
26 MAPS

Simon Pepping xml
Docbook In ConTEXt,
a ConTEXt XML mapping
for DocBook documents

What is Docbook In ConTEXt?

Docbook In ConTEXt combines two technologies that are widely used by authors of
technical literature: the Docbook DTD and the ConTEXt macro package for TEX.

It is a ConTEXt module that allows one to produce a typeset version of a Docbook
XML file, in dvi or pdf format.

It takes a Docbook XML file as input for TEX. ConTEXt’s built-in XML parser parses
the file and applies ConTEXt commands when it reads opening and closing tags. Which
ConTEXt commands are applied, and therefore how the output is formatted, is determined
by the Docbook In ConTEXt module.

Docbook
Docbook1 has been available since the early 1990s. Over the years it has evolved into
an extensive DTD for technical literature. Long ago extensive, customizable stylesheets2

became available, first in DSSSL, later also in XSLT. The Jade program and the JadeTEX
macro package made it possible to run the DSSSL style sheets and print the output with
high-quality free tools. This enabled one to author, format and print Docbook documents
without expensive software tools. With the advent of XML and XSLT more free tools
have become available.
These combined features have made the Docbook DTD the DTD of choice for tech-
nical literature. The Linux Documentation Project is one well-known project that
switched over from a private DTD to the Docbook DTD. Due to this strong posi-
tion, the toolset for working with Docbook documents is growing rapidly, see e.g.
http://www.miwie.org/docbookinfo.html3.

How did it start and where is it now?

During EuroTEX 2001 in Kerkrade I had become interested in using ConTEXt because of
the beautiful presentation styles used by Hans Hagen and several other speakers. While
I was following the ConTEXt email list, I also became interested in ConTEXt’s XML
capabilities. These seemed so wonderful to me, that I had to understand how this could
be done using TEX macro programming. I started asking questions. Sometimes Hans
answers such questions with the suggestion that one take up some or other project. So he
suggested that I start an XML mapping for Docbook.

I really had other plans, but I was so intrigued with ConTEXt’s XML capabilities that
I could not resist and gave it a start. As an added benefit, I would become more familiar
with the Docbook DTD. When I started I certainly was aware that this would not be a
small task. Docbook is such a large DTD, allowing its authors to use the hundreds of

1. http://www.oasis-open.org/docbook/
2. http://sourceforge.net/projects/docbook
3. http://www.miwie.org/docbookinfo.html

Docbook In ConTEXt xml

Najaar 2003 27

elements in innumerable combinations. But only while the project evolved did it become
evident to me how large it really is.

Michael Wiedmann, who is interested in all possible tools to render Docbook docu-
ments, heard about the project soon after I started it. He made several contributions. His
support and interest helped me to continue through the difficult phase when a project is
no longer new, but you do not yet have anything really usable and you know all too well
how much work still has to be done.

Now, a year later, I have some sort of an answer as to how it is possible to program
ConTEXt’s XML capabilities in TEX macros: Theoretically TEX macro programming is
complete (is it called NP-complete?). Hans Hagen is one of the few programmers who
can turn this theory into practice.

I also have a working XML mapping for DocBook documents in ConTEXt, which I
call Docbook In ConTEXt (DIC). It contains good layout instructions for a number of oft
used elements in their more common combinations.

Running Docbook In ConTEXt

Before one can typeset an XML file myfile.xml, one should create a TEX driver file
myfile.tex, which should look something like this:

\input xtag-docbook

\starttext
\processXMLfilegrouped{\jobname.xml}
\stoptext

Then TEX is invoked as: texexec myfile.tex to get a dvi file, or as texexec �pdf
myfile.tex to get a pdf file.

In the driver file xtag-docbook is the file name of the module. The XML document
is input with the \processXMLfilegrouped command. The filename \jobname.xml is
always correct provided the driver file and the XML file have the same base name.

Alternatively, one can always use the same driver file, in which the name of the XML
file is changed each time.

