
perl scripting

How Perl can help TEX

Wybo Dekker
wybo@servaly.hobby.nl

abstract
Perl may be an easy interface to TEX when it comes to

repetitive tasks, like writing letters, creating reports from
databases, and many more. This article shows how Perl can be

used to generate many similar pictures via the MFPIC style

keywords
perl, mfpic, mkpic

1 Introduction

I recently had to produce about40 pictures for insertion
into a book on elementary mathematics. I decided that the
MFPIC would suite most of my needs. But writingMFPIC

commands is not easy. Figure1, for example, can be con-
structed using the followingMFPIC commands:

1 \mftitle{ce}
\setlength{\mfpicunit}{1mm}
\begin{mfpic}[16][5.45]{0}{4}{-6}{5}
\axes

5 \hatchwd{2}
\tlabel[bc](0,5.54){y}
\tlabel[cl](4.21,0){x}
\tlabel[tc](2,-0.18){\strut 2}
\tlabel[bc](3,0.18){\strut 3}

10 \tlabel[cr](-0.07,-5){\strut -5}
\tlabel[cr](-0.07,0){\strut 0}
\tlabel[cr](-0.07,4){\strut 4}
\rhatch\lclosed\connect
\lines{(0,0),(0,4)}

15 \function{0,3,.05}{4-x*x}
\lines{(3,-5),(3,0)}
\endconnect
\function{0,3.2,.05}{4-x*x}
\dotted\arrow\lines{(3,-5),(0,-5)}

20 \dotted\arrow\lines{(3,-5),(3,0)}
\tlabel[bc](3,4){\parbox[b]{60mm}{%
\center $f(x)=4-xˆ2$}}

\arrow\lines{(3,3.46),(1.7,1.1)}
\tlabel[bc](2,5){\parbox[b]{60mm}{%

25 \center Area O_1}}
\arrow\lines{(2,4.46),(1,2)}
\tlabel[bc](4,2){\parbox[b]{60mm}{%
\center Area O_2}}

\arrow\lines{(4,1.46),(2.8,-2)}
30 \end{mfpic}

�
y

x
2

3

-5

0

4 f (x) = 4− x2

AreaO1

AreaO2

Figure 1. example a

As you can see, this implies a lot of typing and one has to
type many nested [],{}, and () pairs. Also, several floating
point numbers, such as those in lines6–12, depend on the
scaling factors defined in line3. They have to be calculated
manually, and changing the scale will imply recalculation
of those values. The scale itself is set in line3: I wanted the
picture to be64 mm wide, so I had to calculate 64/(4−0) =
16 for the scaling factor in the x-direction. It would be
much easier if one could type something like:

1 begin ce 64 64 0 -6 4 5 x y
xmark 2
Xmark 3
ymark -5 0 4

5 bhat
lines 0 0 0 4
func 0 3 .05 4-x*x
lines 3 -5 3 0
ehat

10 func 0 3.2 .05 4-x*x
xydrop 3 -5
arrow 3 4 1.7 1.1 $f(x)=4-xˆ2$
arrow 2 5 1 2 Area O_1
arrow 4 2 2.8 -2 Area O_2

15 end

Here we see no brackets, braces or parentheses anymore,
width and height are set straightforwardly to64 mm and the
labels along the axes are redefined as xmarks and ymarks,

130 MAPS

How Perl can help TEX perl scripting

for which nothing has to be given but the x- and y-values,
respectively. The corresponding y- and x-values are sup-
posed to be calculated automatically.

Another construction that frequently occurs in my pic-
tures is a label with an arrow starting from the center of its
baseline, such as the one in lines21–23 in the long listing.
This is replaced in the short listing with line12, where the
starting position of the arrow is supposed to be calculated
automatically. As a result, if I want to move the label, the
arrow is moved with it automatically.

All this is possible by using a PERL interface that con-
verts the short command file into anMFPIC source file.

2 The Perl interface

I wrote the PERL scriptMKPIC (section5) on-the-fly: I first
wrote lines1–19 and131–146, which just open, write and
close files, define some handy variables and LATEX com-
mands, and print (line130) anything in the input file lit-
erally to theMFPIC output file. At that point, therefore,
commands on the input file had to be validMFPIC com-
mands. The initial lines also comprised a system call (line
134) running LATEX, mf and xdvi, so that running the script
would display the result. Instead of using a separate in-
put file for my newly created commands, I put them in the

DATA section of my script and read them from there.
So I had to edit only one file for the creation of both my
pictures and new commands.

