
Hans Hagen NAJAAR 2006 9

MKII – MKIV

Abstract
This article is the first in a series about ConTEXt and LuaTEX. For those who use
ConTEXt it is a progress report of the development process and the choices that are
being made. For those not using ConTEXt it gives some insight in what LuaTEX is
about.

From Mark II to Mark IV
Sometime in 2005 the development of LUATEX started, a further development of
PDFTEX and a precursor to PDFTEX version 2. This TEX variant will provide:

21–32 bit internals plus a code cleanup
flexible support for OpenType fonts
an internal UTF data flow
the bidirectional typesetting of ALEPH
LUA callbacks to the most relevant TEX internals
some extensions to TEX (for instance math)
an efficient way to communicate with MetaPost

In the tradition of TEX this successor will be downward compatible in most essential
parts and in the end, there is still PDFTEX version 1 as fall back.

In the mean time we have seen another unicode variant show up, X ETEX which is
under active development, uses external libraries, provides access to the fonts on
the operating system, etc.

From the beginning, ConTEXt always worked with all engines. This was achieved
by conditional code blocks: depending on what engine was used, different code
was put in the format and/or used at runtime. Users normally were unaware
of this. Examples of engines are ε-TEX, ALEPH, and X ETEX. Because nowadays all
engines provide the ε-TEX features, in August 2006 we decided to consider those
features to be present and drop providing the standard TEX compatible variants.
This is a small effort because all code that is sensitive for optimization already has
ε-TEX code branches for many years.

However, with the arrival of LUATEX, we need a more drastic approach. Quite
some existing code can go away and will be replaced by different solutions. Where
TEX code ends up in the format file, along with its state, LUA code will be initiated
at run time, after a LUA instance is started. ConTEXt reserves its own instance of
LUA.

Most of this will go unnoticed for the users because the user interface will not
change. For developers however, we need to provide a mechanism to deal with
these issues. This is why, for the first time in ConTEXt’s history we will officially
use a kind of version tag. When we changed the low level interface from Dutch to
English we jokingly talked of version 2. So, it makes sense to follow this lead.

ConTEXt Mark I At that moment we still had a low level Dutch interface, invis-
ible for users but not for developers.
ConTEXt Mark II We now have a low level English interface, which (as we
indeed saw happen) triggers more development by users.
ConTEXt Mark IV This is the next generation of ConTEXt, with parts re--imple-
mented. It’s an at some points drastic system overhaul.

10 MAPS 34 Hans Hagen

Keep in mind that the functionality does not change, although in some places,
for instance fonts, Mark IV may provide additional functionality. The reason why
most users will not notice the difference (maybe apart from performance and
convenience) is that at the user interface level nothing changes (most of it deals
with typesetting, not with low level details).

The hole in the numbering permits us to provide a Mark III version as well. Once
X ETEX is stable, we may use that slot for X ETEX specific implementations.

As per August 2006 the banner is adapted to this distinction:

... ver: 2006.09.06 22:46 MK II fmt: 2006.9.6 ...

... ver: 2006.09.06 22:47 MK IV fmt: 2006.9.6 ...

This numbering system is reflected at the file level in such a way that we can keep
developing the way we do, i.e. no files all over the place, in subdirectories, etc.

Most of the system’s core files are not affected, but some may be, like those
dealing with fonts, input- and output encodings, file handling, etc. Those files may
come with different suffixes:

somefile.tex: the main file, implementing the interface and common code
somefile.mkii: mostly existing code, suitable for good old TEX (ε-TEX,
PDFTEX, ALEPH).
somefile.mkiv: code optimized for use with LUATEX, which could follow
completely different approaches
somefile.lua: LUA code, loaded at format generation time and/or runtime

As said, some day somefile.mkiii code may show up. Which variant is loaded is
determined automatically at format generation time as well as at run time.

How LUA fits in
introduction
Here I will discuss a few of the experiments that drove the development of LUATEX.
It describes the state of affairs around the time that we were preparing for TUG
2006. This development was pretty demanding for Taco and me but also much
fun. We were in a kind of permanent Skype chat session, with binaries flowing in
one direction and TEX and LUA code the other way. By gradually replacing (even
critical) components of ConTEXt we had a real test bed and torture tests helped
us to explore and debug at the same time. Because Taco uses LINUX as platform
and I mostly use MS WINDOWS, we could investigate platform dependent issues
conveniently. While reading this text, keep in mind that this is just the beginning
of the game.

