
graphics

Drawing effective (and beautiful)
graphs with TEX

Jean-luc Doumont
JL Consulting
Achterenberg 2/10
B–3070 Kortenberg, Belgium
email: JL@JLConsulting.be

abstract
A standard approach to producing documents that include

illustrations consists in typesetting text with specialized
typesetting software (such as TEX) and inserting illustrations

created with different, equally specialized software. To better
integrate the illustrations into the typeset page, it would be
nice to be able to produce or modify them directly with the

typesetting software. Drawing graphs with TEX, for example,
would allow one to set them \hsize wide and 0.75\hsize

high, position labels exactly \baselineskip below the
horizontal axis, and, especially, typeset all annotations with the

same fonts, sizes, and mathematical beauty as the rest of the
document.

The hybrid TEX and PostScript macros presented in this paper
take advantage of TEX’s power to graph and annotate data

sets in a variety of ways in order to produce effective,
beautiful, well-integrated graphs. They use TEX to draw all

horizontal and vertical lines (axes, tick marks, grid lines) and
set all annotations, and PostScript to draw the data, as

markers, lines, and areas. While fairly simple, they have been
successfully harnessed to appear in a wide range of real-life

applications, up to logarithmic graphs and (with some
patience) complex multipanel displays. Of course, the macros

are a tool for drawing final graphs rather than exploring or
transforming data sets.

Most designers produce documents by assembling com-
ponents produced with different tools: typically, they type-
set text with a text-oriented application and create illus-
trations with one or several drawing or graphing applica-
tions. This approach, it would seem, offers the best of both
worlds, by using the best-suited tool for each part of the
job. Unfortunately, it often suffers one – in some cases,
major – drawback: the poor integration of the illustrations
in the typeset page.

Though increasingly sophisticated, graphing applica-
tions still offer but limited control over some details of the
display, all the more so if their focus is data manipulation
rather than data visualization. Among the less accessible
parameters are:

the size of the display and the size and position of the
graphing area within the display, etc.;
the thickness of the axes, the length of the major
and minor tick marks, the length and spacing of line
segments in dashed lines, etc.;
the typeface used for text elements and their relative or
absolute position (including sub- and superscripts).

As a consultant on technical communication, including
graphing, I am disappointed with the output of many
graphing applications (or at the considerable efforts needed
to produce acceptable output). In line with the recom-
mendations of such authors as Jacques Bertin (1973), Wil-
liam Cleveland (1985), and Edward Tufte (1983), I encour-
age the participants of my training programs to produce
simple, intuitive, visually correct representations that favor
data over decoration. Yet I find the default output of many
applications to be overdecorated or hard to decipher. I was
in search of a system that would help one focus on data,
not decoration, much in the way TEX can help one focus on
logical structuring, not visual rendering.

The idea of harnessing TEX to draw figures is nothing
new, going back at least to Leslie Lamport’s original LATEX
package. The basic principle is always the same: define
a coordinate system and position objects with respect to it
by utilizing all of TEX’s accuracy. The macros presented
in this paper follow this principle but introduce some new
ideas, such as using stretchable glue (rather than coordinate
calculations) to position tick marks.

My graphing macros were developed in several steps.
Originally, I was using dedicated graphing software but be-
came frustrated with the poorly set text elements it offered,
especially as soon as these involved any level of mathem-
atics (symbols, sub- or superscripts, etc.). I then began to
produce graphs without any annotation, insert them into my
TEX source files, and overprint all text elements, including
numerical labels along the axes. I soon realized that if I
was able to place numbers along axes properly, I could as
easily add a tick mark next to each, so I decided to display
the data themselves with graphing software and draw axes
and grids with TEX. Displaying the data with PostScript
code inserted into TEX was the logical next step.

This paper first explains the principles underlying the
macros for drawing axes, data, and annotations, then dis-

Voorjaar 2002 29

graphics Jean-luc Doumont

cusses extensions, limitations, and advantages of the ap-
proach.

Coordinates and axes
As you might expect, the macros eventually produce
the graph as a TEX box of given width and height,
which one specifies with the delimiting commands
\draw{〈width〉}{〈height〉}...\enddraw. The\draw com-
mand accepts as optional argument (in square brackets à la
LATEX) a specification of the graph’s background color, the
default being transparent (notwhite).

0.0 0.1 0.2 0.