Then, thinking about how I wanted my pictures to look,
I inserted commands in lines20–128 whenever I felt the
need to define one. The first was thebegin command,
of course, which has also the most complex definition, as
it defines many scale-dependent variables and TEX com-
mands that might be useful for any command defined later.

Since I defined only what I needed, this PERL script does
not have commands for every availableMFPIC command.
But it is now easy to add more commands.

2.1 How to use mkpic
First of all, read the manpage of the PERL-script, gener-
ated from the script using pod2latex, which is shown in
section4.

The easiest way to use the script is to append your own
commands to the DATA -section of the script, and run it.
This will produce a file mkpic.sty, which provides LATEX-
commands named\Fig<name>, where<name> stands for
every name you use in thebegin command. Finally, you
can use those\Fig<name> commands in a LATEX document.

3 Some more examples

Here are a few more examples illustrating some features of
theMKPIC script:

�
y

x
a x1 x2 b

f (x1) f (x2)

f (x) increasing on[a, b]
x1 < x2⇒ f (x1) < F(x2)

Figure 2. example b

The following commands will produce figure2:

1 begin b 64 64 0 3 12 8 x y
xmark a 2 x_1 4 x_2 8 b 10
ydrop 2 4.414
ydrop 4 5

5 ydrop 8 5.828
ydrop 10 6.162
label cc 4 4 $f(x_1)$
label cc 8 4 $f(x_2)$
label cc 7 8 $f(x)$ increases on $[a,b]$

10 label cc 7 7.5 $x_1<x_2\Rightarrow f(x_1)<F(x_2)$
func 1 11 .1 x**(.5)+3
end

�
y

x

f (x)

f ′(x) > 0

f ′(x) decreasing

Figure 3. example c

Voorjaar 1999 131

perl scripting Wybo Dekker

These commands illustrate how validMFPIC commands
can be interspersed betweenMKPIC commands (see fig-
ure3:

1 begin c 64 64 0 0 10 10 x y
curve 1 1 2 3 4 5.7 7 8.1 9 9
\shift{(-.05,.05)}
point 2 3 4 5.7 7 8.1

5 \shift{(-.05,.05)}
func 1.4 2.6 .1 1.65*x-.3
func 3.2 4.8 .1 1.025*x+1.6
func 6.1 7.9 .1 .62*x+3.76
label cl 9.5 9 $f(x)$

10 label tl 5 5 $fˆ\prime(x)>0$
label tl 5 4 $fˆ\prime(x)$ decreasing
end

�
y

x

horizontal

inflection point

inflection point

f (x) = 6x4 − 8x3 + 1

1

0

-1

Figure 4. example d

Figure4 is produced by:

1 begin d 64 64 -.85 -1.5 1.5 5 x y
func -.6 1.5 .05 6*(x**4)-8*(x**3)+1
lines -.2 1 .2 1
label cr -.25 1 horizontal

5 arrow .5 2 0 1 inflection point
arrow .8 1 .65 0 inflection point
arrow 1 5 1.5 4.375 $f(x)=6xˆ4-8xˆ3+1$
Xmark 1
ymark \raisebox{-3.5mm}{0} 0 -1

10 xydrop 1 -1
end

And here is an elaborate quasi3D picture. It shows how
comments can be inserted. Standard axes are suppressed
because they need special treatment (see figure5):

1 begin e 64 64 -4 -4 4 4 - -
\dashed

�
3

z

y

x

2

f (x, y) = x2 − 4x + 2y2 + 4y + 7

-1

1

Figure 5. example e

lines -4 0 0 0 0 0 0 -4 # neg z and neg y
\dashed

5 lines 0 0 3 1.73 # neg x
\arrow
lines 0 0 0 4 # pos y
\arrow[5]
lines 0 0 4 0 # pos z

10 \arrow[5]
lines 0 0 -3 -1.73 # pos x
\dotted
lines -1 4 -1 0 -4 -1.73 # intersections y=-1 plane
\dotted

15 lines -1 -.577 -4 -.577
intersection x=2 plane with xy-plane

% extra helplines
\dotted
lines -2 .423 -2 -.577 0 0 0 1 -2 .423

20 Ymark 3
% end of extras
\dotted
lines 0 3 -1 3 -4 1.27
\dashed\sclosed

25 curve -3 2.42 -1.5 2.711 -1 2.42 -2.5 2.134
label bc 0 \yhi z
label cl \xhi 0 y
label tr -3.1 -1.8 x
label cl -.85 -.577 2

30 label tc 0 5.5 $f(x,y)=xˆ2-4x+2yˆ2+4y+7$
xmark -1
Ymark 1
\shift{(-2,.42)}
\dashed

