
36 MAPS 33 Hans Hagen

Hyphenation Patterns

Pattern files

TEX has two mysterious commands that the average user will never or seldom meet:

\hyphenation{as-so-ciates}
\patterns {.ach4}

Both commands can take multiple strings, so in fact both commands should be
plural. The first command can be given any time and can be used to tell TEX that
a word should be hyphenated in a certain way. The second command can only be
issued when TEX is in virgin mode, i.e. starting with a clean slate. Normally this
only happens when a format is generated.

The second command is more mysterious than the first one and its entries are
a compact way to tell TEX between what character sequences it may hyphenate
words. The numbers represent weights and the (often long) lists of such entries are
generated with a special program called patgen. Since making patterns is work for
specialists, we will not go into the nasty details here.

In the early stage of ConTEXt development it came with its own pattern files.
Their names started with lang- and their suffixes were pat and hyp.

However, when ConTEXt went public, I was convinced to drop those files and use
the files already available in distributions. This was achieved by using the ConTEXt
filename remapping mechanism. Although those files are supposed to be generic,
this is not always the case, and it remains a gamble if they work with ConTEXt.
Even worse, their names are not consistent and the names of some files as well as
locations in the tree keep changing. The price ConTEXt users pay for this is lack of
hyphenation until such changes are noticed and taken care of. Because constructing
the files is an uncoordinated effort, all pattern files have their own characteristics,
most noticably their encoding.

After the need to adapt the name mapping once again, I decided to get back to
providing ConTEXt specific pattern files. Pattern cooking is a special craft and TEX
users may count themselves lucky that it’s taken care of. So, let’s start with thank-
ing all those TEX experts who dedicate their time and effort to get their language
hyphenated. It’s their work we will build (and keep building) upon.

In the process of specific ConTEXt support, we will take care of:

consistent naming, i.e. using language codes when possible as a prelude to a
more sophisticated naming scheme, taking versions into account
consistent splitting of patterns and hyphenation exceptions in files that can
be recognized by their suffix
making the files encoding independent using named glyphs
providing a way to use those patterns in plain TEX as well

Instead of using a control sequence for the named glyphs, we use a different nota-
tion:

[ssharp] [zcaron] [idiaeresis]

The advantage of this notation is that we don’t have to mess with spacing so that
parsing and cleanup with scripts becomes more robust. The names conform to
the ConTEXt way of naming glyphs and the names and reverse mappings are taken

Hyphenation Patterns NAJAAR 2005 37

from the encoding files in the ConTEXt distribution, so you need to have ConTEXt
installed.

The ConTEXt pattern files are generated by a ruby script. Although the converting
is rather straightforward, some languages need special treatment, but a script is
easily adapted. If you want a whole bunch of pattern files, just say:

ctxtools --patterns all

or, if you want one language:

ctxtools --patterns nl

If for some reason this program does not start, try:

texmfstart ctxtools --patterns nl

When things run well, this will give you four files:

lang-nl.pat the patterns in an encoding indepent format
lang-nl.hyp the hyphenation exceptions
lang-nl.log the conversion log (can be deleted afterwards)
lang-nl.rme the preambles of the files used (copyright notices and such)
If you redistribute the files, it makes sense to bundle the rme files as well, unless
the originals are already in the distribution. It makes no sense to keep the log files
on your system. When the file lang-all.xml is present, the info from that file will
be used and added to the pattern and hyphenation files. In that case no rme and
log file will be generated, unless --log is provided.

In the Dutch pattern file you will notice entries like the following:

e[ediaeresis]n3

So, instead of those funny (encoding specific) ^^fc or (format specific) \"e we use
names. Although this looks ConTEXt dependent it is rather easy to map those names
back to characters, especially when one takes into account that most languages only
have a few of those special characters and we only have to deal with lower case
instances.

The ConTEXt support module supp-pat.tex is quite generic and contains only a
few lines of code. Actually, most of the code is dedicated to the simple XML handler.
Loading a pattern meant for EC encoded fonts in another system than ConTEXt is
done as follows:

\bgroup

\input supp-pat

\lccode"E4="E4 \definepatterntoken adiaeresis ^^e4
\lccode"F6="F6 \definepatterntoken odiaeresis ^^f6
\lccode"FC="FC \definepatterntoken ediaeresis ^^fc
\lccode"FF="FF \definepatterntoken ssharp ^^ff

\enablepatterntokens
\enablepatternxml

\input lang-de.pat
\input lang-de.hyp

\egroup

In addition to this one may want to set additional lower and uppercase codes. In
ε-TEX these are stored with the language.

38 MAPS 33 Hans Hagen

Just for completeness we provide the magic command to generate the XML variants:

ctxtools --patterns --xml all

This will give you files like:

<?xml version=’1.0’ standalone=’yes’?>

<!-- some comment -->

<patterns>
... e&ediaeresis;n3 ...
</patterns>

This is also accepted as input but for our purpose it’s probably best to stick to the
normal method. The pattern language is a TEX specific one anyway.

Installing languages

Installing a language in ConTEXt should not take too much effort assuming that the
language is supported. Language specific labels are grouped in lang-* files, like
lang-ger.tex for the germanic languages.

