
Hans Hagen VOORJAAR 2004 21

The Scite – TEX integration

Abstract
Editors are a sensitive, often emotional subject. Some editors have exactly the properties
a software designer or a writer desires and one gets attached to it. Still, most computer
experts such as TEX users often are use three or more different editors each day. Scite is a
modern programmers editor which is very flexible, very configurable, and easily extended.
We integrated Scite with TEX, CONTEXT, LATEX, METAPOST and viewer and succeeded in
that it is now possible to design and write your texts, manuscripts, reports, manuals and
books with the Scite editor without having to leave the editor to compile and view your
work. The article describes what is available and what you need with special emphasis on
highlighting commands with lexers.

About Scite
Scite is a source code editor written by Neil Hodgson. After playing with several
editors we found that this editor is quite configurable and extendible. At PRAGMA
ADE we use TEXEDIT, an editor written long ago in Niklaus Wirth’s MODULA as well as
a platform independent reimplementation of it called TEXWORK written in PERL/TK.
Although our editors possess some functionality that is not (yet) present in Scite,
we decided to use Scite because it frees us from the editor maintenance chore.

Installing Scite
Installing Scite is straightforward. We assume below that you use MS WINDOWS but
for other operating systems installation is not much different.

First you need to fetch the archive from:

www.scintilla.org

The MS WINDOWS binaries are in wscite.zip, and you can unzip this in any direc-
tory as long as the binary executable ends up in your PATH or as shortcut icon on
your desktop.

The TEX lexer

Scite provides several so called ‘lexers’. A lexer does the syntax highlighting of your
document. The TEX commands that are used in instructing the compiler on how to
typeset your document can be given a color. And the various brackets that need to
be balanced, such as ‘{ } [] ()’ also get a color. The way a TEX file is treated is
configurable and can be found in the file:

tex.properties

You can edit this file to your needs using the menu entry under options in the top
bar of Scite. In this file, the following settings apply to the TEX lexer:

lexer.tex.interface.default=0
lexer.tex.use.keywords=1
lexer.tex.comment.process=0
lexer.tex.auto.if=1

The option lexer.tex.interface.default for example determines the way TEX
keywords are highlighted. You can control the interface from your document as
well by placing the line below as the first line in it. This often makes more sense
than editing the configuration file to your incidental needs.

22 MAPS 30 Hans Hagen

% interface=all|tex|nl|en|de|cz|it|ro|latex

The values in the properties file and the keywords in the preamble line above have
the following meaning:

0 all all commands (preceded by a backslash)
1 tex TEX, ε-TEX, PDFTEX, OMEGA primitives (and macros)
2 nl the dutch CONTEXT interface
3 en the english CONTEXT interface
4 de the german CONTEXT interface
5 cz the czech CONTEXT interface
6 it the italian CONTEXT interface
7 ro the romanian CONTEXT interface
8 latex LATEX (apart from packages)

The configuration file is set up in such a way that you can easily add more keywords
to the lists. The keywords for the second and higher CONTEXT command language
and LATEX interfaces are defined in their own properties files:

cont-nl-scite.properties
...
cont-en-scite.properties
latex-scite.properties

The CONTEXT distribution comes with a file:

context.properties

as well as the interface specific files. There are two ways to make sure that the
extra CONTEXT and LATEX keywords are loaded.

Under the menu entry ‘options’, you will find a long list of property filenames.
By opening one of them, you can determine the location of these files by looking at
your windows banner (at the top). You should copy the following files to that path,
perhaps named c:\scite\wscite.

cont-*-scite.properties
latex-scite.properties

The first line *-scite.properties files define the CONTEXT keywords, and the
second line configures Scite for LATEX. If you need another brand of TEX file to be
processed, you can tweak the properties, or safer: redefine some of them in your
SciTEUser.properties. For example plain TEX users may want:

file.patterns.tex=*.tex;*.sty;
filter.tex=TeX|$(file.patterns.tex)|
lexer.$(file.patterns.tex)=tex
command.compile.$(file.patterns.tex)=
command.build.$(file.patterns.tex)=tex $(FileNameExt)
command.go.$(file.patterns.tex)=gv $(FileName).pdf

LATEX users may want:

file.patterns.latex=*.tex;*.sty;*.aux;*.toc;*.idx;
filter.latex=LaTeX|$(file.patterns.latex)|
lexer.$(file.patterns.latex)=tex
command.compile.$(file.patterns.latex)=
command.build.$(file.patterns.latex)=pdflatex $(FileNameExt)
command.go.$(file.patterns.latex)=gv $(FileName).pdf

