o O 0

Visual TEX: texlite

IGOrR STROKOV

ABSTRACT. A prototype of a visual TEX is implemented by means of minor
modifications of canonical TEX. The changes include the ability to start compilation
from an arbitrary page, fast paragraph reformatting, and retaining the origin of visual
elements. The new features provide direct editing of the document preview and correct
markup of the source text.

KEYWORDS: visual, TEX

THE NEED FOR VISUAL TEX

A good feature which TEX traditionally has lacked is visual editing, or the ability to
typeset a document in its final (print preview) form. Though one can manage without
visual editing, there are certain cases when it really helps, mainly when tuning the
appearance of a document, especially for novice and occasional users.

There are two ways to deal with this problem. The first one, implemented in lyx and
SciWord, represents the source text in a form which logically resembles the resulting
output. Although this way proved to be a good compromise, the logical preview is
often quite far from the printed result. Besides, these tools use LATEX with special
macros, so arbitrary TEX documents are beyond their scope.

The other way is synchronously running a source text editor, TEX the compiler,
and a viewer, so that changes made in the source editor are compiled and displayed in
the viewer without explicit invocation of these tools in a command string or a menu.
In textures, in addition, the cycle is closed by means of two corresponding pointers
in the source editor and the viewer. The approach of Jonathan Fine, presented in
these proceedings [2], can be related to this way. Its main problem lies in the need
to compile a whole document to receive the visual response to an editing action. On
slow computers, large documents, or complicated macros this compilation could cause
at least a noticeable delay.

How 1O TEX PART OF A DOCUMENT

So, if even a single letter is changed, TEX needs to process the whole document from
scratch. However, TEX already solved a similar problem by loading precompiled mac-
ros (so called ‘formats’). This way TEX saves the time required to compile standard

TEXLITE 189

macros which can be considered a part of a document. With minor changes one can
extend this method to arbitrary stages of the document compilation. One only need
to choose particular stages and probably improve the storage method.

The natural decision is to make a core dump each time a typeset page has been
completed and removed from TEX’s memory. At this moment the memory is relatively
empty and contains essentially values which do not change from page to page, which
allows the dump to be more compact. A page dump is always stored as a record of
differences from some reference dump. Every 8-th dump refers to dump zero (the
‘format’ itself) while the others refer to the preceding 8-th one (see [3] for details).

In comparison to a common format the core dump has to store additional data:
the input and semantic list stages, open file pointers, and, above all, the source line
number reached when the page was completed. Thus, if the source is changed at
some line, one can derive the last page number affected by the change. Then the
corresponding dump is loaded and the compilation starts from the given page.

In texlite, the visual TEX prototype, the compilation is allowed to run up to the end
of the document. Moreover, if any output file to be read again is changed, then the
compilation starts again, this time from the very beginning (this happens, for example,
when a LATEX section title is edited after the table of contents). However, this already
does not matter, as the page of interest is obtained quite quickly (in constant time,
regardless of the page number and the document size). Although in some mentioned
cases the page is updated a second time, in practice this event does not disturb a user
because of buffered output and preservation of the current input position.

Besides, if another source change will occur before the natural end of the compila-
tion, it will be interrupted to let a more actual compilation run. As a result, all recent
editing actions are reflected in time, while the remote consequences (if any) appear
after a pause.

How TO REFORMAT A PARAGRAPH

Selective compilation is a necessary but not sufficient feature for visual editing. It just
reduces the response time from the source to the preview (making it constant instead
of linear). Let us consider the inverse problem — how to bring preview changes into
the source text.

In general, one needs to keep track of the relation of source characters to visual
elements. In many cases the reciprocal relation (say, a character — a glyph) may be
established and used to synchronize current positions in the source and the preview.
Fortunately, no vast interference in TEX is needed to make it remember the origin of
its output: it is enough to extend the format of memory nodes in a way similar to
that used for breaking the 64K barrier.

So, a user may mark the current position in the preview and type something there.
Texlite applies the corresponding changes in the source text and initiates the compil-
ation starting from the current page. In most computers (starting from a 200MHz
Pentium) the delay before the visual result is virtually unnoticeable. However, one
cannot ignore slow computers and various decelerating factors such as parallel pro-

190 STROKOV

cesses, complex page formatting, complicated macros, etc.

