
design

Doing it my way:
a lone TEXer in the real world

Jean-luc Doumont
JL Consulting
Achterenberg 2/10
B–3070 Kortenberg, Belgium
email: JL@JLConsulting.be

abstract
While a world-renowned standard in many academic fields,

Don Knuth’s much acclaimed typesetting system is almost
unknown in most parts of the real world, where many a

document designer has achieved professional success without
ever hearing (let alone pronouncing) the word “TEX”. Outside

academia, the lone TEXer faces not only compatibility
headaches, but also outright incomprehension from his

customers, colleagues, or competitors: why would anyone
want to use TEX to produce memos, two-color newsletters,

full-color brochures, overhead transparencies, and other
items – in short, anything but books that contain a lot of

mathematics?
As a consultant in professional communication, I have been

using TEX for all documents I have produced for my clients and
for myself during the last ten years or so. Though it has turned

out to be most successful, this approach is seen by most as a
mere idiosyncrasy. And yet, the systematic use of my own TEX

and PostScript programming gives me three unequalled
advantages over using off-the-shelf software: I travel light, I

can go anywhere I please, and I guarantee I’ll get there.

Introduction
Being someone who (among other activities) produces
documents for a living, I often have to discuss software
issues with clients, colleagues (or competitors, as the case
may be), and service bureaus or print shops. When I say
I use “TEX,” these people usually first ask me to repeat,
then express their surprise. Some immediately dismiss it
as “never heard of”; others first ask what exactly it is, be-
fore wondering why I would want to use something “that
nobody else uses” instead of awysiwyg, “professional”
application (the onetheyuse, no doubt).

My using TEX (and PostScript) for virtually all docu-
ments I produce, successful as it may turn out, has puzzled
many a TEX user, too. Is TEX really the best tool for doc-
uments other than long, structured, or heavily mathemat-
ical ones? Is a direct-manipulation, integrated application
not better suited to producing short newsletters, graphs,

or overhead transparencies? The most qualified answer is
likely to be, “Well, it depends.”

This paper relates the experience of a long-time lone
TEXer in the real world. It explains choices, points out
advantages and limitations, and draws lessons from the ex-
perience.

Approach and opportunities
The very varied documents my company produces can
be grouped into two categories. Some are in-house doc-
uments, such as letters, reports, and teaching materials
(handouts, lecture notes, overhead transparencies). The
others are documents we create on behalf of clients, in-
cluding newsletters, brochures, corporate reports, and over-
head transparencies. Documents of both categories may
be black-and-white, two-color, or full-color ones, printed
in traditional (offset) or modern (digital) ways, in small or
large runs.

To be able to guarantee the quality of the documents
we produce for our clients, we have opted to give them
non-editable deliverables only – in practice, paper, film, or
ready-to-print electronic files (in PostScript, for example).
We thus strive to preserve the quality of both the writ-
ing and the typesetting against two sources of undesirable
alterations: unwise last-minute modifications by the cli-
ents themselves, often ruining a consistency they may not
readily perceive, and accidental changes caused by an all-
too-theoretical “seamless conversion” between platforms
or versions of a given software application.

Our insistence on not giving away editable files is a
tough one to maintain (admittedly, it has suffered excep-
tions): clients logically consider as theirs the text they have
paid us to write or the format they have paid us to design
and produce. Yet our name in the list of credits constitutes
our best – if not our only useful – marketing tool: we can-
not afford to take chances. We will, of course, ensure that
what we create addresses the client’s needs while attaining
the quality level we strive for.

Though our approach is dictated by quality standards, not
ease of production, it does simplify our work – to some ex-
tent, that is. Because we need not exchange editable files
back and forth with external parties, we are free to choose
not only the platform but also the software tools with which
we work. More accurately, we must be able to process in-

Voorjaar 2002 23

design Jean-luc Doumont

coming ascii files and occasional images ingif or jpeg
format, and to produce PostScript files for laser printers,
imagesetters, or others still – all in all, minor constraints.
Our software tools are therefore essentially limited to an
ascii editor, an image processor, and, of course, a TEX en-
vironment, which we use to produce virtually all our paper
documents.

