
editors

Using Emacs and AucTEX for preparing LATEX
documents

Piet van Oostrum

abstract
Users of TEX and LATEX can be helped very much by an editor

that knows about the specifics of these packages. For instance
it can do syntax coloring so that the user sees immediately the

difference between normal text and TEX commands; it can
insert skeletons for often used commands and environments

in order to prevent missing elements (e.g. missing \end parts),
etc.

This article describes the use of the Emacs editing environment
with the AucTEX package for the preparation of LATEX

documents. The main characteristics of Emacs are discussed,
followed by a more detailed description of the facilities that

AucTEX offers to assist the author of LATEX documents. Finally
we describe how AucTEX can be customized to support your

own or external commands and LATEX packages.

keywords
Emacs, AucTEX, TEX, LATEX, packages, editing

What is Emacs?
Emacs (originally the name stood for “Editing macros”) is
basically an editor. But calling Emacs just an editor isn’t
fair: Emacs is much more. It can be used for reading and
writing email and Usenet news, and as a Java development
environment, to mention just a few applications. It would
be better to call it as least an editing environment, or maybe
a text work environment.

There exist several versions of Emacs, the most widely
used one of which is GNU Emacs which was created by
Richard Stallman. Even this one exists in two separate de-
velopment streams, one maintained by Richard Stallman
and the FSF (Free Software Foundation) and the other one
(XEmacs) which started as an offspring of GNU Emacs at
the now defunct Lucid Corporation. The main difference
between these versions is the graphical user interface and
the graphical possibilities which in XEmacs is more ad-
vanced. Most Emacs packages run on both versions, how-
ever. In the rest of the article we will use the generic term
“Emacs” for both versions.

There are also several Emacs clones, which were primar-
ily targeted at personal computers, because GNU Emacs

and XEmacs are rather large. These clones are, however,
not compatible with the main versions of Emacs, although
some of them (e.g. Jed) have quite advanced possibilities,
also for TEX and LATEX editing. We will not deal with these
in this article, however. Both GNU Emacs and XEmacs
have now complete versions running on The Win32 plat-
form, and are therefore also available for the majority of
PC users.

Emacs is a very flexible editing environment, which can
be tailored to a lot of tasks. The main flexibility stems from
the fact that Emacs is aprogrammableeditor. It has a built-
in Lisp interpreter with special primitives for text hand-
ling, buffer management, screen display, network functions
(TCP/IP), operating system interface, and similar things.
The basic operations and those where speed is important
have been written in C, but all other functions are in Lisp.
This makes it very easy to change the behaviour of Emacs,
as the Lisp functions can be redefinedat runtime, new func-
tions can be added, and most of this happens automatically.
Therefore Emacs is dynamically customizable and extend-
ible.

Emacs also has an online documentation system, both
for itself and for external programs. As an example, the
documentation of LATEX commands is available and can
be displayed while editing LATEX documents, even with
defaulting automatically to the command or environment
where the cursor is located.

Of course, there exist other editors which give similar
support to the TEX or LATEX user, but most of these have
been specifically written to give just this support and in
most cases cannot be customized in the same flexible way
as Emacs.

Emacs elements
Emacs uses the following terms:

Buffer A chunk of text, usually tied to a file. Editing
happens in buffers, but not all buffers have to be files.
Sometimes Emacs uses buffers just as a working space, and
some buffers have their information from somewhere else,
e.g. a directory listing.

Frame What most operating systems now call awindow.
When Emacs grew up it was used on plain old terminals

108 MAPS

Emacs and AucTEX editors

(“glass TTYs”) and the notion of windows as in GUI’s was
not known. And even Java calls them “Frame”.

Window A part of a frame that displays a buffer. Win-
dows in the Emacs sense cannot overlap, they tile the
Frame (or the screen on a terminal). A buffer can be dis-
played in more than one window, even in different frames.
The cursor position can be different in the different win-
dows. In this way one can easily rearrange portions of text
within the same file, or compare different parts of a file.

Major mode The way Emacs deals with a buffer. The
major mode (or just mode) influences the way the text
may be displayed (syntax coloring), what commands are
available, which keystrokes are used for commands, which
menus are available etc. There are many modes avail-
able, e.g. C-mode, Java-mode, Perl-mode, SGML-mode,
plain-tex-mode, and latex-mode. The mode is usually in-
ferred from the filename (extension), but can also be de-
termined in other ways, for instance from the contents of
the file. For the extension.tex the choice between plain-
tex-mode and latex-mode will be made on the existence of
documentclass or documentstyle in the file. It is also
possible to state the mode explicitly in the file, or to change
it manually after loading the file. Emacs comes with a
standard mode for TEX and LATEX, but AucTEX is a more
advanced one.

Minor mode A local change to the mode, to change
some behaviour, e.g.auto-fill-mode for automatic-
ally wrapping words,outline-mode for showing outlines,
or abbrev-mode for expansion of abbreviations. Minor
modes can usually be toggled.

