
TEXniques

Toolbox

Maarten Gelderman

abstract
This toolbox contains some varia. First I discuss some reactions

on remarks I made in an earlier toolbox. Next, Hans Hagens
texexec is used in the following section to create eps and pdf

files from metapost source. Files created this way are often
more usefull than the eps files metapost itself creates. How to
prepare a single source file for usage with both traditional TEX
and pdfTEX is discussed next. I also show how easy it is to set

up a font different from Computer Modern for typesetting
simple mathematics, pay some attention to a failed attempt to

install a TrueType font and present a small PostScript header
file that can be used to produce watermarks.

keywords
make, texexec, pdf, eps, math fonts

The previous toolbox

Two persons gave comments and corrections related to the
previous toolbox. Jules van Weerden informed me that my
description ofmake was flawed. In the previous toolbox
I indicated that if multiple makefiles exist,make will first
try to use the one capitalized asMakefile. Of course, it is
never prudent to depend on capilization for such decisions,
however, in this case it may even turn out to be lethal: the
behaviour described by me is not standardmake behavior,
so any one using anothermake than that of thegnu variety
may get unexpected results.

Wybo Dekker gave an improvement of my unread-
able (emacs) regular expression. I presented the next
regexp:\\\([’\|\^\|‘\|"]\)\([^\{]\) → \\\1{\2},
Wybo mailed me the shorter—but fortunately equally
unreadable—alternative: \(\\[’^‘"]\)\([^\{]\) →

\1{\2}. But of course, real men, like Wybo, do not use
emacs, but Perl. For those interested in carrying out the
same substitution using this program, the regexp to use is:
s/(\\[’^‘"])([^{])/$1\{$2}/g.

Making makefiles superfluous

However, since Hans Hagenstexexec is available make-
files are superfluous to the average TEX-user. This
Perl-script, which I will not discuss here, just read

Hans’ own description of it, takes care of all stages
of compilation. It can even be used for easy pre-
viewing of metapost-files. By issuing the follow-
ing command texexec -output=pdftex -figures=c
-tex=cont-en -result=plaatjes plaatjes.[0-9]*, a
pdf-file will be created which contains the pictures gener-
ated from the metapost-fileplaatjes.mp.1 The ability to
generatepdf-files from metapost generated pictures is not
only handy for previewing. It also is a reasonable fool-
proof way to solve font conflicts. Metapost does not in-
clude the fonts it uses in theeps-files it generates. It de-
pends on a postprocessor (most oftendvips or pdfTEX) for
the final inclusion of these fonts. Although this approach
may have some advantage in terms of efficiency, conflicts
involving fontnames all too often occur. Thepdf-file gen-
erated in the way described above is really self-contained
and consequently solves such ambiguities. If desired, you
can use GhostScript (pdf2ps) to convert thepdf file to (en-
capsulated) postscript.

Of course, I find typing the whole texexec command too
much work, so I made yet anotherMakefile, to simplify
life:

plaatjes.1: plaatjes.mp
export TEX=latex;mpost factor
texexec --output=pdftex --figures=c\
--tex=cont-en --result=plaatjes \
plaatjes.[0-9]*

Using the same document with ordinary TEX
and pdfTEX

Most readers of this journal will know it by now. TEX can
be used to make (nearly) perfectpdf-documents. When
you use the pdfTEX executable instead of the ordinary
TEX, pdf-files instead ofdvi-files are easily generated
by executing the command \pdfoutput=1 somewhere
at the start of your document. LATEX users can obtain
more advanced results by using packages likehyperref
(the \pdfoutput=1 is superfluous when this package is
used). If you for instance include \usepackage [pdftex,
bookmarks=true, bookmarksopen=true] {hyperref}

1. The[0-9]-convention used in the command requires you to use a
reasonably modern shell like bash. Windows-users will probably have
to enter the names of the metapost-generated files by hand.

Voorjaar 2000 41

TEXniques Maarten Gelderman

in your preamble, bookmarks will be generated automat-
ically and will be visible when the document is opened in
Acrobat Reader.

However, this approach introduces one problem: every
now and then you will want to use your ordinary TEX-
executable to process this document. If your document in-
cludes the commands mentioned above, TEX will issue an
error-message: either these commands themselves are un-
defined, or they make use of undefined commands. The
solution to this problem capitalizes on this same feature:
if \pdfoutput is defined, we know we are using pdfTEX
and simply assume we want to generate apdf-file. If it is
undefined, apparently a traditional TEX is being used and
we do not want to issue thesepdf related commands. The
implementation is rather simple. First we define a new
boolean variable:

\newif\ifpdf

Next we check whether \pdfoutput is defined. If this is
not the case we do not set \pdfoutput to 1 and we assign a
false value to our boolean. In other cases we assign a value
to \pdfoutput and make our boolean true.2

\ifx\pdfoutput\undefined
\pdffalse

\else
\pdfoutput=1
\pdftrue

\fi

\ifpdf
\usepackage[pdftex]{graphicx}
\graphicspath{{pdf/}{png/}}

\else
\usepackage[dvips]{graphicx}
\graphicspath{{eps/}}

\fi

In the code presented above the \ifpdf boolean is also
used to solve another problem: in ordinary TEX I tradition-
ally use.eps-files. PdfTEX is only able to process.eps-
files generated by metapost. Fortunately pdfTEX is able to
deal with two other file formats:png (portable network
graphics, for bitmap files) andpdf. Assuming that each
picture used in our document is present in.eps-format in
theeps-directories and in either.png or .pdf format in the
png andpdf directory respectively, the above code assures
that depending on the executable used, the right graphics-
file will be selected.

