to access the individual symbols by
the command\charnnn , wherennn is a number between
0 and255 (a singleTFM-file cannot contain more than256
glyphs). Manually trying out all possibilities wouldn’t be

too exiting of course. Fortunately the (plain) TEX-package
multido is available. Just load it, and let TEX do the work
(see Table1). A ‘translation’ of the commands in Table1
would read: input the filemultido.tex, load theTFM-file
pzdr at a size of10 points and next start repeating the
commandi = i + 1 255 times, each time executing the
third argument of the\multido-command, which tells TEX
to print \i and typeset characteri from the selected font.
After finishing the iterations, print255 and the correspond-
ing character.

A warning
In applying the suggestion mentioned above be warned
that most documents simply are not suited to be perfectly
formatted. TEX will search for the best solution it can find,
given the badnesses you provide it with. However, most
times you will be trading of one badness against another;
simply fixing all penalties and demerits at infinite will most
probably result in an ugly document.

30 MAPS

