
14 MAPS 32 Adam T. Lindsay

Font Variants
A new ConTEXt feature for organising rich
fonts

Abstract
Font Variants are a new (meta-)feature in ConTEXt,
offering the opportunity of easier access to advanced or
unusual font features, without the hassle of using full
typescript switches. This article briefly runs through
the basic theory and practice of so--called font variants,
and gives a few strategies for adapting it for your own
uses.

What are font variants?

Font Variants are a somewhat nebulous concept, hard
to define precisely. They can be any ‘variation’ on a
main font, where the variation can be glyph shape,
weight, width, or other font feature. Often, variants
share the same characters, but have different glyphs,
and therefore different encodings. Other times vari-
ants will be a visual variation sharing the same encod-
ing.

This distinction between features and encodings
can be blurred when you consider different fonts may
have different strategies for encodings. Consider the
different strategies needed with a source font that
contains old--style figures and small caps glyphs within
the same font as lining figures and normal lower case,
and one that has those characters within a ‘small
caps’ font. This is one of the reasons why font variants
were introduced, to provide a layer of abstraction to
hide the font--specific details on how the variants are
implemented.

At surface level, a font variant is a temporary font
switch, to be used as a grouped command, with a
user--determined argument determining the variation
to select. Font variants may exist for each font style
(e.g., \rm, \ss) and alternative (e.g., \bf, \it), but
the features do not ‘stack’ atop one another. A bit of
code for illustration, with the results in figure 1:

Hello all. This is a bit of text written for
MAPS \#32 on {\Var[osf]31} March
{\Var[osf]2005} in {\it Lancaster,
\Var[sc]uk}. {\bf I can’t \Var[lt]expect}

accumulative {\Var[lt]effects} with
variants like{\Var[cond] condensed
{\Var[sc]caps}}, however.

Hello all. This is a bit of text written
for MAPS #32 on 31 March 2005
in Lancaster, UK. I can’t expect ac-
cumulative effects with variants like
condensed CAPS, however.

Figure 1. Antykwa Toruńska, with variants

The command \Var[] is shorthand for \variant,
which can be used in case of a name clash (e.g., from
mathematics).

Example usage

A couple font variants have already been named within
current ConTEXt distributions, as the features were
available in relatively new publically available fonts.
Antykwa Toruńska is now a fully--featured serif family
with many features available as variants. We see three
classes of variation, in fact:

Glyph variation Beside each of the normal, roman
fonts with lining figures, there lies a variant with
variant glyphs: lower case letters are replaced with
small caps, and lining numerals are replaced with old-
style (lower case) numbers.

Weight variation Antykwa Toruńska offers four sets
of weights: bold, medium, regular, and light. ConTEXt
ordinarily allows easy access to only a normal and bold
pair of weights, so the other pair can be accessed as a
lighter (or darker) variant of the pair of fonts.

Width variation Antykwa Toruńska also offers con-
densed versions of the same fonts. These are defined
as a typescript family themselves, but are also acces-



Font Variants VOORJAAR 2005 15

sible as a condensed variant on the normal width.
Conversely, the normal width is accessible from the
condensed family as an expanded variant.

Usage then follows with the defined variants for the
given family. For the normal width, normal weight
Antykwa Toruńska family that is set up as follows:

\definetypeface[antt][rm][serif]
[antykwa-torunska][default][encoding=texnansi]

. . . the following predefined variants are defined:
‘osf’ (old--style figures), ‘sc’ (small caps), ‘lt’ (light),
and ‘cond’ (condensed). Markup proceeds with the
\Var[] commands acting as grouped font switches.

Implementing variants yourself

There is one key command to set up font variants for
implementors:
\definefontvariant[style][name][suffix].
The style argument registers the variants with the Serif
or Sans family of fonts. The name argument regis-
ters the name to be called within \Var[name]. The
suffix argument reaches down within the typescripts
and looks for a fontsynonym stylevariationsuffix.
For example, given a definition:

\definefontvariant[Serif][osf][-OldStyle]

and in an italic context, invoking the variant switch
\Var[osf] means that that ConTEXt then tries to
switch to the font SerifItalic-Oldstyle.

That simple name resolution means that the other
half of implementing font variants consists of naming
font synonyms within typescripts correctly. The An-
tykwa Toruńska typescripts in type-syn provide an
extended example. There are a few simple guidelines
to follow, however:

2 You should always create a font synonym for
SerifRegular to Serif and SansRegular to
Sans. These are the fallback cases, and need to
be accommodated by the somewhat simple--mind-
ed name resolution.

2 After the fallback case, you need to define seven
font synonyms per variant: Regular, RegularItalic,
RegularSlanted, the same for Bold, and Caps.

2 The synonyms can be arbitrary, so long as they
resolve to actual fonts on your system. This is
typically achieved via the encoding synonyms.

Design strategies

[N.B. This section is for people comfortable working
with font encoding files, and understanding the occa-
sional need to make one up. Don’t be discouraged or
distracted if you’re not one of them.]

If you need to install a font yourself, then you may
need to concern yourself with devising a new encoding,
especially if you’re dealing with a font that includes
several glyph variations within the same font (e.g., a,
Asmall, a.swash). You should go ahead and write your
own encoding based on an existing one, for example
a texnansi variant that has small caps and old-style
figures. The name should then be baseencoding-
variantname.enc, for ease of installation.

TEXFont has an option (–variant=) for using variant
encodings, which causes it to look for an .enc file as
above. This variant encoding is used in the creation
of the .tfm file and within the .map file, but on the
ConTEXt side, the font acts as if it were in the base
encoding. This way, ConTEXt is able to use its internal
encodings correctly, but externally (in the driver that
deals with fonts), the actual glyphs are those selected
in your custom .enc file.

Conclusion

Font variants are actually a fairly simple mechanism,
but coupled with correctly--written typescripts, and by
following some simple conventions, you can unlock
the potential of today’s increasingly sophisticated and
rich fonts. Antykwa Toruńska has font variant support
built into ConTEXt already, so you can start experiment-
ing with support on a user level today.

Adam T. Lindsay
Lancaster University
UK
atl@alum.mit.edu


