
configurationSiep Kroonenberg
siep@elvenkind.com

Juggling texmf trees

abstract
Texmf trees can make a TEX installation more maintainable. With creative use of environment
variables, it is possible to run different versions and different configurations in different xterm-
or console windows.

keywords
texmf trees, configuration, environment variables, file searching

Texmf trees are being cursed for making life unnecessarily complicated. There may be
some truth to this, but they also let you break your TEX installation in pieces which can be
used and maintained independently:

Keep your own enhancements in a separate tree, which will be untouched when
you upgrade the main tree.

Give a fast-changing package such as Context a tree of its own. If you want to, you
can run two Context versions side-by-side.

Keep your own installation compact but hook up the TEX Live cd when you need
some esoteric feature.

Unhook your local tree(s) to check whether your journal submission compiles on a
vanilla TEX system.

Configuration with TEXMFCNF and texmf.cnf

The core components of a TEX system all find their files by the same method: they read
one or moretexmf.cnf configuration files, which, among other things, tell them where
to find their files.

TEX data files (macros, format files, fonts etc.) are stored in one or moretexmf dir-
ectory trees, which have a more or less fixed internal organization. TEX is configured to
always search the current directory for your own files.

teTeX and TEX Live are designed to run ‘out of the box’. All the programs have a
compiled-in default location for looking for configuration filesrelative to their own loc-
ation. If you just add the appropriate binaries directory to your path then you will have
a runnable system without further manual configuration. Let us see how this magic is
accomplished:

This is the relevant fragment of thetexmf.cnf of the current (january25 2002) teTeX
beta; the version for the TEX Live 6 cd is very similar:

% The main tree, which must be mentioned in $TEXMF, below:
TEXMFMAIN = $SELFAUTOPARENT/texmf
% A place for local additions to a "standard" texmf tree.
TEXMFLOCAL = $SELFAUTOPARENT/texmf-local

% User texmf trees can be catered for like this...
HOMETEXMF=$HOME/texmf

62 MAPS

Juggling texmf trees configuration

% A place where texconfig stores modifications (instead of the
% TEXMFMAIN tree). texconfig relies on the name, so don’t change it.
VARTEXMF = $SELFAUTOPARENT/texmf-var

% Now, list all the texmf trees. If you have multiple trees,
% use shell brace notation, like this:
TEXMF = {$HOMETEXMF,!!$VARTEXMF,$TEXMFLOCAL,!!$TEXMFMAIN}

% Where to look for ls-R files. There need not be an ls-R in the
% directories in this path, but if there is one, Kpathsea will use it.
TEXMFDBS = $TEXMF

That is, there are fourtexmf trees configured: the main tree,TEXMFMAIN; two trees for
local and user files, and one tree for generated files such as format files or font bitmaps.

The division in ‘local’ and ‘user’ makes sense for a shared TEX installation but if you
have a TEX installation just for yourself you may want to dispense with one or the other,
or reserve one of them for a special purpose.

The order in whichTEXMF enumerates the trees determines the order in which trees
are being searched. If you don’t like a version of a file in the main tree then you can put
another version in the local or home tree, which will be found before the original version.

The ‘!!’ in front of two of the four tree names indicates that these directories should be
searchedonly via the corresponding filename database, which bears the namels-R and
resides at the root of the tree. For the other trees, which presumably aren’t very large,
ordinary file searching is allowed1.

The variableSELFAUTOPARENT gets its value dynamically: if the binaries are in/usr
/local/teTeX/bin/linux, thenSELFAUTOPARENT will be the grandparent directory, i.e.
/usr/local/teTeX. As long as the texmf trees and the binaries are in the same relative
position, TEX will be able to find its files.

texmf.cnf is thoroughly commented. I recommend that you study it closely. You can
find additional information in the kpathsea documentation, which should be present on
your system in pdf- and other formats. Also study the structure of the (main) texmf tree.
Your local tree doesn’t have to be this elaborate, though.

