
TEXniques

Toolbox: the toolbox?

Maarten Gelderman

abstract
This MAPS is about the TEX Toolbox, about other programs than
TEX itself. So this MAPS’s toolbox should probably deal with this

kind of material. As a consequence this toolbox is even more
eclectic than earlier ones. First I will show you how I make

mailings to NTG-members, by combining Excel and LATEX. Next I
will present the most ugly regular expression I know of, and

finally I will say something about using makefiles.

keywords
mail-merge, regular expressions, emacs, Excel, makefiles

Using Excel and LATEX to do a mail-merge
A recurring question on forums likeTEXNL is whether it
is possible to use LATEX to do mail merging. Of course
the answer is yes, and numerous ways are available. One
might create a single large TEX file by using the report-
ing facilities of a database program like Access. However,
as99% of the resulting document will consist of mere re-
petitions of the body text, this approach is rather ineffi-
cient. Table1 shows a solution that avoids repetitions. The
trick is to define a new command (\myletter) which con-
tains the text of the letter, theletter -environment and the
\opening and \closing statements. In the body of our
document, we now repeatedly use the\myletter macro
with appropriate arguments to produce the individual let-
ters.1

The \myletter macros can be generated by a database
application, by a Perl script, of even by using a simple
spreadsheet-formula. Of course it is more elegant to pro-
duce the file directly with Perl or the database manager,
however, for most applications using a spreadsheet suf-
fices. Elementary functions for sorting the database and
making selections are available. The only thing we have to
do is to find a way to put the required fields of the database
in a single cell for each row. This also is easily accom-
plished. In a single cell, we enter a formula similar to that
presented underneath:

=CONCATENATE("\myletter{";+IF(K2<>"";\
+CONCATENATE("Dear ";K2;",");\
"Dear member,");"}{";J2;"}{";I2;"}\
{";L2;"}{";M2;"}{";+IF(O2<>"";\
O2;N2);"}{";P2;" ";Q2;"}{";R2;"}")

Table 1. Mail merge using the standard LATEX letter-class
\documentclass{letter}
\newcommand{\myletter}[8]{%

\begin{letter}{#2 #3\\#4 #5\\#6\\#7\\#8}
\opening{#1}

This is a letter. A rather short one, but a
letter nevertheless.

\closing{With kind regards}
\end{letter}}

\begin{document}
\myletter{Dear Karel,}{J.F.}{Krammers}

{University of Nowhere}{%
Department of Improbable research}

{Piet Heinstraat 10}{1399 EW Muiderberg}{%
Nederland}

\myletter{Dear Jan,}{J.H.}{Drupnats}
{Ministry of Silly Walks}{}
{Binnenhof 30}{2222 KH Den Haag}{Nederland}

\end{document}

This formula (the backslashes at the end of the lines just
indicate that it should be put in a single cell) concaten-
ates a number of text fields. Everything between quota-
tion marks is put into the cell verbatim. The letter number-
combinations point to the cells containing the data. The
K-column, for instance contains the first name of the ad-
dressee. The if-clause checks whether a first name is
present in the database. If this is the case it puts ‘Dear
firstname,’ in the first parameter field of the\myletter -
command, if it is not present, ‘Dear member,’ will be used
instead. The remainder of the formula refers to the other
fields of the database in a similar way.

After selecting the appropriate records, we just use copy-
and-paste to put the results of the concatenation formula
into the TEX-file and are ready to generate our document.

An unreadable regular expression
If a produce-the-least-readable-regular-expression-contest
would exist, the next one probably would have a good

1. In terms of computation time required this approach is still rather
inefficient: the bodytext has to be typeset by TEX for each individual
letter. It is possible to solve this problem, but that would probably cost
more time than we would ever save by this improvement.

Najaar 1999 53

TEXniques Maarten Gelderman

chance of winning it:
\\\([’\|\ˆ\|‘\|"]\)\([ˆ\{]\) → \\\1{\2}
Perhaps the most surprising thing about this regular expres-
sion is that it is actually useful. Although it admittedly is
prone to typing errors, it is even easy to understand.

What does this regular expression accomplish? It re-
places every occurrence of an accent directly followed by a
character, with the same accent, followed by the same char-
acter, but after replacing the character is placed between
curly braces. A small example:\’a becomes\’{a} , \ˆe
becomes\ˆ{e} , and so on.2 How do we accomplish this
replacement? First we have to decide which program we
want to use. I decided to use emacs, as I do all my edit-
ing in this program, but one might decide to use any other
program that is able to deal with regular expressions. Perl
would be another likely candidate. Now we have to build
the regular expression we want to use for searching. This
also is fairly easy. The first character we are looking for is
the backslash. Unfortunately this is a character with a spe-
cial meaning, hence we have to escape it. To indicate that
we are looking for a single backslash, we start the regular
expression with\\ . The next character we will be looking
for is the accent. We want to treat this accent slightly differ-
ent from the backslash: it has to be stored as we will need it
in the replacement operation. In order to store it, we start a
new group. This is done with the next two characters in the
regular expression:\(. A few characters later, the group
will be closed with\) . The sequence between the opening
and the closing of the group will be used to find the accent
and store it. As this is our first group, it will be saved in\1 .