50

40

30

20

10

0

r2 = 0.93

\draw{8pc}{8pc}

\xrange{0}{3}{10}

\yrange{0}{50}{1}

\xaxis{0}{1}{10}{3}{4}

\yaxis{0}{10}{1}{5}{1}

\markerdata ... \enddata

\linedata ... \enddata

\an{.2}{36}{$r^2=0.93$}rb

\enddraw

Figure 1 A simple graph and (part of) the code that generated
it. Fractionary numbers are specified as fractions; for example,
\xrange{0}{3}{10} specifies the width of the graph to
correspond to the range [0/10, 3/10].

The macros then position drawing elements with respect to,
but not necessarily within, the reference box by using a co-
ordinate system defined as ascaleand anoffset. In the hori-
zontal direction, for example, the position\x (a dimension)
is calculated from the coordinate〈x〉 (a number) by the lin-
ear transformation \x=〈x〉\xsc \advance\x+\xoff.
The scale\xsc and offset\xoff – two dimensions – are
not specified as such by the user but are calculated from the
specified graph width (for example,8pc) and axis range
(for example, from10 to 50 on the y-axis). Unlike the
calculation of the position\x, which involvesmultiplying
a dimension by a (possibly fractionary) number, that
of the scale\xsc from the graph width and axis range
requiresdividing a dimension – an operation TEX restricts
to integers. To allow fractionary ranges nonetheless (say,
from 0.0 to 0.3, as in Figure1), the range specifications
foresee a denominator:\xrange{0}{3}{10}, for example,
specifies the horizontal axis to range from “zero divided
by ten” to “three divided by ten” or[0.0, 0.3].

While the \xrange and \yrange macros specify the
range of the horizontal and vertical axes (corresponding
to the graph width and height), they do not specify how
axes should be drawn; the\xaxis and\yaxis macros do.
These macros take as arguments the coordinate of the first

major tick mark, the increment between major tick marks,
a denominator (as for\xrange and \yrange), the num-
ber of major tick marks after the first one, and the num-
ber of minor tick marks between two major ones. The
horizontal axis of Figure1, for example, was drawn with
the command\xaxis{0}{1}{10}{3}{4}. The denomin-
ator (10, in this example) indirectly specifies the number
of decimal places for the numerical labels: the command
\xaxis{0}{10}{100}{3}{4} would have labeled the axis
with values “0.00” to “ 0.30.”

Rather than positioning each tick mark and correspond-
ing value with a scale and offset system, the macros place
them in a box of the proper width or height and separate
them with equal amounts of stretchable glue, so tick marks
end up equidistant. By using different amounts of glue
(specifically, log 2− log 1 = 0.3010fil, log 3− log 2 =

0.1761fil, and so on), they can even produce logarith-
mically spaced tick marks without having to calculate any
logarithm at all (Figure2).

The axes can be drawn in different combinations and
fine-tuned in various ways. First, optional boolean argu-
ments to the\xaxis and\yaxis macros enable or disable
parts of the axis drawing, such as axis line, numerical la-
bels, major or minor grid lines, and mirror axis at the right
or top. Second, many parameters defined as dimensions
can be freely specified: the line thickness, the length of
both major and minor tick marks, the distance between axis
and numerical labels, and the possible dash pattern used for
the grid lines.

The macros actually offer a fairly general way of draw-
ing straight lines. The fully TEX macros\hl and\vl draw
horizontal and vertical lines, respectively, with length and
starting points specified in drawing coordinates. They use
the current value of line thickness and dash pattern (if any),
and draw “projecting square caps” (matching a PostScript
“linecap” value of2), so perpendicular lines originating
from the same point connect nicely. They are comple-
mented by the hybrid TEX/PostScript macro\rl, drawing
sloped lines in a similar way.

The macros for setting the range and those for draw-
ing the axes are very flexible: they are largely independ-
ent, can be used several times in a given graph, and can
appear before or after other drawing commands (although
some commands obviously require the proper range to be
set first). The range may thus be redefined to allow the
correct display of data expressed in other units. Moreover,
the axis need not extend to the full range. It can be drawn
with several\xaxis or \yaxis commands having different
arguments and boolean flags; in this way, it can show tick
marks along its full length but numerical labels for only
some of the tick marks (Figure2). It can also be drawn
before the data and be overprinted by them, or after the
data and overprint them (Figure3). Finally, it can be use-

30 MAPS

Drawing effective (and beautiful) graphs with TEX graphics

1960 1970 1980 1990

1 000

0.1

mBq

m3

Beta in air

10

0.001

mBq

m3

137Cs in air

1 000

0.1

Bq

kg

137Cs in grass

100

0.01

Bq

L

137Cs in milk

10 000

1

Bq

137Cs body burden

Figure 2 A more complex display, using several offset vertical
scales (BNRC, 1998). With the data entered as logarithmic
values, the apparently complex problem of logarithmic display
boils down to setting tick marks right (with appropriate
amounts of stretchable glue) and replacing the corresponding
numerical labels x by 10x (here, this default labeling was
replaced by more readable annotations).

fully complemented by horizontal or vertical lines (Figures
4 and5).

