
TEXniques

DTP with TEX

Roland Kwee
S.S.R. Kwee Computer Consultancy
Amsterdam
email: rolandkwee@acm.org

abstract
A set of simple macros is presented, in the style of modular

programming, to make it easy to put texts at arbitrary
positions on the page, without being restricted by formatting

rules. This is not only useful for single-page documents like
announcements and business cards, but also for designing

stationery with letterheads or printing labels. The method is
based on putting kerned texts in boxes with zero horizontal

and vertical size and staying in vertical mode. This works with
plain, and any other, TEX, and can be combined with any other

document formatting.

keywords
programming, DTP, vertical mode

Introduction
TEX is designed to “write beautiful books” and is there-
fore usually run with a carefully designed set of formatting
rules. The idea is that an author should be concerned with
writing down content while leaving typography to the pub-
lisher. By separating content and typography it is easy to
create large documents with a uniform and consistent ap-
pearance.

Using the predefined plainTEX or LATEX styles, it is easy
to fill a document with content. Changing a style or format,
or even creating a new one, is much harder: you need to do
some TEX programming. This isn’t anything trivial, as can
be guessed from the typical TEX appearance of documents
typeset with esp. LATEX.

Personally, I can live with the formatting that others
made available. What I do want, however, is to personalize
the appearance of my correspondence, i.e., I want to design
my own letterhead. This involves more than just adding a
page headline or footline.

Another problem is that formatting gets in the way of
designing very simple documents consisting of a single
page. For a flyer, a business card, address labels etc,
line breaking rules and page breaking rules are irrelevant.
Worse, all these formatting rules make it hard to put a text
a little higher or lower, next to that other text, etc. In fact,

in such cases we don’t want the carefully designed typo-
graphy for large documents. We want to explicitly break
all the rules and to be able to put the texts at any arbitrary
position on the page.

Traditionally, there is a big schism between desktop pub-
lishing (DTP) programs that allow you unlimited freedom
for the placement of texts, and text processing programs
like TEX that place your texts according to rigorous built-in
typography restrictions. However, being a TEX proponent
(bigot?), I also want to fill my DTP needs with TEX. This is
not just to save the money for a DTP program license, but
also because some of my documents, notably letters, need
the capability of TEX for the body of the text, combined
with DTP capabilities for the letterhead.

Programming obstacles
Over the years I have done a lot of TEX programming, vary-
ing from specifying a new page size, e.g., A4 instead of
the default U.S. letter size of8.5 by 11 inches, to writing
macros, to making a “typography” to print a nice calendar
from the output of a program written in C. Each time I had
to fix lots of problems with horizontal and vertical mode,
unwanted spaces, adjusting glue, and so on. I can program
in many languages, but programming in TEX still has the
most “magic”. I must admit that I could solve practically
all problems by careful reading of “The TEXbook”. And it
is clear that all those difficulties are somehow unavoidable
when programming text with a program written with text.
Some text is text, and other text is program, all in one file,
even in one line or word.

Another, unrelated, problem is that it is still common
practice to write TEX programs in “optimized” style, that
is, optimized for the computer, not the human. Looking in
a format or style file, or at the examples in “The TEXbook”
makes me think of a Forth or Perl program, or a Postscript
file, also called “write-only” files. The effect is that TEX
programming is discouragedand restricted to the high class
of TEXperts and TEXnicians.

Some programming that works with plain TEX does not
work with LATEX, and vice versa. The reason is that LATEX
does not only add high-level features like nice table com-
mands and indexing, but also introduces new programming
concepts like variables or lengths, different kinds of boxes,
and all that crap. Lamport says in his LATEX reference
manualThere is no easy way to tell whether a Plain TEX
command will cause trouble, except by trying it.

72 MAPS



DTP with TEX TEXniques

Keep it easy
According to Albert Einstein, we shouldkeep it as simple
as possible(though not simpler). He was much more clever
than I am, so I stick with this. How can we make program-
ming in TEX easy?

Here are my recommendations:

Program in plain TEX. Knuth’s book is an excellent ref-
erence for plain TEX programming. For LATEX program-
ming you’d have to study the format file. Good Luck.

Stay in vertical mode.A TEX document always starts
in vertical mode. Basically, you leave vertical mode when
you start a new paragraph, or by an\indent or \noindent .
Hence, all macros defined before the first paragraph are in
vertical mode. If you stay in vertical mode, you don’t have
to worry about getting an unwanted space, or having to end
lines with a% comment. It is essential to avoid unwanted
spaces, if you want to have precise control of the placement
of a text on the page. An unwanted space means glue, need
I say more?

A macro should only do one simple thing.This should
not need further explanation. For those who need some:
this is to enable reuse of the macro instead of reinventing
the wheel.