Using environment variables for versioning

For a harddisk installation, you may simply accept the directory structure as it is con-
figured. For a cd installation however, the default value forVARTEXMF andTEXMFLOCAL,
$SELFAUTOPARENT/texmf-var and$SELFAUTOPARENT/texmf-local, point to director-
ies on the cd so you’ll probably want to change them. You can simply overrule them by
setting environment variables:

VARTEXMF=/var/tmp/texmf-var
export VARTEXMF

for Unix (Bourne-compatible shell), or

set VARTEXMF=/var/tmp/texmf-var

1. The reason not to search on disk is efficiency, but if you disallow searching on disk then youmust
maintain a filename database. The command for this ismktexlsr. Without parameters, the command will
try to (re)generate thels-R file for all trees listed in TEXMFDBS. You can also specify a texmf tree as
parameter.

Voorjaar 2002 63

configuration Siep Kroonenberg

for DOS/Windows.
But you may have all sorts of reasons to want the trees in other locations than the

preconfigured ones.
Context users may appreciate the possibility to reserve an entire tree, say the local tree,

for Context. This greatly simplifies upgrading. It also makes it easy to have different
versions around:

set TEXMFLOCAL=c:/cnstable
path ...;c:\cnstable\context\perltk;...

activates the stable version, and

set TEXMFLOCAL=c:/cnbeta
path ...;c:\cnbeta\context\perltk;...

activates the latest beta. You may not even need to addcontext/perltk to your path,
depending on your TEX version.

One thing to watch out for: create subdirectoriescnstable/web2c andcnbeta/web2c,
and immediately move or copy your freshly generated Context format files there, otherwise
they will overwrite each other.

So now you can switch back and forth between Context versions simply by changing
an environment variable.

Hooking and unhooking trees

TEX installations tend to be unpleasantly big. You may not be using a lot of fancy features
yourself but you may have colleagues who like to use every package they can get their
hands on. A solution: add a cd-based texmf tree, from e.g. the TEX Live- or the4TeX5
cd, to compile their papers.

In this example I use a secondtexmf.cnf file consisting of just the lines

TEXMFCD=d:/texmf
TEXMF = {$HOMETEXMF,!!$VARTEXMF,$TEXMFLOCAL,!!$TEXMFMAIN,!!$TEXMFCD}

So the cd tree is added last, and ‘!!’ ensures that the filename database is used. The first
line could have been replaced with an environment variable. In fact, ifTEXMFCD is defined
as an environment variable then the setting in this file won’t take effect.

To make sure that TEX reads the newtexmf.cnf, add its directory to theTEXMFCNF
environment variable, e.g.:

set TEXMFCNF=<directory of the new texmf.cnf>;c:/texmf/web2c

This works! This is what happens: TEX will first read the environment, then the new
texmf.cnf and finally the originaltexmf.cnf. Once a variable is set, subsequent settings
won’t overrule it.So the setting forTEXMF in the newtexmf.cnf will remain in effect but
we let the originaltexmf.cnf worry about all the other settings.

Unhooking trees is exactly analogous: create atexmf.cnf file with a line

TEXMF = {!!$VARTEXMF,!!$TEXMFMAIN}

and make sure, as above, that the newtexmf.cnf is read before the main one.
As indicated at the beginning, when you are about to send your paper elsewhere then

this is a good way to check whether your paper compiles on a vanilla system. If it doesn’t,
copy stuff from the local tree(s) to your working directory until it compiles cleanly.

64 MAPS

Juggling texmf trees configuration

Testing with kpsewhich

Be sure to test whether the right versions will be picked up from the right trees. Type e.g.

kpsewhich cont-en.efmt

and you’ll see which version of the Context format file is actually going to be used.

Using scripts

Of course, you’ll want to put these environment settings into scripts or batchfiles.
Under DOS and at least some versions of Windows, you can set environment variables

in a batchfile, and they will stay set after the batchfile has run its course. Under more recent
versions of Windows, this may no longer be the case. Anyhow, you can still specify an
initialization batchfile for a custom console window:

The icon and the name will show up in the titlebar of the console window.

Under Unix, environment settings defined in a shell script will certainly get lost, unless
you ‘source’ your script, which we shall nametexcd:

source texcd

This lets the script run in the current process instead of in a child process. With Bash, you
can write ‘.’ instead of ‘source’:

. texcd

If you still don’t like the extra syntax, you can define an alias:

alias tcd=’source texcd’

All terminal emulators that I know of also let you specify a title to be displayed on the
titlebar. If you use bash, try the following:

PROMPT_COMMAND="echo -e -n \"\033]0;cdtex \$PWD \07\""

to get the tag ‘cdtex’ and the current directory on your titlebar.

Voorjaar 2002 65