The ConTEXt documentation indicates that one can also run the XML file as texexec
�xmlfilter=docbook testxml.xml. This will not work because the name of the Doc-
book In ConTEXt module does not conform to ConTEXt’s naming conventions. It works
if the module is renamed as xtag-doc.tex.

Customizing Docbook In ConTEXt

A Docbook XML document is a normal ConTEXt document. The commands that make
up a ConTEXt document are also at work when a Docbook XML document is processed.
They are just one layer away from what the user sees. Therefore the output can be cus-
tomized as for any ConTEXt document with ConTEXt’s setup commands. The setup
commands should be given after the Docbook In ConTEXt module has been read, so that
they override the default setup commands in the module. If you do not give additional
setup commands, ConTEXt’s defaults are applied. This is an example of a driver file with
ConTEXt setup commands:

\input xtag-docbook
\setupindenting[medium]
\setupheadertexts[section][pagenumber]
\setupheader[leftwidth=.7\hsize,style=slanted]
\setuppagenumbering[location=]
\setupitemize[each][packed][before=,after=,indentnext=no]

xml Simon Pepping

28 MAPS

\starttext
\processXMLfilegrouped{\jobname.xml}
\stoptext

Docbook In ConTEXt defines a few setup commands and other customizations of its own.

Section blocks
ConTEXt always applies pagebreaks around section blocks, and it treats the Table of
Contents and the Index as chapters. This behaviour can be changed with the pagebreaks
option of the \setupXMLDB command:

\setupXMLDB[pagebreaks=all]: Default ConTEXt behaviour.
\setupXMLDB[pagebreaks=sectionblocks]: ToC and Index do not start a new
page, and they are treated as sections. All other section blocks retain their default
ConTEXt behaviour.
\setupXMLDB[pagebreaks=none]: In addition to the sectionblocks option,
bodymatter, appendices and backmatter do not start a new page.

Titles
Titles are formatted with a command of the form XMLDB\XMLparent title, where
\XMLDBparent should be replaced with the name of the element to which the title be-
longs, e.g. XMLDBarticletitle. These commands can be redefined. They take one
argument, the title. For example, the article title could be redefined as:

\def\XMLDBarticletitle#1%
{\startalignment[left]\bfb #1\stopalignment \blank}

The section titles can be customized with ConTEXt’s usual \setuphead command.

blockquote, epigraph and attribution
The elements epigraph and blockquote have their own setup commands
\setupepigraph and \setupblockquote, which have the following options:

narrower. Both epigraph and blockquote are formatted using ConTEXt’s nar-
rower environment. The value of this option is a list of left, right and middle
that is passed on to the \startnarrower command. See the ConTEXt documenta-
tion for \startnarrower for the effect of these settings.
quote. The value is on or off. When on, quotation marks are applied as with
ConTEXt’s quotation environment.
command. The value is a command or set of commands, which are applied at the
start of the narrower environment.

The element attribution is customized with the command \setupattribution, which
has one option: command. The value is applied at the start of the attribution.

More customizations
Customization has only recently obtained the attention it deserves. More setup com-
mands like those for blockquote and epigraph will follow. The distribution contains a
document Customization.xml which will contain an up to date description of the cus-
tomization options.

Other tools for the same task

Docbook In ConTEXt is not the only tool for typesetting a Docbook document. The
canonical tool for typesetting any XML file is XSL + FO. An XSL stylesheet is used to
define the desired output in terms of Formatting Objects (FO). The FO description can be
thought of as a formatter independent layout description. Then an FO processor is used
to produce actual printed output, on paper or as an electronic document.

Docbook In ConTEXt xml

Najaar 2003 29

XSL stylesheets for Docbook have been available for several years, written by Norman
Walsh. They implement a large part of the Docbook elements—not all elements, that
seems impossible. And they are extensively parametrized, so that users can customize
many aspects without modifying the XSL code.