Data
Though they could have used TEX code for some, the mac-
ros consistently use PostScript code for all forms of data
representation: markers, lines, boxes, error bars, areas,
etc. In a rather straightforward way, constructs such as
\linedata〈data〉\enddata push the data onto the Post-
Script stack, then invoke a PostScript routine to handle

6

4

2

0

Frequency [%]

0.6 0.8 1.0 1.2

Bead size [mm]

15

10

5

0

Number

Figure 3 A histogram with different axes left and right
(Vandenbroeck et al., 1996). The command sequence specifies
the drawing sequence: first the y-axis with the corresponding
grid lines (background), then the data, then the x-axis
(foreground).

them. This routine accesses some TEX parameters, most
importantly the vertical and horizontal scales and offsets.

The data set is coded as a simple space-delimited list of
space-separated pairs of values – or occasionally triplets,
as when specifying error bars (Figure4). Such an encod-
ing can typically be obtained by a simple copy-and-paste
operation from the tabular representation of a spreadsheet.
In a prior step, the spreadsheet application may help put the
data in the desired form; it may, for example, compute their
logarithm or perhaps display them with a limited number of
significant digits, to avoid making the subsequent TEX file
unnecessarily large.

The data-graphing macros (\linedata, \markerdata,
etc.) accept as optional argument a further specification of
the way the data must be rendered. This argument, in the
form of either direct PostScript code or TEX macros ex-
panding to PostScript code, may thus specify the width and
color of the line, and the size and shape of markers as well
as the clipping area and any other PostScript parameters
such as line caps, line joints, or dash patterns. Default para-
meters may be specified via the\everywave macro.

Annotations
The macros provide two forms of annotations. The numer-
ical labels along the axes are positioned automatically by
the\xaxis and\yaxis commands. All other annotations,
including the labels of the axes, are positioned by the\an
macro or variations of it.

In a way somewhat similar to LATEX’s \framebox con-
struct, the\an macro positions annotations by any corner
of their enclosing box. For example:

\an{0.2}{35}{$r^2=0.93$}rb

Voorjaar 2002 31

graphics Jean-luc Doumont

1 2 3 4 5 6

Sensors

Relative deviation [%]

−0.5

0.0

+0.5 Iron

−0.5

0.0

+0.5 Sand

−0.5

0.0

+0.5 Foam

Figure 4 A graph with data and error bars (BNRC, 1998). The
vertical axis is complemented by a zero line. The error bars
are actually entered separately, as a list of triplets. Like other
graphical elements, they may be drawn before or after the data
points themselves – an issue when markers are of a different
color (white-filled, for example).

places the annotationr 2
= 0.93 such that its right (r) bot-

tom (b) corner is positioned at coordinates(0.2, 35). More
exactly, it places the annotation so that its right bottom
corner is positioned a distance\dx left and\dy up from the
point of specified coordinates. The offset (\dx,\dy) allows
the user to position annotations “a little away” from the ob-
ject they annotate, such as a data point. Like the text itself,
the specified offset does not scale with the dimensions of
the graph; on the other hand, coordinates computed to be
“a little away” do scale with the graph.

Although the numerical labels are usually set automatic-
ally by the\xaxis and\yaxis commands, they can also be
set manually, for example, when they are non-equidistant or
should otherwise be rendered differently (Figures2 and5).
In this case, the offset (\dx,\dy) can be set equal to the
offset specified for numerical labels, so\an sets the an-
notation exactly where\xaxis or \yaxis would.

As third and main argument, the\an macro accepts just

0.75

8.74

2.77

0.76 8.52

Sample #4

Figure 5 A dot-dash-plot à la Tufte (1983). Ranges
are specified but not axes. Data are displayed as three
\markerdata...\enddata series (dots, horizontal marks,
vertical marks). One horizontal line, one vertical line, and six
annotations complete this sober display.

about anything: text, of course, a framed box, a\special
command, even another graph. Thus, it provides a very
general way to position objects with respect to a coordinate
system. Because it was meant for short text snippets, it
considers the “bottom” of the box enclosing the annotation
to be its baseline, not its real bottom (〈depth〉 below the
baseline), so text with and without descenders would be
positioned in the same way.