35 func 0 .5 .1 9*x*x
func -.5 0 .1 7*x*x
\dashed
func -1 0 .1 2*x*x
func 0 1 .1 2*x*x

40 end

132 MAPS

How Perl can help TEX perl scripting

4 The mkpic manpage

NAME
mkpic — interface for making pictures with mfpic

SYNOPSIS

begin name xl yl xmin ymin xmax ymax xlabel ylabel
xmark [label1] x1 [label2] x2 ...
Xmark [label1] x1 [label2] x2 ...
ymark [label1] y1 [label2] y2 ...
Ymark [label1] y1 [label2] y2 ...
xdrop x y
ydrop x y
xydrop x y
arrow x1 y1 x2 y2 label
label YX x y label
point x1 y1 x2 y2 ...
lines x1 y1 x2 y2 ...
curve x1 y1 x2 y2 ...
rect x1 y1 x2 y2
crect x1 y1 x2 y2
func xmin xmax step expression-in-x
comment
hatch
bhat
ehat
end
stop

DESCRIPTION
mkpic provides an easy interface for generating commands
for making small pictures with mfpic. To this end an input
file has to be created consisting of commands with space
separated parameters.

Currently the following commands are implemented:

begin end Every picture begins with thebegin
command and ends with theend command. Thebegin
command defines a name for the picture and defines a
latex\newcommand with that name, prefixed withFig.
The resulting\newcommand is written to a .sty file. Thus
the command

begin aa ...

starts writing\newcommand{\Figaa}{... to the .sty
file, and the picture can be reproduced in a LaTeX
document by importing the .sty file and using the
\Figaa command.
xl and yl are the lengths of the x- and y-axes. xlabel
and ylabel are the label that are placed at the ends of
those axes. Use a space to suppress labeling, or “-” to
suppress drawing the axes at all.

xmark ymark Xmark Ymark
These commands place one or more labels along the x-

or y-axes, either below (xmark andymark) of above
(Xmark andYmark) the axis.
For the[xXyY]mark commands a parameter containing
any character other than[−.0-9] is interpreted as the
label to be placed and its position is expected in the next
parameter. If a parameter is just a number, it is placed at
that x-position.

xdrop ydrop xydrop These commands draw dotted
arrows perpendicularly to the x-axis, the y-axis and both
axes, respectively, ending on the axes with the arrow
head.

arrow draws an arrow from(x1,y1) to (x2,y2) labeled on
its tail with label

label draws a label at(x,y). YX tells how it will be
adjusted: for Y=t,b,c(x,y) will be, in the y-direction,
on top, bottom or center of the label respectively, for
X=l,r,c it will be, in the x-direction, left, right or center
adjusted on(x,y). Thus

label tl 0 0 Hello

will draw the string Hello with its lower left corner at
(0,0)

point draws points (dots) at (x1,y1), (x2,y2) etcetera.
lines draws line segsments from (x1,y1) to (x2,y2),

(x3,y3) etcetera.
curve draws a bezier curve from (x1,y1) to (x2,y2),

(x3,y3) etcetera.
rect draws a rectangle with diagonal points at (x1,y1)

and (x2,y2).
crect clears a rectangle with diagonal points at (x1,y1)

and (x2,y2).
func draws the function given byexpression-in-x

betweenxminandxmax, stepping withstepunits in the
x-direction.

hatch hatch the closed curve that foloows.
bhat starts a path that will eventually be closed, and then

hatched.
ehat ends a path started withbhat, closes it and then

hatches it.
stop stops further reading of the input. Useful if you

have many pictures, but want to see only the first few
for testing purposes.

denotes a comment. The # character and everything
following it is discarded.

anything else will be inserted as is in the style file,
and therefore should be a validmfpicstatement. You
use this when you need such a staement only once, or a
few times and therefore see no need to define a proper
command for it.

Voorjaar 1999 133

perl scripting Wybo Dekker

5 The Perl script
This is the PERL-script without the pod-text. I removed it
as the manpage is shown in a separate section:

#!/usr/bin/perl -w

mkpic - interface for making pictures with mfpic

use vars qw($com);
$tex=shift or $tex=’mkpic’;

open_stylefile();
for (glob(’pictures.*’)) {unlink $_}

open(TEX,">$tex.tex");
print TEX ’\documentclass[a4paper]{report}
\usepackage{’.$tex.’}
\begin{document}\noindent
’;

