
Najaar 1998 35

Bijlage 6
Parameterized data for tables in TEX

Dynamics, aha!

Kees van der Laan
cgl@hetnet.nl

abstract
The issue of generating and using parameterized data for

tables in TEX is elaborated upon. The automatic insertion of
markup along with the use of parameterized markup and the

\btable macro is not the issue, but are prerequisites.
\btable ’s use, along with the automatic insertion of markup in
the data as such, can be seen as tools, stepping stones, which
made it possible to concentrate on pure data generation, or its

use in typesetting tables by TEX.

keywords
BLUe, btable, code tables, data generation, dynamical markup,

education, macro writing, parameterization, tables, tail
recursion

Introduction

Tables comprise a bewildering variety. A glimpse of this
variety was presented at the EuroTeX92 at Prague, and
included as examples in the tables chapter of my PWT.1

For this note I like to discriminate between two kind of
parametrizations

parametrization of the markup in tags, like
\ruled, \framed, and similar things, and
parameterization of the data, that is data which are
generated or taken from a database as function of a
parameter.

In this note I’ll not discuss the parameterization of the
markup. That has been done along with my\btable
macro, which is at the heart of BLUeTEX’s tables. Howev-
er, because\btable is used I’ll discuss its use.

A little about bordered tables
In BLUeTEX the philosophy behind table markup is to sep-
arate markup of the data from the markup of the border, or
as I put it to separate the markup of the first column and
row from the data proper. The markup for the data proper
is independent from whether the table is ruled or not, and
so on. This is parameterized in the column and row separa-
tors. The reason behind ‘bordering’ is similar to the reason
to treat bordered matrices as a separate group, I guess. A
border of a table, especially the first row, is usually more

complicated to format than the proper entries of the table.
In the PWT user guide I introduced a model for a bordered
table.

Use of \btable The above ideas about bordering of ta-
bles have been implemented in\btable, borrowed from
BLUeTEX. To explain the coding of the\btable macro is
not at stake; to tell a little about how to use it might be
handy in understanding this note.

In the following example the use of\btable and its pa-
rameterization of the markup are shown in a nutshell.

Example: Use of\btable and parameterizations

11 12

21 22

Header

1st row 11 12

2nd row 21 22

Caption

Header

1st row 11 12

2nd row 21 22

Footer

It is important to realize that the core, and invariant,
markup of all the three representations is just the\data2

\def\data{11\cs12\rs
21\cs22}

\btable\data

where\cs denotes column separator, and\rs denotes row
separator, of which the appearance in print depends on
tags like\framed or \ruled. Whether the table takes an
explanatory first row, a caption, rules, or similar things,
these have no influence on the markup of the data proper.
I consider this as a sort of abstract markup, which is relat-
ed to dynamical markup, because variations of representa-
tion have been accounted for, while the specification of the

1 PWT denotes Publishing with TEX, the user guide which comes
with BLUeTEX.

2 The \cs and \rs can be omitted, see my note on ‘Minimal
Markup.’

3 This abstraction from plain TEX’s & as separator is also useful

Bijlage 6 Kees van der Laan

36 MAPS

data remains invariant. This approach helps among other
things to recognize in the markup more easily the number
of columns of a table.3

The essentials for its use can be distilled from the example
given above.4 The data are expected as replacement text of
the macro\data, and separated by\cs and\rs, the (pre-
fab, already provided for) tags for column and row separa-
tion. Important is that the table is thought of as a bordered
table, similar to the idea of bordered matrix as treated in
TUGBOAT. The border consists of the ‘11’-element first, to
be optionally specified as a def\first, the border top row
to be optionally specified as the def\header, and the first
column to be optionally specified as replacement text of
the def\rowstblst as ‘groups’5 without further separa-
tion. If the optionals are not defined\btable won’t com-
plain. (This holds too for\btablecaption and\footer.)
The invoke is just\btable\data preceded by optional tags
like \ruled, \framed or similar things, eventally within a
math display. So, it looks like an intelligent, robust macro,
which won’t complain when you specify\first without a
\rowstblst or a\header. In that case the results will most
likely not look like what you had in mind.\btable tries to
make something nice out of what you supplied.

Parameterized data
The data for the tables treated in this note are either pro-
vided by

a program, or
read from a file.

The program will not be recognized as a table, nor will it
be easy to tell how many columns and rows the table will
consist of.

Why?
Data as programs comes in naturally when we think of a
bunch of tables, which are closely related. Examples are
the guide cards for a bridge tournament—which actual-
ly triggered this note—or Wietse’s data—his (employer’s
database of tables—the real life examples.