The objective of XSL + FO is: one stylesheet, many processors. Several FO proces-
sors are available, among which two free tools: FOP and TEX. FOP is a dedicated FO
processor, that produces output in PDF. It is available from the Apache website4. TEX
can be used as an FO processor using David Carlisle’s xmltex and Sebastian Rahtz’s
passivetex package, which runs under LaTEX.
ConTEXt is a prospective FO processor. It already has an XML parser. Mappings should
be defined for Formatting Objects, in the same way as I have done for Docbook In
ConTEXt.

Future plans

Currently, Docbook In ConTEXt is not completely integrated with the ConTEXt distribu-
tion. I have strictly used the ConTEXt API wherever I could, and avoided to develop my
own variants. But I have preferred to develop this module in separation from the devel-
opment of ConTEXt itself. The time has now come to work on a better integration. I hope
this can be achieved over the next year.

If good, customizable XSL stylesheets for Docbook exist, and if ConTEXt could be an
FO processor for the resulting output, then why would it be a good idea to spend so much
effort on writing a special Docbook stylesheet for ConTEXt?

In the ConTEXt community the idea of a special Docbook stylesheet for ConTEXt has
been greeted with enthousiasm. Apparently, here the theory of one stylesheet for many
processors succumbs to the practice that users prefer to work with their tools of choice.
For a popular set of tools like Docbook and ConTEXt users afford the effort of another
style sheet. Such a style sheet is more manageable for them and running the required
tools is easier.

On the other hand, until now, I have spent most of the required effort. And my answer
tends to be: Maybe it is not the best way to support Docbook and XML in ConTEXt.
Maybe it would be more useful to work on FO mappings in ConTEXt.

Over the past year I have set up this stylesheet. I have investigated the main struc-
ture of Docbook and come up with a way to map that to a ConTEXt document. I have
implemented a framework for the mapping. I have enjoyed doing all that, and my in-
sight and skills in TEX macro programming have increased immensely. But the time has
come that others take this over, add mappings for more elements, add customizations,
add new ideas. I plan to move forward to more generic work to support formatting of
XML documents using TEX as the typesetting tool.

Availability

Currently, Docbook In ConTEXt is available separately from the ConTEXt distribution,
from my web site5. Michael Wiedmann’s web page6 with Docbook tools has a link to
the Docbook In Context files.

Programming Docbook In ConTEXt

ConTEXt and XML
ConTEXt can take XML documents as input. For that purpose it contains a non-validating
XML parser, which recognizes XML tags as markup instructions. And it has an API

4. http://xml.apache.org/fop
5. http://www.hobby.nl/˜scaprea/context
6. http://www.miwie.org/db-context/index.html

xml Simon Pepping

30 MAPS

(Application Programmer’s Interface) which allows one to define actions for those tags.
This is called mapping XML tags to ConTEXt. A typical mapping instruction is

\defineXMLenvironment[element]{start action}{stop action}.

During the start and stop actions one has access to the attribute values of the element. For
example, this is how one reads the align attribute of an entry element (in a table) and
issues the corresponding setup command for ConTEXt’s TABLE environment:

\doifXMLvar{entry}{align}%
{\expanded{\setupTABLE[align=\XMLvar{entry}{align}{}]}}

ConTEXt’s programming interface for XML mapping is robust. Rarely if ever does
one get tangled in expansion problems. But, as is seen in the above example, tim-
ing the expansion remains an issue: The command to retrieve the attribute value,
\XMLvar{entry}{align}{}, must be expanded before the setup command can be read
by TEX. That is what \expanded does.

It is easy, is it not?
In principle, writing a mapping for an XML document in ConTEXt is simple. You state
which ConTEXt commands you want to use for the start and stop of each element, and
ConTEXt takes care of the rest. Practice is more complicated, certainly if you want to
write a useful, extensible and customizable mapping for a complicated DTD. In the fol-
lowing sections I discuss a number of noteworthy features of the Docbook In ConTEXt
mapping.