%pos=(’x’=>’tc’, ’y’=>’cr’, # positions for [xyXY]marks
’X’=>’bc’, ’Y’=>’cl’);

while (<DATA>) {
chomp;
s/\s*#.*//; # remove comment
next unless $_; # skip empty lines
/ˆbegin/ and do {
($com,$name,$xl,$yl,$xmin,$ymin,
$xmax,$ymax,$xlabel,$ylabel)=split;
$xlabel="" if $xlabel eq ’-’;
$ylabel="" if $ylabel eq ’-’;
$xscale=int(100*$xl/($xmax-$xmin)+.5);
$yscale=int(100*$yl/($ymax-$ymin)+.5);
$dx=sprintf("%.2f",100/$xscale);
$dy=sprintf("%.2f",100/$yscale);
$yx=$ymin>0 ? $ymin : 0; # y-position of the x-axis
$xy=$xmin>0 ? $xmin : 0; # x-position of the y-axis
$xlo=$xy-$dx; # x-pos of right side of y-markers
$ylo=$yx-$dy; # y-pos of top side of x-markers
$xhi=$xmax+3*$dx; # x-pos of left side of x-label
$yhi=$ymax+3*$dy; # y-pos of bottom side of y-label
print

"%\n%====$name====\n".
"\\newcommand{\\Fig$name}{\\mftitle{$name}\n".
"\\def\\xlo{$xlo}\\def\\xhi{$xhi}\n".
"\\def\\ylo{$ylo}\\def\\yhi{$yhi}\n".
"\\def\\xy{$xy}\\def\\yx{$yx}\n".
"\\vspace*{5ex}\n".
"\\begin{mfpic}[$xscale][$yscale]".
"{$xmin}{$xmax}{$ymin}{$ymax}\n".
"\\hatchwd{2}\n".
"\\tlabel[bc]($xy,$yhi){$ylabel}\n".
"\\tlabel[cl]($xhi,$yx){$xlabel}\n";

print TEX "\\mbox{\\Fig$name}\\\\[20mm]\n";
},next;
/ˆarrow/ and do {
($com,$x1,$y1,$x2,$y2,$label)=split(/\s+/,$_,6);
print "\\tlabel[bc]($x1,$y1)".

"{\\parbox[b]{60mm}{\\center $label}}\n".
"\\arrow\\lines{($x1,".
($y1-$dy*3)."),($x2,$y2)}\n";

},next;
/ˆ[xyXY]mark/ and do {

($_,@z)=split;
s/mark//; # ’x’, ’y’, ’X’ or ’Y’
for ($i=0;$i<@z;$i++) {
($label=$z[$i]) =˜ /ˆ[-.\d]+$/ or $i++;
$x=/x/i ? $z[$i] : /y/ ? $xlo : -$xlo;
ˆxmark? ymark? Ymark!
$y=/y/i ? $z[$i] : /x/ ? $ylo : -$ylo;
ˆymark? xmark? Xmark!
print "\\tlabel[$pos{$_}]($x,$y)".

"{\\strut $label}\n";
}

},next;
/ˆ(point|lines|curve|rect|crect)/ and do {

for example: crect 5 20 20 5
s/ˆ/\\/; # \crect 5 20 20 5
s/\s+/{(/; # \crect{(5 20 20 5
while(/\s+/) {
s/\s+([-.\d]+) ?/,$1),(/;

} # \crect{(5,20),(20,5)
s/..$/}/; # \crect{(5,20),(20,5)}
s/crect/gclear\\rect/;

\gclear\rect{(5,20),(20,5)}
print "$_\n";

},next;
/ˆfunc/ and do {

($com,$x,$y,$d,$f)=split;
print "\\function{$x,$y,$d}{$f}\n";

},next;
/ˆhatch/ and do {

print ’\rhatch\draw\lclosed’;
},next;
/ˆbhat/ and do {

print ’\rhatch\lclosed\connect’,"\n";
},next;
/ˆehat/ and do {

print ’\endconnect’,"\n";
},next;
/ˆxdrop/ and do {

($com,$x,$y)=split;
print "\\dotted\\arrow".

"\\lines{($x,$y),($xy,$y)}\n";
},next;
/ˆydrop/ and do {

($com,$x,$y)=split;
print "\\dotted\\arrow".

"\\lines{($x,$y),($x,$yx)}\n";
},next;
/ˆxydrop/ and do {

($com,$x,$y)=split;
print "\\dotted\\arrow".

"\\lines{($x,$y),($xy,$y)}\n";
print "\\dotted\\arrow".

"\\lines{($x,$y),($x,$yx)}\n";
},next;
/ˆlabel/ and do {

($com,$m,$x,$y,$label)=split(/\s+/,$_,5);
$m=˜/ˆ[bct][lcr]$/ or die "illegal label in $_\n";
print "\\tlabel[$m]($x,$y){$label}\n";

},next;
/ˆend/ and do {

axes drawn last for easier rect clears:
print "\\arrow[\\axisheadlen]\\lines".