How Emacs interprets editing actions
Emacs uses lots of control characters, in conjunction with
the Escape, ALT or Meta1 keys for editing actions. The
major editing actions are also available as menu entries.
None of these have a fixed meaning, however. In line with
the general customizability of Emacs every key and menu
entry can be given any meaning. This is even true for char-
acter keys. In programming language modes (C, Java, Perl)
the} key for instance not only inserts this character, but also
positions it on a logical place on the line to support proper
indentation. In AucTEX the quote character" generates the
proper quotes to be used (“ or ”), inauto-fill-mode the
space key triggers word wrapping etc.

Emacs useskeymapsto get this behaviour. A keymap
is a table that binds keystrokes or combinations of them
to Emacs functions. The functions can be written in Lisp
or be built-in. Therefore one can let a key do almost any-
thing. The “normal” character keys are bound to the func-

tion self-insert-command which just inserts the charac-
ter.

AucTEX
AucTEX is a collection of Emacs lisp functions support-
ing a number of modes for editing TEX and LATEX docu-
ments. There are modes for plain TEX, LATEX, and texinfo
(the Emacs documentation system), but others like a Con-
text mode could easily be added. AucTEX has the following
properties:

Syntax coloring for macros, parameters of macros, com-
ment, and environments. Some macros even influence the
coloring, e.g.,\textbf{} shows its parameter in bold.

Menus and control keys for inserting chapter, section
headers, etc., and environments. AucTEX knows the stand-
ard environments and can give the user a choice from these.
When using a menu item to insert an environment (Insert
Environment), one gets a menu with the known environ-
ment. When using the keystrokes to insert the environment
one has to type in the environment name. At any point one
can type the space key to get a list of possible completions
of the name typed thus far. When only one completion
is possible, AucTEX will give it, otherwise, it will com-
plete as much as possible and present a list of the possibil-
ities from which one can be chosen with the mouse or by
pressing ENTER on the requires choice. But it is also pos-
sible to ignore these and type a completely different one,
for instance an environment that you have defined yourself.
The next time this will be amongst the choices presented
(even in the menu). AucTEX knows more about the envir-
onments than just the name, but also what parameters are
required, so it will prompt for them or reserve space for
later insertion. Environments likeitemize or enumerate
will have an\item automatically inserted; as will happen
for description, but in the latter case the\item will prompt
for a label.

Administration of\label and\ref .

AucTEX knows about certain packages.

Support of running of programs like LATEX, bibtex,
makeindex, either on the whole document or parts of it.
AucTEX makes intelligent guesses about which command
is the next to use. For a new file or a file with recent
changes this will be TEX or LATEX, after which bibtex may
be necessary. Of course this is the default choice and can
always be overridden.

1. One of the expansionsof the EMACS acronym is “Escape Meta Alt
Control Shift.

Najaar 1999 109

editors Piet van Oostrum

Multi-file support. A file that is included in a main doc-
ument can state which is its master file, such that running
LATEX will automatically give the main document as argu-
ment to the commands rather than the included document.

Error processing. After running TEX or LATEX, AucTEX
parses the log file to find error message. With a keystroke
or menu entry one can have AucTEX jump to the proper
location in the source file.

Reference mechanisms
There are three mechanisms for easy navigation in a LATEX
file: Two come standard with Emacs or AucTEX; the third
one is supported by an additional Emacs package.

The standard mechanism is supported by Emacs’s imenu
package, which gives a menu of the main divisions in a file.
For programming languages, these are the functions and/or
classes and methods, for LATEX, this is the section struc-
ture. Each section-like command generates one entry in
the menu, and selecting this menu entry causes the cursor
to jump to that location in the file.

The second mechanism is the so-calledspeedbar: a nar-
row navigation frame similar to the left-hand panel in MS
Window’s Explorer. The speedbar frame can be started
with a menu entry or an interactive command. When it
starts up it displays the files in the current directory. Sub-
directory entries can be opened to show their files or be
closed, similar to Explorer in MS Windows. However, the
same can be done for LATEX files, or indeed any file type
with imenu support. The opened document will then show
the outline structure in the same way as the menu that is
created by imenu. This gives an overview and makes it
easy to navigate quickly through the document.

The speedbar entry for this article looks like the follow-
ing (for some reason the entries are in reverse order):

0:[-] auctex.tex #
1: > References}
1: > Customizing Auc\TeX{}
1: > Reference mechanisms}
1: > Auc\TeX{}
1: > How Emacs interprets editing actions}
1: > Emacs elements}
1: > What is Emacs?}

The third way is to use the additional Emacs package
RefTeX. This package not only works with AucTEX, but
also with the simpler standard TEX-mode that comes with
Emacs.

RefTeX is a specialized package for support of labels,
references, citations, and the index in LaTeX. RefTeX

wraps itself round4 LaTeX macros:\label , \ref , \cite ,
and\index . Using these macros usually requires looking
up different parts of the document and searching through
BibTeX database files. RefTeX automates these time-
consuming tasks almost entirely. It also provides functions
to display the structure of a document (the table of con-
tents) and to move around in this structure quickly. The
table of contents will be displayed in a separate window in
the same frame as the LATEX document, and you can jump
from here to the location in the document with a single
keystroke. It also works on multi-file documents, whereas
imenu only supports a single file at a time.