The group itself contains the different accents. The ac-
cents are separated by the ‘or’-operator:\| and all alternat-
ives are places between bracketed braces ([]), the order in
which the accents themselves appear is irrelevant. The’ is
found by the first character in the group, which is identical
to ’ itself, ˆ has a special meaning in regular expressions,
so it is escaped and will be found by\ˆ , ‘ and" , don’t have
special meanings and can be used directly.

After matching the accent we open a new group with
\(, which is closed by the\) at the end of the regular ex-
pression and the contents of which will be stored in\2 .
This group is used to find the character to be put between
braces. The character itself is defined in a somewhat pe-
culiar way. Instead of listing all possible characters, we
define this group as every thing that isnot a curly brace (if
we wouldn’t do this\’{a} would be replaced by\’{{}a} ,
which it not wrong, but not particularly desirable either).
The operator̂ is the not-operator, and the curly brace itself
is escaped by putting a backslash in front of it.

The search regular expression has been constructed by
now. The replacement expression if fairly short. First we
put the backslash in place again (\\), next we put the accent
(which has been stored in register1) in the replacement

text by the command\1 , next we place the opening curly
brace (which this time does not have to be escaped:{), the
character itself (which is stored in\2) and the closing curly
brace (}) and we are done.

Makefiles
If you already know something about makefiles, you can
skip this section. I know hardly anything about this topic.
Until recently my conviction was that makefiles were made
by other people who had written a program I wanted to in-
stall, and the only thing I ever did with a makefile was to
change some site specific settings in the first few lines of it.
As those latter modifications lead to errors every now and
then, I decided it might be worthwhile to read the man-
pages. It turned out they didn’t exist. A manpage for the
make-program did exist, but did not contain any informa-
tion about makefiles themselves. Fortunately, it did refer to
a file in my doc-directory. As this file did not exist either, I
decided to follow a somewhat unusual approach: I consul-
ted a real manual. Here I learned that makefiles, although
you can probably do very complicated things with them,
are in fact really simple. The only thing you have to re-
member is that you have to use tabs for indenting and not
spaces.

Let’s examine a very simple makefile:

doc.dvi: doc.tex
latex doc
bibtex doc
latex doc
latex doc

Make sure that on line2–5 tabs instead of spaces are used
for indenting. We save this file and give it the name Make-
file (with a capitalM, if you choose another name, you have
to usemake -f file instead of justmake). After saving
the makefile, we can compile our document by simply en-
tering the commandmake from the command line. Make
checks whether doc.tex is newer than doc.dvi and if this is
the case, it runs the four commands on line2–5.3

The example given above, although useful, is not very
inspiring.4 A slightly more complex example is given be-
low:

all: dea.dvi dea.1
dvips -f dea.dvi -o print.ps

2. The only reason why this operation is useful, is that latex2rtf cannot
deal with accented characters without the curly braces.
3. If you want make to run those four commands any time you enter
make, just replacedoc.dvi by some other name, e.g.,dvi . The file
dvi does not exist and will never exist. Consequently make will al-
ways run the four commands.
4. It is not very efficient either, each line is executed in a separate
shell, it would be more efficient to put the four commands on one line
separated by semicolons.

54 MAPS

Toolbox: the toolbox? TEXniques

dea.dvi: dea.tex dea.1
latex dea
latex dea

dea.1: dea.mp
export TEX=latex; mpost dea

clean:
rm *˜ *.dvi *.log *.?lg

If we just typemake (or make all), make will first check
whether the files mentioned afterall: are up-to-date. If
not, that is for instance ifdea.tex or dea.1 has been mod-
ified more recently thandea.dvi , first the commands for
those files are run and next the command for all is run.
We could also run those commands separately, by enter-
ing make dea.1 , make would only check whetherdea.1
is up-to-date and run the required commands if necessary.
Another interesting featue is the lineexport TEX=latex;
mpost dea . First we tell our shell that LATEX should be in-
voked to process TEX-commands issued byMP, and next
we runMP. Because each line has its own shell, this setting
does not carry over to other commands (and consequently,
we cannot put them on separate lines). Makefiles can be
made more complex if desired. It is, for instance, possible
to use parameters to make a Makefile more generic (in this
example I also added two comment lines):

Begin definitions
FILE=dea

Begin dependencies
all: $(FILE).dvi $(FILE).1

dvips -f $(FILE).dvi -o print.ps

$(FILE).dvi: $(FILE).tex $(FILE).mp
latex $(FILE)
latex $(FILE)

$(FILE).1: $(FILE).mp
export TEX=latex; mpost $(FILE)

This example should be clear withour further explana-
tion. One final remark, which will also end this toolbox, is
in order however. The variables declared can be used by
prepending them with a dollar sign. In order to use the dol-
lar sign itself, it has to be escaped by another dollar sign.
The next excerpt from a Makefile demonstrates this latter
feature.

fonts:
tex pad

tfm:
for f in *.pl; do pltotf $$f; done
for f in *.vpl; do vptovf $$f; done

Najaar 1999 55