Roughly seven years ago, I coded my first dynamical and
parameterized ‘table’ in TEX: the various stadia of the tow-
ers of Hanoi game, while attending the advanced TEX class
of David Salomon.6 In that ‘markup’ I made heavily use of
the concept of an active list separator, which I encountered
for the first time inTUGBOAT, and have used happily ever
since. Moreover, the data are generated and parametrized
over the size.

Disclaimer. This note is not about the look-and-feel of
tables. The appearance of the discussed tables is straight-
forward, simple and time-proven, and belong to the class
of bordered tables.

Multiplication table

This example was introduced in the TEX world by Pittman
in the eighties may serve to illustrate the issue of data gen-
eration for tables.7 Maybe, it forms the simplest example
of a parameterized, bordered table.

Example: Multiplication table

× 1 2 3

1 1 2 3

2 2 4 6

What is the problem, doc?
I guess that people would argue that the numbers and lines
could just be marked up for in whatever TEX flavour you
wish, and that is it. Agreed, that is true. See for example
the straight markup `a la BLUe given below.8

\def\first{\times}
\def\header{1\cs2\cs3}
\def\rowstblst{12}
\def\data{1\cs2\cs3\rs

2\cs4\cs6}
\btable\data

But,. . .what if we wish to vary for the size or to vary with
respect to the rules of the table? And in general, what can
be learned from the example? My answer is positive. In-
deed, some paradigms in TEX macro writing can be dis-
tilled from the example marked up as function of its size.

for complicated tables with blocks in it. See the PWT guide for
examples.

4 There is also a two-part variant of the macro but this will not be
used in this note. I have not included the model picture for the
\btable macro either, because this note as such is not about the
macro. For a picture of the model and more elaborate descrip-
tion of the use of\btable, if needed, see the chapter on tables
of the PWT guide.

5 Well, as arguments for a macro. The empty bordered table,
without data is something I did not foresee. One can think of
these as a sort of fill-in form, roster or calendar.

6 See TUGboat,1992, or MAPS92.1, or the Tables chapter of the
PWT guide. If people don’t wish to look upon this as a table,
that is fine with me. IMHO, with all respect, a taxonomy of
tables is not yet in sight, because of the diversity and ambiguity
of the subject.

7 Pittman used it to illustrate nested loops in TEX. I consider it as
a table with data generated (tail) recursively, which is equivalent
to looping.

8 The separation between the header and row-stub-list is default a
rule in BLUe. Because of the different functions it is quite natu-
ral, IMHO, with all respect, to separate the header and rowstubs
from the table proper.

Parameterized data for tables in TEX Bijlage 6

Najaar 1998 37

The drawback is that the resulting markup is hardly ac-
cessible for an ordinary, non-programmer user. Don’t be
afraid, hang-on, and go for it.

Tail recursion in TEX
On several occasions I found it rather useful that I knew
how to code tail recursion—and its termination—in TEX.9

The following generates the numbers0–9. The simplest
example I could think of in order to illustrate the idea.

\def\0{\the\i\advance\i1 \ifnum\i=10 \9\fi
\0}

\def\9#1\0{\fi} %The recursion terminator
\0

Explanation. The macro\0 invokes itself, and before doing
so formats and increases the value of the counter\i. So far
an infinite loop, and simple to understand. Now comes the
tricky, well unusual, part. The condition is also straightfor-
ward but what happens in the true branche? The macro\9
is invoked, which takes as argument all up to and including
\0, meaning there is no further invoke, aha. . . termination.
Nice, but. . . in the termination process also the\fi is eat-
en, and therefore the replacement text of\9 must provide
a \fi. Amazing, isn’t it? Confusing? After a while, you
will be used to it, don’t worry too much, it is not that com-
plicated IMHO,. . . just unusual.

To check your understanding, and demonstrating en-
passant that it is worthwhile to spend some time on it, the
following example of a loop as a real tail recursion encod-
ing in TEX, due to van der Goot.10

\def\loop#1\pool{#1\loop#1\pool}
\def\break#1\pool{}

The toy example can be marked up by the above loop as
follows

\loop \the\i \advance\i1
\ifnum\i=10 \expandafter\break\fi

\pool

Remark. Sometimes, especially in nested loops, it is better
to have\fi as replacement text of\break instead of the
use of\expandafter.

The multiplication table via tail recursion
I like to split up the generation of what is needed in three.
How to generate the

header row
data proper, and
first column.

Next to the generation of the data I inserted en-passant the
markup tags for column and row separation,\cs and\rs,
respectively.

