
software

4Spell, a spell-checker for Windows 95/98/NT

Wietse Dol and Erik Frambach

abstract
In this paper we will describe the features of 4Spell 1.1, a

Windows spell-checker for TEX documents. Since there aren’t
many good spell-checkers around and since 4Spell only works

on Windows platforms, we will also explain how the
spell-checking is done. This should make it possible to write a

spell-checker for other platforms (why not use perl and
become platform independent :-) 4Spell is part of the new
4TEX for Windows (release expected by the end of March

1999). We realized, however, that this tool could be useful for
people who do not want to use 4TEX and hence we made it a

stand-alone freeware program.

Introduction

Spell-checkers are nowadays widely used by word pro-
cessors such as MS-Word and WordPerfect. They are
extremely useful in correcting spelling errors, especially
when writing in a non-native language.

TEX users often claim that TEX is better than those word
processors, one wonders why there are so few good spell-
checkers for TEX documents.

The main reason for this is that TEX documents not only
contain ”normal” words, but also complex TEX commands.
And TEX commands may or may not take parameters, and
parameters can be delimited in any imaginable way.

Within certain TEX environments you want the words to
be checked (e.g. in tables) and in others you want them
to be ignored (e.g. mathematics). All in all a complex
situation if you realize that TEX commands, mathematics,
and normal words needn’t be separated by spaces and line
feeds. Any good spell-checker for TEX documents requires
a TEX parser that reads the text and decides whether or
not a word or a part of the word should be spell-checked.
Is writing a parser difficult? The answer probably would
be ”yes”, since there aren’t many spell-checkers around.
4Spell proofs that writing such a spell-checker can be done
and that it’s not that hard to write a spell-checker that can
even do more than just TEX.

4Spell features

When we started to write4TEX for Windows we still
needed the ”old” MS-Dos based AmSpell as a spell-

checker. AmSpell has some serious problems/bugs when
it checks your documents. We will not give you a list of
those problems, but after AmSpell has checked your doc-
ument you still can find spell-checking errors. This is be-
cause Amspell skips parts of your document and doesn’t
tell you it did.

In September1998 we had the discussion if we needed
to write a spell-checker for4TEX and concluded that it
should be too time consuming to write a good program,
since TEX documents are too complex. As often, complex
material tends to become much simpler when you have a
closer look and spend more time thinking about the struc-
tures (TEX is a structured language isn’t it). When start-
ing to write 4Spell we started not on the spell-checking
routines but on describing how a TEX document should be
parsed through the spell-checker. This parsing is the en-
gine of a good spell-checker (and here AmSpell makes it’s

Voorjaar 1999 123

software Wietse Dol and Erik Frambach

mistakes). The spell-checking routines were supplied by
Aleksander Simonic. Alex is the author of WinEdt, prob-
ably the best TEX-aware shareware editor there is for OS/2
and Windows. Cooperation with Alex means that we can
all benefit from the same dictionaries, which makes main-
tenance a lot easier.

In the next section we will describe the parsing of a doc-
ument, but now we will summarize some of4Spell’s fea-
tures:

Color highlighting, i.e. actions of the spell-checker are
translated into coloring of words. This makes it easy to
see how your document was interpreted and (possibly)
changed. Not useful you would say!? But we discovered
it is extremely powerful. For instance suppose you want
mathematics to be skipped by the spell-checker and you
have written in your document

This example $x+y will trigger probblems

Can you predict what will happen if you check your
document: it will skip the whole document after the
$xy+ since the mathematics isn’t ended properly. With
AmSpell (or any other spell-checker) you couldn’t
see this. Now you can see and solve the problem just
by looking at the colored document (i.e. everything
after the mathematics statement$xy+ is colored as
mathematics)!
Support of many languages: English (American and
British), German, Dutch, French, Italian, Swedish,
Danish, Russian, Polish, Spanish and South-African.
Since all dictionaries are plain ASCII it is simple to add
your own language or to update one of the dictionaries.
Language switching within a document allows you to
write multilingual documents and spell-check all parts
according to the language in which they were written.
Generation of a word list. All the different words that
are used within your document can be listed. This can
be useful in deciding which words should be considered
for indexing.
Generation of a logfile, showing all actions and changes
that were performed.
Basic statistics of the document and the spell-checking
run are recorded.
Many options that can be switched on/off to increase
speed and/or performance.
You can select fonts, font sizes and character sets. This
makes it possible to spell-check non-western documents
(Polish, Russian, etc).
All colors used can be changed according to your
personal preferences.
4Spell is format dependent. It maintains specific lists for
each format that you use. Lists are defined for: accents,

mathematical environments, commands, environments
and verbatim commands. Also mathematics (between
$...$ or $$...$$) can be ignored. Note that4Spell
supports (by default) the following formats:
– TEX and LATEX documents
– Rich Text Format (RTF) documents
– plain ASCII documents
– HTML documents
– BibTEX documents
Indeed, not only TEX documents can be checked and
hence makes4Spell useful not only for TEX users.
It is easy to add a format (e.g. ConTEXt) and make
the chenges to one of the format dependent lists and
properties.