Encoding and language

An XML document declares its encoding in the xml declaration at the start of the doc-
ument. ConTEXt supports several encodings, among which the XML default encoding
utf-8. Correctly reading an encoding is one thing. Making all characters available that
can be addressed by an encoding is quite another thing. Unicode and its utf-8 encod-
ing have brought all characters in the Unicode range, currently more than 50,000, within
scope in a single document. At the moment many of these are mapped to ‘unknown char-
acter’. Work is ongoing to bring more characters within reach of ConTEXt in a single
document.

A Docbook document may declare its language in the xml:lang attribute of the doc-
ument element. The Docbook in ConTEXt module contains at the moment translated
strings for four languages: English, German, Dutch and Italian. These are used for au-
tomatically generated strings, such as the titles of the table of contents, the abstract, and
the index.

Features for each element

Context stack
Because an XML document has a tree structure, each element in the document has a list
of ancestors. I call that the context, or the context stack, which contains the ancestors
from the document root to the current element.

An element may push itself onto the context stack when it starts, and pop itself when
it finishes. In principle all elements should do so. In practice a number of elements omit
this because they or their children do not use the context stack in their formatting.

During formatting, the context stack can be inspected with the following commands:

\XMLDBcurrentelement: The current element’s name.
\XMLancestor#1: The name of the ancestor at level #1 The current element is at
level 0.
\XMLparent: The name of the current element’s parent.

Docbook In ConTEXt xml

Najaar 2003 31

\the\XMLdepth: The depth of the context stack.
\doifXMLdepth#1: Execute the following instruction if the context stack has a cer-
tain depth.
\XMLDBprintcontext: Print the context stack in the log file (mainly for debugging
purposes).

ConTEXt also defines the context stack. I have redefined it because ConTEXt’s imple-
mentation did not satisfy my plans. Later I have simplified my usage of the context stack.
ConTEXt’s implementation may now be perfectly satisfactory, but I have not checked this.

ConTEXt defines \currentXMLelement, which also holds the name of the current ele-
ment. But it is only guaranteed to be valid while ConTEXt reads the XML tag. Indeed, the
mapping of some start tags in Docbook in ConTEXt emit an \egroup command, which
invalidates the value of \currentXMLelement.

Ignorable white space
XML has the interesting feature of ignorable white space. It can be used to give the
raw XML document a nice formatting and make it fairly readable. (It did not exist in
SGML. As a consequence, SGML documents may be practically unreadable in an ASCII
editor.) For applications that read the DTD, this feature is rather clear: white space in
elements whose content may only consist of elements, is ignorable. For example, when
the content model of a section only contains paragraphs, all white space that surrounds
the paragraphs is ignorable. Applications like ConTEXt that do not read the DTD, must
resort to other means to find out whether white space is ignorable or not.

I have introduced a feature that is similar to the mechanism used in XSLT.
One can declare that an element preserves white space with the command
\defineXMLDBpreservespace#1, and that it ignores white space with the command
\defineXMLDBstripspace#1. For these declarations to work, the elements should be on
the context stack, and they and their children should use the command \XMLDBdospaces
as the last command in their start and end tags. \XMLDBdospaces has the effect of ig-
noring spaces following the XML tag if the current element has been declared to ignore
spaces.

In practice this is only used by elements that would suffer if white space is not ignored.
Note that TEX itself already ignores a lot of white space, viz. all white space that it reads
in vertical mode. In the example of white space surrounding paragraphs in a section, TEX
would do the right thing by itself.

The correct functioning of \XMLDBdospaces is rather subtle. The following is a generic
element mapping:

\defineXMLenvironment[xxx]
{\XMLDBpushelement{\currentXMLelement} \XMLDBdospaces}
{\XMLDBpopelement \XMLDBdospaces}

The command \XMLDBdospaces in the start tag is executed while xxx is the current ele-
ment. So it ignores white space if xxx has been declared to contain ignorable white space.
But the same command in the end tag is executed after xxx has popped itself from the
context stack. So its parent is the current element, and the command ignores white space
if that parent has been declared to ignore white space. That is indeed exactly what we
want, because the spaces following the end tag </xxx> are in the parent’s content.