Surprise and frustration
The choice of TEX as all-purpose tool for producing very
varied documents surprises those who know TEX and
puzzles those who do not. Clearly, it does stem from my
previous experience with TEX in an academic setting (Stan-
ford University, which happens to be TEX’s cradle), and
from my technical education (applied physics) and con-
sequent preference for analytical thinking. Admittedly, it
may also partly originate in my pronounced taste for com-
puter programming and, more generally, in my peculiar
habit of wanting to (re)do things my own way. Still, the
perspective provided by some ten years of successful pro-
fessional practice vindicates my choice: over the years, I
have satisfactorily moved to TEX for more and more types
of documents.

Until I entered the “real world,” I failed to realize
how poorly known TEX is, at least over in Europe. It
is known by the more technically minded participants
at the training programs I teach in academia and na-
tional research centers, though even these people are
often unclear about what TEX really is and typically
confuse TEX and LATEX. In contrast, it is an un-
known entity to clients who entrust us with document-
creation projects, even those in research organizations,
typically from the Corporate Communication or Public Re-
lations department. These clients, used to mainstream
direct-manipulation packages, have difficulties understand-
ing the nature of TEX, the difference between TEX itself and
its implementation on a specific platform, and the fact that
TEX cannot do much (relatively speaking) until one pro-
grams it.

Irrelevant as it may seem, given the lack of compatibility
issues in our case, the choice of TEX in an essentially non-
TEX world proved a liability to our credibility. I had expec-
ted that clients who did not know TEX would be content to
judge the tool by the result; I was wrong, for at least two
reasons. First, most of our clients are little able to judge the
quality of a typeset page; their eyes somehow seem blind
to stretched out lines, uneven line spacing, and other basic
points. Yet the eventual readers of the documents may well
notice the difference (if unconsciously), so producing high-
quality pages still matters. Second, our clients judge merit
by popularity and hence distrust or even disdain what they
do not know; they figure that, if they have not heard of TEX,

then it cannot possibly be any good. Consequently, and in-
dependently from what they see, they are suspicious of the
pages I typeset with TEX. Ironically, they seem infinitely
more reassured when I simply tell them I use “a system I
programmed myself” rather than “the system developed by
Professor Donald E. Knuth”.

Distrust of the unknown goes beyond the clients. Many
of the print shops with which clients sometimes ask me
to work dislike my giving them PostScript files instead of
editable ones. PostScript being akin to Greek to them, they
somehow feel deprived of their power and will not admit I
have done half of the work for them. When anything goes
wrong at any stage of the printing process, they are quick
to pin the blame on me, insisting to the client that I use
a software application nobody else uses, “so it’s bound to
create problems”. (As an extreme case, one renowned print
shop even resorted to this excuse after mistakenly using a
Pantone color other than the one I had specified in writing.)

People who do understand what TEX is, after some ex-
planations, wonder why on earth I prefer using such an in-
tricate system rather than a much more user-friendly (and
better known) package. At first, the advantages of TEX were
so intuitively obvious to me I was unable to put them into
words. Extolling the line-breaking algorithms, positioning
accuracy, or logical markup was pointless: these people
either saw no benefit in the features or insisted they could
do all of that with their own text processor. To a point, they
were right, of course, even if we all feel that “it’s not the
same”.

A little help from my friends
At a loss for words in the defense of TEX, but convinced
from experience that it suited my work so well, I set out
to ask other users why they preferred TEX. I contacted the
makers of my own TEX implementation, posted questions
on comp.text.tex, and asked around. The answers were
varied but can be grouped into five categories: output qual-
ity, flexibility, text-based formats, reliability, and portabil-
ity.