Therefore, before starting the true compilation, texlite tries to reformat the current
paragraph using the native TEX algorithm for this purpose. Canonical TEX, however,
does not keep parameters it used to set up boxes and paragraphs. That is, one cannot
correctly rebuild a box or a paragraph only from its contents. Texlite resolves this
problem by storing the necessary data in special whatsit nodes. This does not take
too much extra space, as many parameters (penalties, glues, parshape, etc.) remain
the same throughout a document and thus can be omitted.

Let us see what happens when a user edits the preview. First of all, texlite decides
(with the aid of whatsit nodes) in which paragraph, if any, the current position falls.
If no paragraph is recognized (for example, it may be within a \halign), then only
the enclosing box is rebuilt and the selective compilation starting from the current
page is initiated. Otherwise texlite locates the current paragraph and unwraps it back
into a hlist by inserting lost glues and repairing hyphenations. The unwrapped list is
subjected to the changes following from the user’s input (insertion of a character-and-
glue node list or deletion of several nodes from the current position) and the linebreak
routine is called to rebuild the paragraph. Then the preview (along with the current
position) is updated.

After this ‘emergency repair’ texlite enters the source text, performs parallel changes
there and starts the selective compilation, which runs from the current page to the
end of the document or until the user presses another key. If the compiler manages to
build the current page before the next key stroke (usually it does) and the new page
happens to be different from the repaired one (usually it does not) then the preview
is accurately updated.

IMPLEMENTATION

Texlite, currently implemented under Win32, provides a visual shell for the TEX core
tangled from TEX: The Program [1] and modified in the way described above. Let us
enumerate the main changes:

1. It can make detailed core dumps and read them back at specified points.

2. For every paragraph it stores all the data required to unwrap the paragraph back
and break it into lines again.

3. It relates nodes in memory to their origin in the source text.

Except for these additions the compiler remains the canonical TEX, able to process
an arbitrary TEX document.

The shell consists of two windows. The preview window represents the current page
in its typeset form, which is common to all DVI viewers. The main difference is an
editing cursor (a flashing caret). The user may mark, type, or delete pieces of format-
ted text as in any WYSIWYG text processor, without delays or other inconveniences.
However, the requirement to keep a correct document structure still imposes some
limitations. For example, one cannot select a part of a heading and several words
in a following paragraph and delete them at once. Texlite prevents such inconsistent

TEXLITE 191

changes by tracking grouping levels.

Texlite preview supports graphics in several bitmap formats and in PostScript (in-
stalled GhostScript required). Standard LATEX coloring schemes and emTEX exten-
sions (popular in the DOS/Windows community) are supported too.

In addition, texlite provides an extension for internal and outer links in a document.
For example, a specific macro makes a common table of contents into an interactive
directory which opens the corresponding page when a section reference is clicked. An
outer reference brings a user to a different document located elsewhere on Internet.
This feature facilitates browsing of TEX documents and makes it similar to web surfing.

Though a user may choose to work with a document in the preview window only,
there remains a window for the source text. All the changes made in the preview are
automatically reflected here. However, if a user edits the source text, he should invoke
the synchronization explicitly, because manual correction of the source text allows the
existence of inconsistent clauses.

The source text view benefits from visual editing too, as it uses information from
the compiler to mark up the text according to the TEX syntax. Moreover, the markup
(presented in different colors) is always correct, even if symbol categories are changed
during the compilation.

A small improvement concerns error corrections. The shell sets the cursor to the
position in the source text where an error occurs and displays its description. However,
if a compiler is used just to mark up the text, errors are only marked by a color.

REFERENCES

[1] Knuth, D. E. Computers & Typesetting. Volume B, TgX: The Program. Read-
ing, Massachusetts: Addison-Wesley, 1986.
Fine, J. Instant Preview and the TEX daemon. These proceedings.

Strokov, I. I. A WYSIWYG TgX implementation. TUGBoat, December, 1999.

NS