There is a class of ignorable white space that TEX refuses to ignore: blank lines are
converted to \par commands by TEX’s input scanner, before we can tell TEX whether
white space is ignorable or not. Even this does not always matter to TEX because TEX
discards empty paragraphs or paragraphs that consist of white space only. In the above
example we could insert blank lines between the paragraphs without ill effect. But a
blank line between the start tag of a footnote and its first paragraph has a notably bad

xml Simon Pepping

32 MAPS

effect: it introduces a \par command between the footnote number and the start of the
text, so that the footnote number is in a paragraph by itself.

Such harmful blank lines can only be removed by preprocessing of the XML docu-
ment. I wrote a tool to do that. It is a SAX document handler written in Java, which
removes all ignorable white space. I call it ‘Normalizer’, and it is available on my web
site7.
The output of this tool is not only good for the ConTEXt mapping. Looking over it is
informative for authors of XML documents. Every amount of white space that is left by
the tool, is regarded as meaningful white space by XML parsers. Is that really what the
author wants?

Every element
In principle every element should contain the following commands:

\defineXMLenvironment[xxx]
{\XMLDBpushelement\currentXMLelement
\XMLDBseparator \XMLDBdospaces}
{\XMLDBpopelement \XMLDBdospaces}

That is, it pushes itself onto the context stack. It checks whether it should typeset a
separator. And it checks whether it should ignore following white space. In its end
tag, it pops itself from the context stack, and it checks whether its parent should ignore
following white space.

The separator is used by such elements as author, which may generate a comma or
the word ‘and’ between consecutive elements. By default it is set to \relax. A parent
element should give it a suitable definition to be used by its children, and reset it to the
default when it finishes.

Which element is next?

ConTEXt’s XML parsing is event based. This means that the parser generates events, such
as the start or stop of an element, and calls the associated actions. During the actions one
only sees the current event. One cannot look back at past events, except for the data
that one saved. One can certainly not look forward to check which elements follow. In
contrast, XSLT is tree based. That means that one can scan all elements, preceding and
following, in the formatting commands of an element. Event-based parsing may present
serious problems to the programmer.

Is there a title?
An abstract may but need not have a title. When there is no title, I want to print the
default title ’Abstract’. Because of the event-based nature of the parse, one cannot at the
start of the abstract look forward to see if a title will follow. One can only try to find a
future event at which one may safely conclude that there is no title if one has not yet seen
a title.

In an abstract the optional title may be followed by three types of element, para,
simpara and formalpara. When any of these elements is started, one may safely con-
clude that either the title has been seen or there is no title.

One solution is to save the title, and to redefine the mappings of each of these three
elements, such that they output the title or the default title if there was no title. And then
restore their default definitions for the following elements.

Another way to tackle this problem is to save the whole abstract and process it twice.
In the first pass we check whether there is a title. During this pass, all output should be
suppressed. In the second pass we first output the title or the default title if no title was

7. http://www.hobby.nl/˜scaprea/context

Docbook In ConTEXt xml

Najaar 2003 33

found in the first pass, and then we output the content. Again this requires a redefinition
of the three possible elements that may follow the title, so that they suppress their output
at the first pass.

The third option is provided by TEX itself, not by the XML mapping. We redirect the
typesetting of the abstract into a vbox. At the same time we save the title in the variable
\XMLDBtitletext, which removes it from the typeset content in the vbox. Then we
output the saved title or the default title if there is no saved title, and next we output the
vbox. This is the best option, and I use it.

In a section this solution would be more problematic: we run the risk of saving a large
vbox. Working with options one or two is also not fun, because there are more elements
to be redefined. I think the only viable alternative would be to work with \everypar,
because \everypar is TEX’s low-level signal that there is new text. Fortunately, in a
section a title is required, so I did not (yet) have to work out this problem.