The header row The first row, which is called\header
in BLUe, is a straightforward elaboration of the toy exam-
ple of generating the digits0-9 via tail recursion, treated
above. However, now we must increase globally, because
we are within plain TEX’s \halign reign. The problem is
to generate the numbers1, 2, . . . (up to the order\n), sepa-
rated by the markup for the column separator\cs.

\def\header{\the\j \global\advance\j1
\ifnum\j>\n \redaeh\fi
\cs\header}

\def\redaeh#1\header{\fi}

The data proper This is a little harder because we have
to apply the tail recursion nested: on the outer level for the
rows, and within each row for the columns.

\newcount\i%row index
\newcount\j%column index
\newcount\n%order
\newcount\entry
\def\rows{\global\j1 \cols\global\advance\i1

\ifnum\i>\n \swor\fi
\rs\rows}

\def\swor#1\rows{\fi}
\def\cols{\entry\i \multiply\entry\j \the\entry

\global\advance\j1
\ifnum\j>\n\sloc\fi

\cs\cols}
\def\sloc#1\cols{\fi}
%
\global\i1 \n3 \framed\btable\rows

By the way,\framed does what its name suggests: the table
is framed.

Are you still there? To finish up the dynamical ‘markup’
we have to code for the first column, also called row-stub-
list in BLUe. This is tricky, admitted. One has to know
how\rowstblst is processed. Once this is known, it is not
that difficult anymore.

\def\rowstblst{Anything, just phoney}
\def\nxtrs{\the\i\rss}%overriding definition

Explanation. The phoney definition is there for fooling
\btable, to let it think that a row-stub-list is there. Agreed,
a real hack. Then, the real thing, redefine\nxtrs to yield
the rowstubs on turns.

9 By the way, I had to unlearn never thinking in infinite loops.
In this case, however, it was useful to code an infinite situation
first and then account for the termination.

10 Loops have been dealt with in my ‘Paradigms: Loops,’ MAPS
17.

Bijlage 6 Kees van der Laan

38 MAPS

What I needed once

Of late I was asked as a tournement director for a bridge
drive and faced the problem to provide for guide cards.11

The scheme I used—Mitchell—is defined as follows.
For a tournament withn tables andn rounds, that is2n

pairs

at table1 pair 1 as NZ meets pair2 as EW,
at table2 pair 3 as NZ meets pair4 as EW, etc.
After each round NZ moves up and EW moves
down1 table.

In the concrete casen was14. I took the number of tables
(half the number of pairs) as parameter. Below I have taken
for conceniencen = 7.

Mitchell 14, 7 rounds

T1 T2 T3 T4 T5 T6 T7

1–2 3–4 5–6 7–8 9–10 11–12 13–14

13–4 1–6 3–8 5–10 7–12 9–14 11–2

11–6 13–8 1–10 3–12 5–14 7–2 9–4

9–8 11–10 13–12 1–14 3–2 5–4 7–6

7–10 9–12 11–14 13–2 1–4 3–6 5–8

5–12 7–14 9–2 11–4 13–6 1–8 3–10

3–14 5–2 7–4 9–6 11–8 13–10 1–12

How to program this table? Of course we can provide
all the data explicitly, with the advantage of simplicity and
readability, but with the disadvantage of susceptibility for
errors and that it has to be redone for each value of the
parameter. More elegant is to program the table in the same
spirit as the multiplication table above. Because it is so
similar I’ll just give the code, modulo some syntactic sugar.

\newcount\NZ\newcount\EW
\newcount\nz\newcount\ew
\newcount\i\newcount\j
\newcount\n\newcount\twon
\NZ3 \EW0 \i0 \j0 \n7 \twon2 \multiply\twon\n
\def\btablecaption{Mitchell 14, 7 rounds}
\def\header{\global\advance\j1 T\the\j

\ifnum\j=\n \global\j0 \redaeh\fi
\cs\header}

\def\redaeh#1\header{\fi}
%data
\def\rows{\global\advance\i1 \global\j0

\global\advance\NZ-2
\ifnum1>\NZ \global\advance\NZ\twon \fi

\nz\NZ
\global\advance\EW2
\ifnum\EW>14 \global\advance\EW-\twon \fi
\ew\EW
\cols
\ifnum\i=\n\swor\fi
\rs\rows}

\def\swor#1\rows{\fi}
\def\cols{\the\nz--\the\ew

\global\advance\nz2
\ifnum\nz>\twon \global\advance\nz-\twon \fi
\global\advance\ew2
\ifnum\ew>\twon \global\advance\ew-\twon \fi
\global\advance\j1
\ifnum\j=\n\sloc\fi
\cs\cols}

\def\sloc#1\cols{\fi}
%There you go
\ruled\framed\btable\rows

In a Mitchell scheme the pairs don’t really need a guide
card, because of the simple process of going from one ta-
ble to the next, c.q. the previous. The guide card is gen-
erally given to each pair in order that they know at which
table in what direction they play in each round, despite the
heat of the tournament. Below such a guide card has been
included.