Because the coordinate system can easily be changed at
any time (by calling the\xrange and\yrange macros or
even by assigning new values directly to the scales and off-
sets), the annotations may be aligned to elements other than
the graph data. For example, if the vertical scale is set so
that one unit corresponds to one\baselineskip, annota-
tions can easily be set to align to text elements outside the
graph; such an alignment may be nice for integrating the
graph in a multicolumn page designed on a strict underly-
ing grid.

Drawings other than graphs
Although designed with graphs in mind, the macros can
easily accommodate other types of illustrations based on
the accurate positioning of graphical elements according
to a coordinate system (Figure6). With a macro or two
for framing text, they make organizational charts possible
– no PostScript required. With additional PostScript ar-
row heads and non-rectangular shapes (such as circles or
diamonds), they can be used to create flow diagrams (Fig-
ure7) or more complex drawings still.

Limitations
Like most macros, those presented in this paper are lim-
ited in scope: they are a TEX–PostScript hybrid, relying on

32 MAPS

Drawing effective (and beautiful) graphs with TEX graphics

Machine motrice 1

2

wm

Figure 6 A simple drawing based on the graphing macros
(Giot and Streydio, 1995). All elements are easily drawn with
TEX commands (no PostScript).

TEX’s limited arithmetic capabilities, and are intended for
producing final graphs rather than playing around with the
data.

First, the macros show the limitations of all TEX macros
relying on PostScript: their use of\specials makes them
implementation-dependent and their output is not readily
visible in advi viewer. To see the graphs, one must typic-
ally convert the.dvi file into PostScript, then print this file
or view it on-screen. This possibly slow process may render
the visual optimization of a graph somewhat laborious (the
legible positioning of annotations in complex graphs comes
to mind). Still, the PostScript code manipulates graphical
elements only; it need not manipulate text.

Second, the macros rely on TEX’s limited arithmetic cap-
abilities for calculating the scales, so they suffer round-off
errors when handling large numbers, e.g., when an axis is
specified to range from0 to 10,000,000. (Of course, such
large numbers read poorly and are best replaced by smaller
numbers in larger units.)

Third, the macros are designed to display data sets but
clearly not to explore or transform them. In this respect,
they do not replace dedicated graphing or data-processing
applications, thereby allowing one to select which data to
represent and in which graphical form to represent them.

Figure 7 A flow sheet based on the graphing macros (BNRC, 1998). The only PostScript elements are the arrow heads and
diamond outline.

Actual power P

Desired power Pd

Reactor period T

Position of A-rods

Position of C-rods

Fuzzy control

Motion of A-rods

Motion of C-rods

Normal control

(fuzzy control off)

Readout A/D

Any out of
boundary?

yes no

Fuzzy inference

Output

(Similarly, TEX is meant as a tool for typesetting text, not
writing it, although many of its features certainly facilitate
the writing process.)

Of course, the macros may been seen as having many
more limitations, although these usually reflect deliberate
design choices rather than constraints: they are essentially
restricted to two-dimensional representations and certainly
do not favor decorative depth effects on either axes or data,
they assume direct labeling of the data and thus provide
no immediate way of creating legends, they foresee no
mechanism for drawing pie charts or for setting text other
than horizontally, etc. (Additional effects can be added, of
course, sometimes quite simply, by anyone familiar with
TEX and possibly PostScript.)

Advantages
Despite the above limitations, typical of many TEX mac-
ros, the macros presented in this paper offer indisputable
advantages for integrating graphs with the rest of a docu-
ment, for optimizing a collection of graphs, or for produ-
cing unusual displays.

By having access to TEX’s parameters, the macros allow
a harmonious integration of graphs into a document. For
example, the graphing area can be specified to be exactly
\hsize wide and15\baselineskip high so that it aligns
well with other elements on the page and, of course, auto-
matically rescales if the document is typeset in a different
width or interline spacing. For documents based on a strict
grid, elements of the graph can easily be specified to align
with it: labels of the horizontal axis can line up on an adja-
cent baseline, text annotations can be left-aligned to a grid
position, and so on.