Not surprisingly, many who answered my post on
comp.text.tex summed it all up by saying that TEX’s out-
put “simply looks better,” especially as regards mathemat-
ics. Among others, they pointed to such features as trans-
parent use of optical sizes, better hyphenation algorithms,
and line-breaking algorithms that act on whole paragraphs,
not line by line.

Besides the quality of its output, users love TEX for its
flexibility, allowing one to extend its capabilities almost ad
infinitum. Some mentioned virtual fonts, custom hyphena-
tion patterns, and non-European languages. Others lauded
TEX’s superior capabilities for floating inserts and cross-
references. Following the theme of the presenttug confer-

24 MAPS

Doing it my way: a lone TEXer in the real world design

ence, some also underlined the parallel writing of printed
andhtml documentation.

Less expectedly perhaps, users praised TEX’s ascii roots.
A plain-text format, they said, allows easy manipula-
tion with any text editor, easy generation of TEX files
by other applications (including preprocessors), and small
files (hardly larger than the actual text) that compress well.
Some also mentioned the small size of their TEX imple-
mentation, compared to that of popular text processors.

TEX’s text files, batch operation, and stability over time
were seen as the basis of its reliability and portability.
In contrast to those of integrated applications, the TEX
(source) files can be damaged only by the text editing, not
by the formatting, the displaying, or any other downstream
operation. Moreover, source files typeset with TEX ten
years ago can be typeset again today – on any platform – to
produce the exact same output, in the exact same device-
independent format. TEX files, being plainascii, can also
safely be exchanged by electronic mail across the world.

Besides the above observations, the (occasionally emo-
tional) discussion oncomp.text.tex as a result of my post
pointed to two interesting differences. Trivial as these may
seem in retrospect, they helped me understand much of the
religious wars around software: they are the differences
between a software tool’s

claimed and actual capabilities, and
its potential and actual use.

Reliability and portability are typical issues that differ-
entiate between claimed and actual capabilities. There is no
intrinsic reason why an integrated application should be un-
reliable, although increased complexity and fast-changing
versions certainly increase the odds. Similarly, there is
no intrinsic reason why the claimed interchangeability
between platforms and between versions should turn out
untrue. Yet a pragmatic point of view suggests otherwise.

Furthermore, the fact an application offers a given fea-
ture does not imply that its users actually use it – of-
ten a question of usability. As an extreme example, any
graphical application that allows one to position charac-
ters precisely anywhere on the page can produce output
that matches TEX’s – but at what cost? TEX, or so its
users say, not only makes some operations even possible
at all, it also makes many operations easier than direct-
manipulation software.

Actual use is also largely affected by stability. In never-
ending debates on software, protagonists who claim their
own tool to be more efficient than that of others may well
all be right, for the tool each masters best is the most
efficient for him or her. Yet mastery requires time and
users feel little motivated to learn to master a tool that will
soon change: fast-evolving software, with pressure or even

obligation to upgrade regularly, may offer ever-increasing
capabilities, but discourages in-depth learning.

As a final point, thecomp.text.tex discussion also
clarified wysiwyg (What You See Is What You Get), a
concept often confused with that of direct manipulation. If
wysiwyg denotes faithful correspondence between screen
view (what you see) and paper output (what you get), then
some.dvi viewers are the closest towysiwyg one can
get. Many people, however, actually mean that what they
doaffects the output in a way they can instantlysee, a char-
acteristic of direct-manipulation software. For accurate po-
sitioning (for example, to align two words exactly), direct
manipulation may not be the most practical approach.

Agreed, but. . .
Answers from other TEX users expressed some of my in-
tuitions in words, clarified some of my own mental short-
cuts, and triggered new thoughts. I agreed on all advant-
ages presented, but felt something was still missing. Most
users enthusiastically put forward that TEX is unequaled for
somedocuments; very few suggested they were, like me,
using TEX for all documents they produce.

Users see TEX as particularly suited to the production
of large, structured documents. Its batch process, ability
to input files in other files, and virtually unlimited capabil-
ities (such as number of paragraph styles) make large pro-
jects easier to handle. The separation of contents and visual
appearance that it encourages (via macro programming or
use) allows one to focus more easily on content, structure,
and style.