This is the TOC of the current document:

1 What is Emacs?
2 Emacs elements
3 How Emacs interprets editing actions
4 Auc\TeX{}
5 Reference mechanisms
6 Customizing Auc\TeX{}
7 References

Customizing AucTEX
When starting to edit on a document AucTEX get its in-
formation from a number of Emacs Lisp files (.el files).
Some of its intelligence is built-in, but this applies only to
the general structure of TEX and LATEX documents. For
instance the fact that\begin and \end delimit environ-
ments; or the fact that a LATEX document is characterized
by a \documentclass or \documentstyle command.

For plain TEX documents, this is about all the know-
ledge that is available, but for LATEX documents, AucTEX
also reads the code in the Emacs lisp filelatex.el and the
〈classname〉.el file, e.g. book.el . In the same way,.el
files are read for documentstyle options, packages loaded
with \usepackage , and included files. Some information
can be automatically extracted by AucTEX, such as which
commands and environments are defined in the files; other
information must be provided by the package writer, such
as special treatment of commands or environments. There-
fore, AucTEX has two directories for these files,auto for
automaticallygenerated files andstyle for additional files.

Here is an excerpt of the filelatex.el :

(TeX-add-symbols
’("arabic" TeX-arg-counter)
’("label" TeX-arg-define-label)
’("ref" TeX-arg-ref)
’("newcommand" TeX-arg-define-macro

["Number of arguments"] t)

It adds support for all the know LATEX command and
knows that\arabic should have a counter as argument,

110 MAPS

Emacs and AucTEX editors

\label defines a label, and\newcommand should prompt
for “Number of arguments”. Thelabel support function
remembers the label given, so that theref function can
supply a list of known labels.

Here is the main part ofbook.el . It sets the highest
section-like structure to “chapter”.

(TeX-add-style-hook "book"
(function (lambda ()

(setq LaTeX-largest-level
(LaTeX-section-level "chapter")))))

We can also use these mechanisms to support our own
packages. We give three examples: one for a simple com-
mand and two for an environment.

Suppose we have a packageqa.sty which defines a
command\qa with two parameters: a question and an an-
swer. It will have a definition like

%% va.sty
\newcommand{\qa}[2]{....}

We now create ava.el file that defines the\qa command
to prompt for the two parameters. These parameters are
added literally (in braces).

(TeX-add-style-hook "qa"
#’(lambda ()

(TeX-add-symbols
’("qa"

TeX-arg-literal "Question"
TeX-arg-literal "Answer"))))

There are other functions to add the arguments without
braces, to ask for counters or other macros, etc. The file
qa.el will be loaded automatically if\usepackage{qa} is
present when it is in the proper directory (style).

The second example is similar, but for an environment
rather than a command. This example is from the AucTEX
manual. We want to have a packageloop that defines an
environmentloop with three parameters: “From”, “To”,
and “Step” are the prompts for the parameters.

\newenvironment{loop}[3]{...}{...}

We createloop.el as follows:

(TeX-add-style-hook "loop"
(function

(lambda ()
(LaTeX-add-environments

’("loop" "From" "To" "Step")))))

The last example is the modification of an existing envir-
onment. The packageenumerate redefines theenumerate
environment to accept an optional argument which de-
scribes the way the counter is to be formatted. We want
the enumerate environment, when added by AucTEX to
prompt for this parameter and insert it if a non-empty
value is given. In this case we want to do some more
non-trivial formatting, e.g. adding\item on the next
line with proper indentation. We define our own function
LaTeX-enumerate-hook to do the work. It reads the ar-
gument with the supplied prompt, test if an empty string
is given, and if not, adds it to the document with square
brackets added. We then insert the\item command with
the functionLaTeX-insert-item . As AucTEX starts a new
line before the\item , we have to go back to the end of the
previous line, delete the newline and any spaces inserted
before calling this function.

; enumerate.el
(TeX-add-style-hook "enumerate"

(function
(lambda ()

(LaTeX-add-environments
’("enumerate" LaTeX-enumerate-hook

"(Optional) Argument: ")))))
(defun LaTeX-enumerate-hook (name prompt)

"Insert enumeration with optional argument."
(let ((arg (read-string prompt)))

(LaTeX-insert-environment name
(if (string-equal arg "")

nil
(concat "[" arg "]"))))

(end-of-line 0)
(delete-char 1)
(delete-horizontal-space)
(LaTeX-insert-item))

References
GNU emacs: GNU Emacs:http://www.gnu.org/

software/emacs/emacs.html
XEmacs:http://www.xemacs.org/
AucTEX: http://www.sunsite.auc.dk/auctex/
Reftex:http://www.strw.leidenuniv.nl/˜dominik/

Tools

Najaar 1999 111