As an important part of a smooth graph integration, the
macros can typeset all annotations with the same typefaces,
sizes, and mathematical beauty as the rest of the document.
For example, one can easily add a formula to the graph, set

Voorjaar 2002 33

graphics Jean-luc Doumont

0 2

Cheetah
Pronghorn antelope

Lion
Elk

Coyote
Zebra

Greyhound
Rabbit

Reindeer
Giraffe

Grizzly bear
Cat

Human
Elephant

Black mamba snake
Turkey

Squirrel
Chicken
Spider

Giant tortoise
Three-toed sloth

Garden snail

25 50 75 100100 km/h

Figure 8 A dot chart à la Cleveland (1985). The left panel presents a view ten times larger than the right panel. The vertical axis
is labeled with annotations, not numerical values. All elements other than the dots themselves are drawn with TEX commands.

an annotation on two lines exactly\baselineskip apart,
or specify units iniso notation, such as J· m−2

· s−1 (with
my macro\[J.m-2.s-1]; see Doumont,1994). In contrast
to imported illustrations (e.g., in encapsulated format), the
graphs can scale the position and size of components in-
dependently by changing the corresponding TEX settings:
an “enlarged” graph will thus not have thicker axes, bigger
markers, or larger annotations.

Although TEX macros may not allow the visual op-
timization of a given graph as easily as a direct-
manipulation application, they do allow the consis-
tent optimization of a collection of graphs. In
the declarative spirit of markup languages, the mac-
ros presented in this paper allow one to retype-
set all graphs in a document at once by changing paramet-
ers (e.g., the axis thickness, tick length, or text size) at the
top of the file. For this paper, for example, the length of
tick marks and size of dot markers were adjusted globally
after all graphs had been drawn. Direct-manipulation soft-
ware, by contrast, would typically oblige the user to change
these parameters for each graph separately – when they al-
low such parameters to be changed at all.

By giving access to all parameters in a TEX-like fashion,
the macros also allow one to produce unusual graphs or
combinations of graphs – sometimes admittedly at the cost
of some work. Custom axes (Figures5 and8) are a typical
example; small multiples (Figures2 and4) and scatterplot
matrices (Figure9) are others. With elementary PostScript

programming, one can easily extend the range of available
markers or visual representations in general, and even draw
functions described by an analytical expression rather than
a set of points.

Though it matters less and less with today’s personal
computers, the whole is also nicely compact. The macro
package is below32 kb and so is the file containing the
nine displays of this paper. (As a comparison, the spread-
sheet file containing the data for Figure2 amounts to over
75 kb.)

Conclusion
The macros, refined progressively over the years, reached
their final form about three years ago, when I co-authored
a manual on communicating numerical data for Shell
(Vandenbroeck et al.,1996). Since then, I have used them
successfully to produce numerous real-life graphs and il-
lustrations for my customers and for myself. Though
designing an effective graph still requires careful thinking
– something software will (probably) never take over – the
macros help me focus on data rather than rendering details,
by allowing me to specify many of these details separately
and for all graphs at once. Most of all, by accessing the
same dimensions and using the same positioning mechan-
isms as for the rest of the document, they allow me to integ-
rate graphs and other drawings harmoniously, thus produ-
cing not merely beautiful graphs but also beautiful pages.

The macros have never been released before – so far,

34 MAPS

Drawing effective (and beautiful) graphs with TEX graphics

8

8 8

Flow rating

Integrated flow

Gel time

Figure 9 A scatterplot matrix, showing three views of the
same data set, with an outlier (Vandenbroeck et a., 1996). The
display is a combination of six graphs, three of which contain
nothing but a central annotation. The three fit lines are not
entered as a list of data pairs; instead, they are specified as
an analytical expression, to be evaluated by the PostScript
interpreter.

they have never been used by anyone but myself – but the
positive feedback I have received on their output has en-
couraged me to do so: they will soon be available under
the nameJLdraw. I hope they can be as useful to others as
they continue to be for me.

References
Bertin, Jacques.Sémiologie graphique. Flammarion,

Paris,1973.
bnrc. Scientific Report 1997. Belgian Nuclear Research

Center, Mol, Belgium,1998.
Cleveland, William S.The Elements of Graphing Data.

Wadsworth & Brooks, Pacific Grove CA,1985.
Doumont, Jean-luc. “Pascal pretty-printing: An example

of preprocessing within TEX,” tub 15(3): 302–307
(1994).

Giot, Michel and Jean-Marie Streydio.Chimie physique.
Université catholique de Louvain, Louvain-la-Neuve,
Belgium,1995.

Lamport, Leslie.LATEX– A Document Preparation System.
Addison-Wesley, Reading MA,1986.

Tufte, Edward R.The Visual Display of Quantitative
Information. Graphics Press, Cheshire CT,1983.

Vandenbroeck, Philippe, Jean-luc Doumont, and Sophie
Rubbers.Communicating Numerical Data – Guidelines
and Examples. Shell Research (internal document),
Louvain-la-Neuve, Belgium,1996.

Voorjaar 2002 35