Example: Guide card parameterized over pair number

Paar 13 – NZ

Ronde Tafel Tegen Spellen

1 7 14 25–28

2 8 18 1–4

3 9 22 5–8

4 10 26 9–12

5 11 2 13–16

6 12 6 17–20

7 13 10 21–24

Remark. It is tempting to ponder about such a scheme as a
database from which the required tables can be generated
via for example the commands

11 Guide cards guide pairs through the tournement, prompted by
the competition and the scheme chosen. One class is called
the Mitchell scheme.

Parameterized data for tables in TEX Bijlage 6

Najaar 1998 39

\mitchell{14}
\pair13\mitchell{14}

Font chart alternative

Along with BLUe Sky’s TEXtures I found an alternative
concise coding for the ‘font charts.’ InTUGBOAT the
code tables are parameterized over the fonts and the en-
tries are generated by\normalchart. Below a variant of
‘\normalchart’ is included.12

�5 �6 �7 ǌ8 ǉ9
10 �11 �12 13 �14 �15 �16

�17 �18 �19 �20 �21 �22 �23 �24 �25 �26 �27

�28 �29 �30 �31 ¨32 !33 ”34 #35 $36 %37 ´38 ’39 (40

)41 *42 +43 ,44 -45 .46 /47 048 149 250 351 452 553

654 755 856 957 :58 ;59 «60 ı61 »62 ?63 ˘64 A65 B66

C67 D68 E69 F70 G71 H72 I73 J74 K75 L76 M77

N78 O79 P80 Q81 R82 S83 T84 U85 V86 W87 X88

Y89 Z90 [91 “92]93 ^94 _95 ‘96 a97 b98 c99 d100

e101 f102 g103 h104 i105 j106 k107 l108 m109 n110 o111

p112 q113 r114 s115 t116 u117 v118 w119 x120 y121

z122 –123 —124 }125 ~126 �127

The above has been obtained as follows.

\font\test=wncyb10 \relax
\def\c#1{\setbox0=\hbox{\test\char#1}%
\ifdim\wd0>0pt\box0\lower3pt

\hbox{\fiverm\the#1}
\fi}
\noindent{\count0=0
\loop\c{\count0}

\ifnum\count0<128 \advance\count0 by1
\repeat}

Data from a file

Suppose you have data on a file separated by spaces and by
lines. How to typeset these with TEX?

I did read the data line by line to insert the\rs and for
each line between the data I inserted the\cs. For a tiny
in-principle example it worked. This has more to do with
automatically insertion of markup by TEX than with data
generation.

Acknowledgements

As usual Jos Winnink proofed the paper and helped me in
coercing the note into MAPS format. His remarks and sug-
gestions are always well-taken. To say the least he reflects
what despite the intention did not come across. I consid-
er the approach of a friendly eye better than a referee in

warranting quality.
Wietse Dol suggested to consider ‘data-driven’ tables, or

as he did in Pascal to typeset tables from a database of table
data.

Conclusions

The unusal, dynamical and parameterized markup of tables
is completely different from the example material as treat-
ed inTUGBOAT in the alignment chapter.13 I encountered in
practice the need for parameterization table markup next to
the generation of the data, when I had to create bridge fill-
in forms, score sheets, and guide cards for each pair, all of
varying size.

In the PWT guide the Pascal triangle, for example, has
been marked up as function of its order. Crosswords
are parameterized over whether the puzzle or the solution
is wanted, and are data-driven. Moreover, the following
gnomons, which have been discussed in TUGboat some
years ago, can be found in the PWT guide as another ex-
ample of generated data and unusual markup in general,
not to mention the included charts and trees. Do have a try
in parameterization of your table markup and generation of
data.

1 3 5
1 4 7
1 5 9

1 3 5 7 9
1 4 7 10 13
1 5 9 13 17
1 6 11 16 21
1 7 13 19 25

Or its graphical counter part.

And, . . . let me know about your examples. I welcome
comments.

My case rests. Have fun, and all the best

12 I don’t know who the author is, I’m sorry, but found it handy
myself to find out what should be keyboarded or put in a chard-
ef for unusual fonts.

13 However, the markup for the font tables is parameterized over
the fonts.