Poor-man’s-math

By now, most TEX users are aware of the fact that we do
not need to stick to Computer Modern when preparing our

documents. As long as one does not want to typeset math-
ematics, Type I fonts are easily integrated. If one wants
to do advanced mathematical typesetting, using Computern
Modern remains the only option for most users. The reason
traditionally given is simple: a whole bestiary of mathemat-
ical symbols is available in Computer Modern. This same
bestiary—and more often only a subset of it—can only be
found in a number of extensions to commercial fonts. Such
extensions are available for Times, Helvetica, Courier and
Lucida. The user who does not want to buy these fonts, is
forced to stick to Computer Modern, or to combine his/her
Type I font with Computer Modern or Euler (a free math-
ematics only font).3

So far for theory, now to practice. I do not know how
your documents look, but the math in a lot of my docu-
ments is hardly more complex thany = a + b1x1 + b2x2.
Why would I need complex math symbols for such doc-
uments? Provided that I can live with a limited set of
symbols and would be willing to sacrifice some of the
niceties of math spacing that TEX normally tries to provide,
shouldn’t it be possible to find some way to set such simple
math out of a arbitrary Type-I font? After some experi-
ments with commands discussed inThe LATEX companionI
learned that, although TEX complains bitterly about such in-
decent treatment, the next set of commands produces reas-
onably acceptable results.

\documentclass{article}
\renewcommand{\rmdefault}{padj}
\DeclareMathVersion{normal}
\DeclareMathVersion{bold}
\DeclareSymbolFont{operators}{OT1}{pad}{m}{n}
\SetSymbolFont{operators}{bold}{OT1}{pad}{b}{n}
\DeclareSymbolFont{letters}{OT1}{padj}{m}{it}
\SetSymbolFont{letters}{bold}{OT1}{padj}{b}{it}

\begin{document}\thispagestyle{empty}
$$\sum_{a=1}^{\infty}\frac{a_1+b^2}{3+c^{i_3}}$$
\end{document}

I do not claim to know exactly what I am doing, so I
can only give a small elaboration on the meaning of these
commands. The main thing to notice is thepadj andpad
stuff, which stand for Adobe Garamond with and without
oldstyle numerals respectively. If you replace bothpad and
padj by e.g.phv your formulas will be set in Helvetiva, if
you replace both bypcr, Courier will be used instead etc.

2. Some LATEX-classes/packages define \pdfoutput, consequently it
is essential to set the boolean to false or true before any classes/
packages are loaded.
3. For Times, an alternative is available: the packagemathptm does its
uttermost best to imitate a Times with additional math symbols using
a combination of Times, the PostScript Symbol font and Computer
Modern.

42 MAPS

Toolbox TEXniques

Figure 1. Examples of poor-man’s-math as described in this
article, using Adobe Garamond, Helvetica and Courier
respectively.

A disillusion

Being able to use Type I fonts of course is nice. But of
some fonts I happen to own just a TrueType version. Con-
ceptually using these fonts does not seem to be too diffi-
cult. A first possible solution is conversion from TrueType
to Type1. However, this will result in lower quality font.
A second approach seems more worthwhile: more recent
PostScript interpreters can deal with so-called Type42
fonts. Type42 fonts can be used to ‘embed’ TrueType
fonts in a PostScript font. This did seem to be the way to
go. However, although I got a lot of help from the people
on tex-nl, I was not able to do the conversion. Theafm-
files generated by the conversion program do not contain
information on the x-height and the cap-height of the font
and TEX can’t do without. I hope I can report some pro-
gress in a next edition ofmaps.

Watermarks

Some people apparently are not able to live without them
anymore: watermarks. On every sheet of paper that leaves
their hands they print their name or some other superflu-
ous remark in the background. I hate those watermarks,
but nevertheless one sometimes does need them. Recently
I had to present the results of a research project to the sci-
entific council of a research institute. I was warned be-
forehand that it would be prudent to take some measures
that would ensure that my instrument could not be copied

without my name on it. ‘You never know where those cop-
ies end up, and people might just not remember how they
obtained them.’ One does not ignore such advise. Fortu-
nately I did remember that Siep Kroonenberg posted some
information on this topic ontex-nl, the information she
provided, combined with thePostScript Language Tutorial
and Cookbooksufficed to make the following code:

%!
/bop-hook {gsave
/Helvetica-Bold findfont 35 scalefont setfont
.7 setgray
144 72 moveto 90 rotate
gsave
(If you want to use this instrument) show
grestore
0 -40 rmoveto
(please contact Maarten Gelderman) show
grestore} def

This little piece of PostScript code (which I saved in
a file calledwatermark.pro) defines the begin-of-page
(bop) hook. The graphic state of the PostScript interpreter
is saved at the beginning, and restored at the end. The first
thing the header file does is looking for a bold Helvetica,
scaling it to35 points and selecting it as the current font
(PostScript uses Reverse Polish Notation, first the argu-
ments are pushed on a stack and next the commands are
given). Next I move to a position near the bottom of the
page and select a rotation angle of90°. The text between
the parentheses is printed, I move40 points down and print
the next sentence.

Of course I need to include this header in the PostScript
file I send to the printer. Although it is probably pos-
sible to do this using TEX specials, I prefer to usedvips
to do such tasks. The followingdvips-option suffices:
dvips -h watermark.pro.

Voorjaar 2000 43