Patterns will be loaded from the files in the general TEX distribution unless lang-
nl.pat is found, in which case ConTEXt assumes that you prefer the ConTEXt pat-
terns. In that case, run

ctxtools --patterns all

You need to move the files to the ConTEXt base path that you can locate with:

textools --find context.tex

You can also use kpsewhich, but the above method does an extensive search. Of
course you can also generate the files on a temporary location. Now it’s time to
generate the formats:

texexec --make --all

Since X ETEX needs patterns in utf-8 encoding, we provide a switch for achieving
that:

texexec --make --all --utf8

Beware: you need to load patterns for each language and encoding combination
you are going to use. You can configure your local cont-usr file to take care of this.
When an encoding does not have the characters that are needed, you will get an
error. When using the non ConTEXt versions of the patterns this may go unnoticed
because the encoding is hard coded in the file. Of course it will eventually get
noticed when the hyphenations come out wrong.

The ConTEXt distribution has a file lang-all.xml that holds the copyright and other
notes of the patterns. A description looks like:

<description language=’nl’>
<sourcefile>nehyph96.tex</sourcefile>
<title>TeX hyphenation patterns for the Dutch language</title>
<copyright>

<year>1996</year>
<owner> Piet Tutelaers (P.T.H.Tutelaers@tue.nl)</owner>
<comment>8-bit hyphenation patterns for TeX based upon the

new Dutch spelling, officially since 1 August 1996.
These patterns follow the new hyphenation rules in the
‘Woordenlijst Nederlandse Taal, SDU Uitgevers, Den Haag

Hyphenation Patterns NAJAAR 2005 39

1995’ (the so called ‘Groene Boekje’) described in
section 5.2 (Het afbreekteken)</comment>

</copyright>
</description>

This file is ‘work in process’: more details will be added and comments will be enriched.

Commands

You can at any moment add additional hyphenation exceptions to the language
specific dictionaries. For instance:

\language[nl] \hyphenation{pa-tiën-ten}

Switching to another language is done with the \language command. The docu-
ment language is set with \mainlanguage.

If you want to let TEX know that a word should be hyphenated in a special way,
you use the \- command, for instance:

Con\-TeXt

Compound words are not recognized by the hyphenation engine, so there you need
to add directives, like:

the ConTeXt|-|system

If you are using XML as input format, you need to load the hyphenation filter mod-
ule. Here we assume that utf encoding is used:

\useXMLfilter[utf,hyp]

In your XML file you can now add:

<hyphenations language=’nl’ regime=’utf’>
<hyphenation>pa-tiën-ten</hyphenation>
<hyphenation>pa-tiën-ten-or-ga-ni-sa-tie</hyphenation>
<hyphenation>pa-tiën-ten-plat-form</hyphenation>

</hyphenations>

This filter also defines some auxiliary elements. Explicit hyphenation points can be
inserted as follows:

Zullen we hier af<hyphenate/>bre<hyphenate/>ken of niet?

The compound token can be anything, but keep in mind that some tokens are treat-
ed special (see other manuals).

Wat is eigenlijk een patiënten<compound token="-"/>platform?

A language is set with:

nederlands <language code="en">english</language> nederlands

If you set attribute scope to global, labels (as used for figure captions and such)
adapt to the language switch. This option actually invokes \mainlanguage.

Languages

When users in a specific language area use more than one font encoding, patterns
need to be loaded multiple times. In theory this means that one can end up with
more instances than TEX can host. However, the number of sensible font encodings
is limited as is the number of languages that need hyphenation. Now that memory
is cheap and machines are fast, preloading a lot of pattern files is no problem. The

40 MAPS 33 Hans Hagen

following table shows the patterns that are preloaded in the version of ConTEXt that
is used to process this file.

language encoding mapping number leftmin rightmin
nl texnansi texnansi 1 2 2
nl ec ec 2 2 2
fr texnansi texnansi 3 2 2
fr ec ec 4 2 2
de texnansi texnansi 5 2 2
de ec ec 6 2 2
it texnansi texnansi 7 2 2
it ec ec 8 2 2
pt texnansi texnansi 9 2 2
pt ec ec 10 2 2
hr ec ec 11 2 2
pl pl0 pl0 12 2 2
pl ec ec 13 2 2
pl qx qx 14 2 2
cz il2 il2 15 2 2
cz ec ec 16 2 2
sk il2 il2 17 2 2
sk ec ec 18 2 2
sl il2 il2 19 2 2
sl ec ec 20 2 2
en ec ec 22 2 2
da ec ec 23 2 2
sv ec ec 24 2 2
af ec ec 25 2 2
no ec ec 26 2 2
deo ec ec 27 2 2
uk ec ec 28 2 2
us ec ec 29 2 2
es ec ec 30 2 2
ca ec ec 31 2 2
la ec ec 32 2 2
ro ec ec 33 2 2
tr ec ec 34 2 2
fi ec ec 36 2 2
hu ec ec 37 2 2

In the (near) future the somewhat arcane pl0 and il2 encodings will go away since
they are only used for Polish and Czech/Slovak computer modern fonts, which can be
replaced by Latin Modern alternatives. Also, a new dense encoding may find its way
into this list.

Hans Hagen