"{($xmin,$yx),($xmax,$yx)}\n" if $xlabel;
print "\\arrow[\\axisheadlen]\\lines".

134 MAPS

How Perl can help TEX perl scripting

"{($xy,$ymin),($xy,$ymax)}\n" if $ylabel;
print "\\end{mfpic}}\n";

},next;
/ˆstop/ and do { last }; # stop reading the input
print "$_\n" if $_; # anything alse printed literally

}
print TEX "\\end{document}\n";
close(TEX);
close(STY);
system("latex $tex && \

mf ’\\mode=localmode;’ input pictures && \
latex $tex && \
xdvi $tex");

sub open_stylefile {
open(STY,">$tex.sty"); select STY;
print ’\RequirePackage{ifthen}
\input mfpic
\AtBeginDocument{\opengraphsfile{pictures}}
\AtEndDocument{\closegraphsfile}
\setlength{\mfpicunit}{.01mm}
’;
}
__DATA__
begin a 64 64 0 -6 4 5 x y
xmark 2
Xmark 3
ymark -5 0 4
bhat
lines 0 0 0 4
func 0 3 .05 4-x*x
lines 3 -5 3 0
ehat
func 0 3.2 .05 4-x*x
xydrop 3 -5
arrow 3 4 1.7 1.1 $f(x)=4-xˆ2$
arrow 2 5 1 2 Area O_1
arrow 4 2 2.8 -2 Area O_2
end

begin b 64 64 0 3 12 8 x y
xmark a 2 x_1 4 x_2 8 b 10
ydrop 2 4.414
ydrop 4 5
ydrop 8 5.828
ydrop 10 6.162
label cc 4 4 $f(x_1)$
label cc 8 4 $f(x_2)$
label cc 7 8 $f(x)$ increasing on $[a,b]$
label cc 7 7.5 $x_1<x_2\Rightarrow f(x_1)<F(x_2)$
func 1 11 .1 x**(.5)+3
end

begin c 64 64 0 0 10 10 x y
curve 1 1 2 3 4 5.7 7 8.1 9 9
\shift{(-.05,.05)}
point 2 3 4 5.7 7 8.1
\shift{(-.05,.05)}
func 1.4 2.6 .1 1.65*x-.3
func 3.2 4.8 .1 1.025*x+1.6
func 6.1 7.9 .1 .62*x+3.76
label cl 9.5 9 $f(x)$
label tl 5 5 $fˆ\prime(x)>0$
label tl 5 4 $fˆ\prime(x)$ decreasing
end

begin d 64 64 -.85 -1.5 1.5 5 x y
func -.6 1.5 .05 6*(x**4)-8*(x**3)+1
lines -.2 1 .2 1
label cr -.25 1 horizontal
arrow .5 2 0 1 inflection point
arrow .8 1 .65 0 inflection point
arrow 1 5 1.5 4.375 $f(x)=6xˆ4-8xˆ3+1$
Xmark 1
ymark \raisebox{-3.5mm}{0} 0 -1
xydrop 1 -1
end

begin e 64 64 -4 -4 4 4 - -
\dashed
lines -4 0 0 0 0 0 0 -4 # neg z and neg y
\dashed
lines 0 0 3 1.73 # neg x
\arrow
lines 0 0 0 4 # pos z
\arrow
lines 0 0 4 0 # pos y
\arrow
lines 0 0 -3 -1.73 # pos x
\dotted
lines -1 4 -1 0 -4 -1.73 # intersections y=-1 plane
\dotted
lines -1 -.577 -4 -.577 # intersection x=2 plane

with xy-plane
% extra helplines
\dotted
lines -2 .423 -2 -.577 0 0 0 1 -2 .423
Ymark 3
% end of extras
\dotted
lines 0 3 -1 3 -4 1.27
\dashed\sclosed
curve -3 2.42 -1.5 2.711 -1 2.42 -2.5 2.134
label bc 0 \yhi z
label cl \xhi 0 y
label tr -3.1 -1.8 x
label cl -.85 -.577 2
label tc 0 5.5 $f(x,y)=xˆ2-4x+2yˆ2+4y+7$
xmark -1
Ymark 1
\shift{(-2,.42)}
\dashed
func 0 .5 .1 9*x*x
func -.5 0 .1 7*x*x
\dashed
func -1 0 .1 2*x*x
func 0 1 .1 2*x*x
end

Voorjaar 1999 135