This is an example of the problems that arise because in an event-based parse it is hard
to determine if an optional element is not present. The following section presents an
example of the problems that arise because in an event-based parse it is equally hard to
determine when a certain group of elements is finished.

Sectioning
Like many systems, ConTEXt partitions its document in frontmatter, bodymatter, appen-
dices and backmatter (called section blocks). The section block governs such properties
as the numbering of the chapters and sections. I use the end of the frontmatter to print
the table of contents.

Docbook does not have the equivalent of section blocks. There is not a single element
that contains the frontmatter, the bodymatter or the backmatter. Therefore I analysed the
top-level structure of a docbook document, and divided the elements that may occur as
top-level elements into frontmatter elements, bodymatter elements and backmatter ele-
ments. When the first top-level bodymatter element is seen, the frontmatter is complete
and the bodymatter starts. Similarly for the backmatter.

For a book in Docbook the situation is rather clear: The bodymatter starts with the first
part, chapter, article or reference.

For an article the situation is much more fuzzy. While I counted only 6 top-level front-
matter elements, I identified 60 top-level bodymatter elements. The situation is compli-
cated by the fact that some of these 60 top-level bodymatter elements may occur in the
frontmatter at a lower level. For example, abstract, authorblurb and address may
occur within the element articleinfo, which itself is a main constituent of the front-
matter. They may also occur as top-level elements, in which case I consider them as part
of the bodymatter.

The transitions between the other section blocks are fortunately more clearly marked.
The complete analysis is contained in the documentation in the module itself.

The situation is programmed using the commands \XMLDBmayensurebodymatter and
\XMLDBmayensurebackmatter. All top-level bodymatter and backmatter elements exe-
cute the appropriate command. These commands check if the element is a direct child
of the document element, i.e. if the depth of the context stack equals 2, and if the corre-
sponding section block has not yet been started. The current section block is kept in the
variable \XMLDBsectionblock.

Specific elements

Tables
Docbook uses the CALS table model. ConTEXt uses two different table models. One is
the tabulate environment, which is based upon TEX’s \halign. It is quite sensitive to ex-
pansion timing errors. The other is the TABLE environment, also called natural tables. It

xml Simon Pepping

34 MAPS

is a very powerful and flexible environment, with much customization possibilities using
\setupTABLE commands. A special feature of this table model is that rows, columns and
cells can be configured both before and after their content has been given, at any time
before the end-of-table (\eTABLE) command.

Because ConTEXt’s natural tables have much similarities to CALS tables, the mapping
is in principle very easy: a row corresponds to TR, an entry to TD, colspec elements
can be mapped to \setupTABLE commands.

There are three main complications.

The top, bottom, left and right frames of a CALS table are determined by the
frame attribute of the table; the rowsep and colsep attributes of the correspond-
ing rows and cells should be ignored.
CALS tables can have multiple tgroup elements, each with their own number of
columns, and their own alignment and frame settings (colspec elements).
Each tgroup may have its own thead and tfoot elements, which may contain
their own colspec elements.

These requirements have led to the following model: The table element generates a
ConTEXt table, i.e. the table float, using the \placetable command. Each tgroup
element generates its own TABLE environment, i.e. the actual table.

The table is not openend by the start tag of the table, because at that moment the title
is not yet known. Instead, it is opened by the start tag of the first tgroup (command
\XMLDBopentable, which contains the ConTEXt command \placetable). The start tag
of each following tgroup typesets the previous tgroup (command \XMLDBendTABLE).
Before typesetting, the left and right frames are set up. The start tag of the second tgroup
also sets up the top frame. The end tag of the table does the same as the start tag of the
next tgroup would do. In addition it sets up the bottom frame of the table, and closes the
vbox of the \placetable command.

The rest is careful attribute processing, and issuing the required \setupTABLE com-
mands at the right time. Attribute processing generates a lot of overhead, because
both the attribute names and their possible values have to be translated from CALS
to \setupTABLE. That makes the code somewhat less readable, but the logic is quite
straightforward.