A CONTEXT user needs:

file.patterns.context=*.tex;*.tui;*.tuo;*.sty;
filter.context=ConTeXt|$(file.patterns.context)|

The Scite – TEX integration VOORJAAR 2004 23

lexer.$(file.patterns.context)=tex
command.compile.$(file.patterns.context)=
command.build.$(file.patterns.context)=texexec --pdf $(FileNameExt)
command.go.$(file.patterns.context)=gv $(FileName).pdf

For CONTEXT users these definitions are already assembled in a special properties
file:

context.properties

Put it in the same location as your SciTEUser.properties, and in this user file
add the following line:

import context

Now you have many more commands available. Familiarize yourself with these
new options and take a look into this file. Beware: this setup assumes that you
have the Latin Modern Typewriter font on your system and that your operating
system is aware of that. If Windows is unaware then locate the Latin Modern Fonts
in the texmf-extra tree on the latest TEX Live distribution of the TEX user groups.
Install the Latin Modern files on Windows by copying the pfb and pfm files to the
fonts path on your system, in most cases this is:

c:\windows\fonts

You can add or locally change options after the line that loads context.properties.
If you did not copy the cont-*.properties files to the Scite properties path, you
can put them in the same path as SciTEUser.properties, in which case you have
to add:

import latex-scite
import context

Try it and find out that Scite can easily be tuned to your preferences.
The instructions for context users are:

fetch wscite.zip from www.scintilla.org
create a path c:\scite
unzip wscite.zip in c:\scite
copy context.properties to c:\wscite
open c:\scite\wscite\SciTEUser.properties (using Scite)
at the end, add the line import context.properties
if needed, add c:\scite\wscite to your path
if needed, create shortcut to c:\scite\wscite\scite.exe

The CONTEXT related properties files are not included in the Scite distribution but in-
stead are part of the CONTEXT distribution which can be found in one of the following
places:

../tex/texmf/context/data

../tex/texmf-local/context/data

We generate the interface specific property files automatically from the CONTEXT
interface definition files, while the xx file (in the CONTEXT zip file) is hand--crafted
and contains missing or very special bits and pieces.

Let us return to the powerful properties options in tex.properties. For testing
purposes you can disable keyword coloring with:

lexer.tex.use.keywords=0

You can also influence the way comment is treated with:

lexer.tex.comment.process=0

24 MAPS 30 Hans Hagen

When set to zero, comment is not interpreted as TEX code and it will come out in
a uniform color. But, when set to one, you will get as much color as a TEX source.
The lexer tries to cope with the TEX syntax as well as possible and takes care of the
^^ notation. A special treatment gets \if:

lexer.tex.auto.if=1

This is the default setting. When set to one, all \ifwhatever’s will be seen as a
command. When set to zero, only the primitive \if will be treatedas such. When
this property is set to one, the lexer will not color an \ifwhatever that follows an
\newif.

The METAPOST lexer
The METAPOST lexer is set up slightly differently from its TEX counterpart, because
METAPOST is more a true language than TEX is although, as with the TEX lexer, we
can control the interpretation of identifiers. The METAPOST specific configuration
file is:

metapost.properties

Here are located properties like:

lexer.metapost.interface.default=1

Instead of editing the configuration file you can control the lexer with the first line
in your document:

% interface=none|metapost|mp|metafun

The numbers and keywords have the following meaning:

0 none no highlighting of identifiers
1 metapost or mp METAPOST primitives and macros
2 metafun MetaFun macros

Similar to the TEX lexer, you can influence the way comments are handled:

lexer.metapost.comment.process=1

This will interpret comment as METAPOST code, which is not that useful (opposite
to TEX, where documentation is often coded in TEX).

The lexer will color the METAPOST keywords and — when enabled — additional
keywords (like those of MetaFun) also, and shown in a slanted font. These MetaFun
keywords are defined in yet another separate file:

metafun-scite.properties

You can either copy this file to the path where your global properties files is located,
or put a copy in the path of your user properties file. In that case you again need
to add an entry to in file SciTEUser.properties:

import metafun-scite

The lexer recognizes btex ... etex pairs and will treat anything in between as
just text. The same happens with strings (placed between "). Both act on a per line
basis.

Epilogue. This completes our special TEX installation instructions for the Scite
integrating editor. We believe Scite to be a well designed, flexible editor allowing
the perfect integration of TEX and METAPOST systems. An hour or less suffices to
discover the convenience of this system. The next hour shows some minor weak
points on which we are working to reinforce them.

Hans Hagen
pragma@wxs.nl