To my surprise, many a TEX user I talked to admitted to
resorting to direct-manipulation applications for short, less-
structured documents (letters being the typical example)
because “It’s so much easier.” I wonder what, specific-
ally, they find easier. Letters – business letters, that is –
may be seen, if not as one large, structured document, at
least as a uniform collection of documents. Consistency,
therefore, is as important to the250 business letters I write
every year as a one-off long report. Such a level of con-
sistency, it seems to me, is more easily and more reliably
achieved with TEX than with direct-manipulation software.
As an example, the instruction\JL99001 TME/MDe type-
sets a letter header with my company’s logo, my name, the
date (in the proper language), the letter’s reference number
(here,99001), and the complete address block of my ad-
dressee (here, personMDe from companyTME, as specified
in a data file).

The major perceived obstacle to using TEX, to which
somecomp.text.tex members rapidly pointed, is its steep
learning curve. TEX, or rather TEX packages, are often
quite immediate touse. Despite a marked aversion for
computer programming, my business partner used my TEX
macros very readily, even without the user manual I never

Voorjaar 2002 25

design Jean-luc Doumont

The two pages on our using TEX and PostScript, out of
a short document explaining our approach to our clients.

B ecause we strive for the highest quality, we invested in the

best typesetting tools. All the paper documents we produce therefore

rely on two highly acclaimed standard codes: TEX and PostScript.

TEX is a typesetting system developed by Donald E. Knuth at Stanford University

for “the creation of beautiful books—and especially for books that contain a lot

of mathematics.” PostScript is a standard page-description language developed

by Adobe Systems Inc. “for imaging high-quality text and graphics.”

Software tools Taking advantage of their complementarity, we use TEX and PostScript in

combination. We use TEX programming and encoding for all aspects of

typesetting (arranging type on the page). We use PostScript programming and

encoding for elements other than type, such as drawings and graphs. For

simple illustrations, we write PostScript code directly. For complex ones, we

use PostScript-oriented Adobe products: Illustrator™ for vectorial descriptions

such as drawings, Photoshop™ for pixel descriptions such as sampled images.

Software
compatibility

Since we go from scratch to final pages, compatibility issues are few, if any. As

input from clients, we favor the simplest form of all: unformatted ASCII-encoded

text or data (often referred to as “plain text”), readily obtainable with most

software today. And as output, we convert the whole document to PostScript

code, for printing or imaging on a PostScript device. Our clients, in other words,

do not have to know anything about TEX to work with us.

Advantages
of own tools

Programming TEX and PostScript—a route on which few professionals venture—

gives us three unequaled advantages over using off-the-shelf software: our

work is fast, flexible, and reliable. First, we know our tools in and out, and are

not slowed down by countless unnecessary options: we travel light. Second,

whenever a feature seems to be missing, we program it: we can go anywhere.

Third, whenever a feature does not work as we intended, we can and do fix it:

we’ll get there. We can therefore guarantee a well-done job by a certain date,

without fearing that the software irremediably let us down at the last minute.

Freedom has its price: programming TEX and PostScript requires skill and

dedication. Skill we have acquired through a high-level technical education,

then refined through ten years of practice. Dedication is fueled by our

(and our clients’) satisfaction with the results. Though we seldom recom-

mend this approach to others, we will continue to develop our own tools,

while guaranteeing full compatibility of the output pages with printing devices.

26 MAPS

Doing it my way: a lone TEXer in the real world design

The beauty of TEX TEX (pronounced “tech” or “teck”) is not so much a word processor as a

programming language, complete with typed variables, block structure,

executable statements, and a powerful macro facility. The TEX compiler turns

a one-dimensional source program into a two-dimensional typeset page. Below

is an example of source code (right) and resulting output (left).