Issuing the required \setupTABLE commands is a precise work.

The start tag of the first tgroup applies the frame, colsep and rowsep attributes
of the table (\XMLDBopentable), so that they apply to all TABLEs in this CALS
table. The start tag of each tgroup applies its own align, colsep and rowsep at-
tributes, within its own TABLE environment.
colspec elements of a tgroup apply their attributes to the whole column of this
TABLE. The colspec elements in the thead and tfoot elements, on the other
hand, must save their attributes (\XMLDBsavecolspec); they will be applied per
entry in the thead and tfoot.
row elements apply their attributes immediately to the whole row.
entry elements first check whether they are in a thead or tfoot; if so, they apply
the saved colspec attributes. Then they apply their own attributes. This order is
important. ConTEXt gives precedence to properties set up per cell over properties
set up for the whole table or per row or column. But in this case we apply what
was originally a column specification per cell, so we must take care of the prece-
dence ourselves.

Revision history
The revision history contains a number of revisions. Each revision specifies one or more
fields out of five possible fields. I wanted to represent this in a table which should only

Docbook In ConTEXt xml

Najaar 2003 35

contain those columns for which at least one revision specifies data. Programming this
was my first challenge in this project.

Hans Hagen suggested the solution. The revision history is saved, and then processed
twice.

For the first pass of the saved revision history, we define the revision fields such that
they register themselves when they occur, but suppress all output. We also count the
number of revisions, so that we will know which row must contain the bottom rule of the
table. Now we know which fields occur and we can setup the table and output its header
row.

For the second pass we define the revision element such that it outputs the row with
the fields. So that the fields are output in the same order as in the header row, regardless
of their order in the XML document, we first save the fields in a revision, and at the end
tag of the revision we output the whole row in the desired order.

I worked this out both in ConTEXt’s tabulate environment and with its natural tables.
I decided to keep the solution with the natural tables, because natural tables are more
flexible and less prone to expansion errors.

This procedure demonstrates a powerful feature of ConTEXt’s XML processing: It is
possible to save a node of the XML document with its subtree; in other words, the content
of an element, complete with embedded elements, is saved in a variable without parsing.
Later one can process the saved subtree as often as one likes. In between one is free to
redefine the behaviour of the embedded elements. In TEX’s macro language this is quite
normal behaviour :

\def\savevar#1{\def\var{#1}}
... % redefine \processvar
\processvar{\var}
... % redefine \processvar
\processvar{\var}

In other programming languages it is not nearly as easy. Saving a node with its subtree
in a SAX content handler so that it can be processed later is not a trivial task.

It is a disadvantage of the above procedure that the code is not easily read, certainly
not if one is not used to the procedure. Recently, I have discussed an alternative proce-
dure using Giuseppe Bilotta’s xdesc module. It would achieve the same result but make
the programming more transparent. Another advantage would be that it is more easily
customizable by the user.

Program listing and CDATA
I have spent an enormous amount of time on program listings. At first it seemed easy:
ConTEXt has a verbatim environment which suits our purpose.

Then it was pointed out to me that some program listings contain CDATA sections,
which were not treated well by my solution. I realized that a program listing is not
really a verbatim environment because it does not disable XML tags. I dived deep into
ConTEXt’s verbatim environment and came up with a variant that supported two types of
verbatim: one real verbatim for CDATA sections and one that did only line oriented layout
for program listings. Moreover, it was nestable, so that it could deal with CDATA sections
within program listings.

But it remained problematic to get it quite right. When the end of the CDATA section or
of the program listing element was followed by text on the same line, this text was lost.
And my white space tool did exactly that: put the following text right behind the end of
the program listing element.

When I revisited the problem a few months later it dawned on me that the whole ver-
batim approach was wrong. Neither CDATA sections nor program listing environments
have anything to do with TEX’s notion of verbatim. CDATA sections just disable XML

xml Simon Pepping

36 MAPS

markup. They may occur anywhere in an XML document, and have no semantic mean-
ing. Indeed, an XML parser does not even report whether CDATA sections are used in an
XML document; it simply resolves them.