4Spell is language dependent. It maintains specific
lists for each language that you use. Lists are defined
for: automatic correction of typing mistakes, user
specific words, and similar characters (used to specify
which letters/characters are associated when looking for
alternatives of an incorrect word).
4Spell can change its user-interface language on the fly
(as4TEX and4Project).
All settings for words, subwords, punctuation marks,
etc., are format specific (see also the next section). This
makes it easy to spell-check not only documents written
in TeX, but also Plain ASCII, HTML, or RTF files. And
of course you can define you own formats.
You can check wether a word is used twice. For instance
have a look at the word ”one” in the next example:

When you write very long lines and you end
end one with a small word you tend to write
certain words twice.

124 MAPS

4Spell, a spell-checker for Windows 95/98/NT software

4Spell will ask you if you want to delete the second
”end” entry.
4Spell is lower and uppercase sensitive. For instance
words as ”This”, ”tHis” and ”THis” can be changed
automatically in ”This”. When checked by4Spell it will
give the suggestion ”This” for the words used in this
example.

The parser

All functionality above is mostly the result of writing a
(TEX) parser. To make it easier for others to write their own
parser, and for those who are just curious to know how it
works, we will explain the parsing algorithms.

The parser will read words until the end of a file is
reached. This is done by letting a pointer start at the be-
ginning of the file and start with the procedureREADWORD.

STEP 1: get a word
procedure READWORD

1. Skip EndOfWord characters until the first non-
EndOfWord character.

2. Read and remember characters until the firstEndOfWord
character.

The result of1 and2. is aword.
This READWORD procedure is repeated until the end of the
file. With these words you need to do a lot of checks before
you can spell-check (since a word as defined above can
contain (TEX) commands, etc.). Note also (within TEX) the
EndOfWord characters are defined as: a space, a hyphen, a
tilde, a Carriage-Return, a Line-Feed, and an End-Of-File
character.

STEP 2: check the word for properties
For every word check the following:

1. check if theLanguage Switch (i.e., the command that
is used to change dictionaries) is part of the word

2. check if one of the commands in the (TEX) Begin
Environments list is part of the word

3. check if one of the commands in the (TEX) commands
list is part of the word

4. check if one of the commands in theBegin
Mathematics Environments list is part of the
word

5. check if theMathematics Command (e.g., $x+y$ or
$$x+y$$) is part of the word

6. check if theVerbatim command is part of the word
7. check if part of the word starts a (TEX) comment (i.e.

the % sign)

If one of the above is true you keep on reading words un-
til:

1. the characters after the Language Switch command is
the filename of the dictionary that should be loaded at
that point.

2. theEnd Environment command is part of the word
3. theEnd command command is part of the word
4. theEnd Mathematics Environment command is part

of the word
5. theEnd Mathematics is part of the word
6. theEnd Verbatim character is reached
7. end of the line is reached

This seems easy, but the problem is that when looking
for, say, an environment to be ended, the same environment
can start again and hence we do not stop at the first end-
environment part, but at the second (or even higher) end-
environment parts. This example will hopefully explain the
problem:

\begin{skipping}
To explain the spell problem see this example
\begin{skipping}

This won’t work if you do not count the number
of begin environments

\end{skipping}
You understand the example?

\end{skipping}

What the spell-checker should do is skip the complete
example above. It should not stop skipping at the first
\end{skipping} command.

When performing the actions above, we were looking
for parts of the words. This means that after these actions
we will have found (part of) a word preceding the action

Voorjaar 1999 125

software Wietse Dol and Erik Frambach

and (part of) a word after ending the action. With these two
words (which may be empty) we proceed as with a word
that doesn’t trigger one of the actions described above.

STEP 3: divide word into subwords
Look if the word containsSubWordPunctiationMarks. If
so, divide word into subwords.
SubWordPunctuationMarks are

,;:.!@#$&*?"%(){}[]-+=0123456789\‘˜ˆ*_/|’

An example could clarify the meaning of subwords.
Suppose we have the word

\def\hello{\textbf{Hello}}

This will be divided into four subwords:

\def
\hello
\textbf
Hello

STEP 4: check the subwords for properties
These subwords are candidates for spell-checking, but be-
for we spell-check these subwords we check:

1. Does the subword start with a (TEX) Command
Character (”\”), then skip the subword (so the
first three subwords of the example are skipped).

2. Is the subword one of the words in theIgnore words
list, then ignore it.

3. Is the subword one of the words in theReplace words
list, then replace it automatically.

4. If the subword is one of the words in theUser
Dictionary, then skip the subword.

5. If the subword is one of the words in theIgnore
Dictionary, then skip the subword.

6. If the subword is one of theAuto Replace word list,
then replace the subword with correct word from the
Auto Replace with word list

If the subword doesn’t belong to any of the six categor-
ies above, we spell-check the subword (Alex’s routines do
the job fast and easy). If the subword is correct we skip
the subword. If it is not a correct word, we will search for
alternatives for this (sub)word. The user will be prompted
by 4Spell what to do in this case: select one of the alternat-
ives, enter your own text, ignore this word, or add it to the
user dictionary.

It seems easy, but be aware that when building a parser,
you will you need to do a lot of bookkeeping, and you
will need some more advanced programming tricks (e.g.,
all word actions and subword actions are recursive proced-
ures).

126 MAPS