Combine simple macros to achieve complicated goals.
This is also called breaking down a complicated problem
into several simpler problems. TEX programming is diffi-
cult enough, so even simple problems can be challenging.
Personally, I would not even try to solve complicated prob-
lems directly with TEX programming.

Group related macros into a module.As several simple
macros are needed to solve a real world problem, such mac-
ros should be grouped and kept together as a module. All
globally visible names should begin with the name of the
module. All macros should be in a file with the name of the
module, and nothing more should be in that file. This way,
a document can safely\input a module without naming
conflicts (assuming you name the modules suitably).

Add sufficient documentation.As a minimum, a file
should begin with a comment describing its purpose. Each
macro should have a description of its function, parameters
and usage. Each trick should have ample explanation.

Use indentation.There is really no justification for hav-
ing to guess the level of parenthesation in effect at a word
in a macro.

Easy macros
The task with DTP is to put a text on a particular position
on the page. The macro DTPVPOS does just this. Actually,
there is only one macro of one line in this DTP package:

% file: dtp.tex
% purpose: DTP capability for TeX

% V P O S
%
% Returns a vbox with zero dimensions,
% containing a word or vbox #3
% at offset (x=#1, y=#2).
% See: The TeXBook, appendix D, p. 389.
%
\def\dtpvpos#1#2#3{
% Place word at (x,y). #1=xpos #2=ypos #3=word

\vbox to0mm{\kern#2\hbox{\kern#1{#3}}\vss}%
\nointerlineskip

}

It takes three parameters: a text, an X and a Y coordinate.
The text can be a\vbox .

The macro returns a\vbox of size zero. It is assumed
that the macro is called when TEX is still at the starting
position at the top-left corner of the document. After the
macro call, TEX has not moved a bit, so subsequent calls to
this macro can be made.

In the returned box the input box is kerned horizontally
and vertically from the top-left corner to the specified pos-
ition.

The macro uses a Dirty Trick from “The TEXbook”, so I
don’t need to explain here why\nointerlineskip is used.
Therefore I did not apply the indentation recommendation
here.

The macro could also have been written with an hbox,
using\rlap . This is left as an exercise for the masochist,
because it is much better to work in vertical mode as ex-
plained before.

The description of the macro isn’t really complete
without an example of its use. Here is the start of the design
of a pamphlet to announce a concert.

% Concert announcement of
% the ensemble ‘‘encore’’.
% Status: unfinished.

\input dtp

\parindent=50mm
% indentation of first line of a paragraph

\font\fa=pctu8r at 30pt

Najaar 1999 73



TEXniques Roland Kwee

% pctu8r=Cheltenham-Ultra

% Define the musical part of the announcement
\def\vhead{

\vbox{
\dtpvpos{0mm}{0mm}{\fa Encore}
\dtpvpos{0mm}{10mm}{%

o.l.v. Ren\’e de Grote}
% Put more texts here

}
}

% Put together the various parts of
% the announcements
% C programmers would call this
% the ‘‘main’’ macro.
\def\vconcert{

\vbox{
\dtpvpos{20mm}{20mm}\vhead
%\dtpvpos{0mm}{200mm}\vsponsor
%to be defined

}
}

% Execute the macros
\vconcert

\bye

It shows that it is easy to put a text of any font and any size,
an important DTP feature, at any place on the page.

When the pamphlet is finished, it would probably con-
sist of a few top-level macros, like one for the name
of the ensemble, the date and location, and another

for the name and logo of the sponsors. Each of these mac-
ros would contain calls to DTPVPOS for the various text
elements. A “main” macro would then call DTPVPOS to
place the text blocks of each top-level macro to the proper
places on the page. This way, a pamphlet can be designed
hierarchically.

All the while normal TEX formatting can be applied
either within a box that is passed to a DTPVPOS call, or
after the last DTPVPOS call for non-DTP text. The latter
method can be used for a letterhead.

Another “recursive” application is label printing. First,
make a macro calling DTPVPOS several times to construct
one label with its several pieces of text, like name, street,
city, logo. Then, make a macro calling DTPVPOS several
times, one for each label on the sheet, with the first macro
as the text argument. If you have ever tried to make an
\output routine for two columns of five labels on a sheet,
you will find the DTP method much easier. It will work
the first time. And it will be easy even if the labels are
non-uniformly distributed over the sheet.

Conclusion
TEX programming can be easy, and still powerful, by ap-
plying commonsense programming techniques. The dirty
tricks can be hidden in a macro. TEX can be used both for
traditional consistent document formatting and for tradi-
tional non-consistent desktop-publishing-like page format-
ting.

It is hoped that this style of macro programming will
be used in other TEX applications, so that I can understand
those. I even hope that this will make the use of, and pro-
gramming in, TEX more available to “the masses”, and that
we can use TEX also to createmasterpieces of the desktop
publishing art!

74 MAPS