For the program listing I found a simple solution. It avoids scanning a whole line at a
time, therefore it avoids scanning the text following the end of the program listing with
the wrong catcodes in place. It uses \obeylines and \obeyspaces and it places struts
at the start of a line to prevent the leading spaces to be discarded by TEX’s paragraph
mechanism. That is all, and it does the job well.

Hyperlinks, URLs and external documents
Docbook documents mark hyperlinks with the ulink element; the url is contained in
its url attribute. If we were writing HTML documents it would be easy: <ulink
url="URL">text</ulink> would be translated to text</href> and
the browser would do the rest.

But not such an easy solution in a PDF document. Links to PDF documents should
be treated differently from links to other documents, and relative links to non-PDF docu-
ments are not allowed. Therefore, we have to analyse the URL and complete it if neces-
sary.

In ConTEXt strings can be split into parts with commands like

\beforesplitstring string\at substring\to\var

which splits string at substring and stores the first part in \var. I use this and similar
commands to check whether the URL has an authority (this is the term used by RFC2396,
which specifies URIs; usually it is called the protocol, e.g. http) and whether it is an
absolute or a relative URL. If a local file is specified, we also check whether it has the
extension pdf. Links to local PDF documents are created using the ConTEXt command
\useexternaldocument, links to other documents use the ConTEXt command \useURL.

A special problem is posed by URLs like slashdot.org. Is it a web server, or is it
a file in the current directory? Cf. the URL myfile.html, which has exactly the same
pattern. After the terminology of RFC2396 I call this abbreviated URLs. By default
they are not recognized. Thus myfile.html is correctly linked to as a local document,
while slashdot.org is incorrectly linked similarly. The user can switch recognition of
abbreviated URLs on by setting \XMLDBcheckabbrURItrue, and can switch if off again
by setting \XMLDBcheckabbrURIfalse.

Unfortunately, I do not know how to get the working directory in a ConTEXt run, so
that relative URLs are currently not properly completed.

Customization

For a long time I did not pay much attention to customization. Recently, I received
requests to make a mapping for the blockquote and epigraph elements. Togeth-
er with that request a discussion arose on the ConTEXt mailing list about customiza-
tion. As a consequence these two elements and their child element attribution have
proper setup options, viz. the commands \setupblockquote, \setupepigraph and
\setupattribution. I am sure that more such setup commands will follow.

The same discussion on the ConTEXt mailing list touched upon attributes whose range
of values is not constrained. An example is the role attribute of the para element. It is
not possible to define actions for such attributes in the stylesheet, because the possible
values are not known. The idea arose to put a hook in the stylesheet for the user’s own for-
matting command. Something like \attributeaction[para][role]. The user could
define such an action with something like \defineXMLattributeaction[para][role].

The stylesheet should invoke the attribute action within a group in order to allow the
user to change fonts etc. for this element. Therefore ConTEXt cannot invoke the attribute
action automatically, because it cannot know where it should do so. For example, some

Docbook In ConTEXt xml

Najaar 2003 37

mappings for the opening tag invoke \egroup; if the attribute action had been invoked
automatically, its scope would be ended immediately. This idea has not yet been imple-
mented.

I am not sure how far customization can go. Enabling extreme customizability would
come down to defining a new language for describing the formatting of a Docbook doc-
ument. This would go too far. On the other hand, customizability is a strong feature of
ConTEXt. It is not difficult to add customizability options to the stylesheet; ConTEXt has
some good commands for that.

Acknowledgement

The first versions of the mappings for several elements, a.o. the ulink element, were
contributed by Michael Wiedmann. He also contributed the string literal files for English
and German. Giuseppe Bilotta contributed the string literals file for Italian.

And of course, nothing of this would have been possible without Hans Hagen’s
ConTEXt.