0.0 0.1 0.2 0.3

50

40

30

20

10

0

r2 = 0.93

\draw[\white]{8\pc}{8\pc}

\xrange03{10} \xaxis01{10}34

\yrange0{50}1 \yaxis0{10}151

\markerdata

0.034 6.1667 0.051 13.833 ... \enddata

\linedata

0.0 4.45 0.3 52.28 \enddata

\an{0.2}{35}{$rˆ2=0.93$}rb

\enddraw

TEX’s advantages are numerous. Dedicated to high-quality typesetting, it pro-

duces the best output available today, especially for such tasks as kerning lines,

hyphenating paragraphs, and displaying mathematics. It allows accurate posi-

tioning (better than 1 µm) and can tackle virtually any language, in any alphabet.

As a clearly defined language, it is platform-independent and stable over time,

allows a high level of automation and extension, nicely separates contents from

format (thus encouraging logical design, rather than visual one), and works

with plain-text source files (smaller, easier to manipulate, edit, transfer, and

compress, and much harder to mangle by accident than word-processor files).

The example graph above exemplifies some of TEX’s advantages. The plain-text

code is compact and compiles fast to produce a consistent graph. Typeface,

tick lengths, and line widths are defined at the top of the document, and apply

by default to all graphs. The graph is exactly eight interlines high, and is

shifted down by 1/4 of an interline; bottom labels are aligned to a line of text,

contributing to the overall harmony of the page.

Because typesetting is a complex process, so, unavoidably, is TEX. While merely

using existing macros is simple—much simpler, in fact, than using a word

processor—writing one’s own set of macros is not. Though we would personally

settle for nothing less, we consider TEX a tool for professionals and a priori

do not recommend its widespread business use around the office.

Voorjaar 2002 27

design Jean-luc Doumont

got around to writing. By contrast, TEX, or rather the
fine programming of TEX, is not that immediate tolearn,
as confirmed by Knuth’s “dangerous bend” signs inThe
TEXbook(1984). The same business partner was often at
a loss when something unexpected occurred: the mental
paradigm she had built through practice was insufficient to
understand those cases.

Conclusion
Faced with people who equate “most popular” with “best”,
I stopped saying I work with TEX in casual conversation.
Today, if people ask, I usually say I use “my own system”
and refrain from explaining further. If people insist, I give
them a short document that explains my company’s ap-
proach, including its choice of software tools (Figure1).
Because they may care little about output quality and be-
cause our approach bypasses portability issues, the two
pages on TEX and PostScript emphasize the three other cat-
egories mentioned above: we say it allows our work to be
fast, flexible, andreliable.

While I have been a TEX enthusiast for over ten years, I
have never been a TEX evangelist. More importantly, while
I am convinced that using TEX my own way is one of my
best professional moves, I have never advised anyone to
develop his or her own package from scratch, let alone use
mine. Some clients, who do notice the superior output TEX
allows me to produce, have asked what software tool I was
using in order “to buy it for themselves”. I have to dis-

appoint them, telling them my “tool” could not really be
bought. Other clients, who had heard about TEX, asked me
for the documents’ source files, so they could convert them
automatically tohtml. How could theirhtml converter
know, for example, that my TEX command\Cs[137] pro-
duces137Cs?

Using TEX in the real world, where time and money
matter much, may require a dedicated TEX wizard. A
well-oiled macro package may save considerable time and
money by yielding consistently beautiful documents fast.
It may, however, not account for the admittedly limited but
nonetheless important special cases. In those cases, real-
world users may want to call upon a TEX wizard, some-
times on short notice. How severe a limitation this is de-
pends on management strategy. Learning TEX, in my case,
certainly paid off, but it was quite an investment, one that
was eased by personal motivation but that may not make
sense from a pure business point of view. Still, it has
given me an edge in many demanding professional cases,
in which I can – actually – do what others can not.

I may remain a lone traveler, but my mind is made up:
I will go on traveling light, going anywhere I please, and
resting assured I’ll get there.

Reference
Knuth, Donald E.. The TEXbook. Addison-Wesley,

Reading, Massachusetts,1984.

28 MAPS