I will not provide sample code here. When possible, the Mark IV code trans-
parantly replaces Mark II code and users will seldom notices that something hap-
pens in different way. Of course the potential is there and future extensions may
be unique to Mark IV.

compatibility
The first experiments, already conducted with the experimental versions involved
runtime conversion of one type of input into another. An example of this is the
(TI) calculator math input handler that converts a rather natural math sequence
into TEX and feeds that back into TEX. This mechanism eventually will evolve into a
configurable math input handler. Such applications are unique to Mark IV code and
will not be backported to Mark II. The question is where downward compatibility
will become a problem. We don’t expect many problems, apart from occasional
bugs that result from splitting the code base, mostly because new features will not
affect older functionality. Because we have to reorganize the code base a bit, we
also use this opportunity to start making a variant of ConTEXt which consists of
building blocks: METATEX. This is less interesting for the average user, but may be

MKII – MKIV NAJAAR 2006 11

of interest for those using ConTEXt in workflows where only part of the functionality
is needed.

metapost
Of course, when I experiment with such new things, I cannot let MetaPost leave
untouched. And so, in the early stage of LUATEX development I decided to play
with two MetaPost related features: conversion and runtime processing.

Conversion from MetaPost output to PDF is currently done in pure TEX code.
Apart from convenience, this has the advantage that we can let TEX take care of
font inclusions. The tricky part of this conversion is that MetaPost output has some
weird aspects, like DVIPS specific linewidth snapping. Another nasty element in the
conversion is that we need to transform paths when pens are used. Anyhow, the
converter has reached a rather stable state by now.

One of the ideas with MetaPost version 1+ is that we will have an alternative
output mode. In the perspective of LUATEX it makes sense to have a LUA output
mode. Whatever converter we use, it needs to deal with METAFUN specials. These
are responsible for special features like transparency, graphic inclusion, shading,
and more. Currently we misuse colors to signal such features, but the new pre/
post path hooks permit more advanced implementations. Experimenting with such
new features is easier in LUA than in TEX.

The Mark IV converter is a multi--pass converter. First we clean up the MetaPost
output, next we convert the PostScript code into LUA calls. We assume that this
LUA code eventually can be output directly from MetaPost. We then evaluate this
converted LUA blob, which results in TEX commands. Think of:

1.2 setlinejoin

turned into:

mp.setlinejoin(1.2)

becoming:

\PDFcode{1.2 j}

which is, when the PDFTEX driver is active, equivalent to:

\pdfliteral{1.2 j}

Of course, when paths are involved, more things happen behind the scenes, but in
the end an mp.path enters the LUA machinery.

o e p s

Figure 1. converter test figure

12 MAPS 34 Hans Hagen

prologues/mpprocset 1/0 1/1 2/02/1
Mark II 8.5 (5.7) 8.0 (5.5) 8.8 8.5
Mark IV 16.1 (10.6) 7.2 (4.5) 16.3 7.4

Table 1. converter speed benchmark data

When the Mark IV converter reached a stable state, tests demonstrated then the
code was upto 20% slower that the pure TEX alternative on average graphics, and
but faster when many complex path transformations (due to penshapes) need to
be done. This slowdown was due to the cleanup (using expressions) and interme-
diate conversion. Because Taco develops LUATEX as well as maintains and extends
MetaPost, we conducted experiments that combine features of these programs. As
a result of this, shortcuts found their way into the MetaPost output.

Cleaning up the MetaPost output using LUA expressions takes relatively much
time. However, starting with version 0.970 MetaPost uses a preamble, which
permits not only short commands, but also gets rid of the weird linewidth and
filldraw related PostScript constructs. The moderately complex graphic that we use
for testing (figure 1) takes over 16 seconds when converted 250 times. When we
enable shortcuts we can avoid part of the cleanup and runtime goes down to under
7.5 seconds. This is significantly faster than the Mark II code. We did experiments
with simulated LUA output from MetaPost and then the Mark IV converter really
flies. The benchmark data are shown in table 1. The values on Taco’s system are
given between parenthesis.

The main reason for the huge difference in the Mark IV times is that we do a
rigourous cleanup of the older MetaPost output in order avoid messy the messy
(but fast) code that we use in the Mark II converter. Think of:

0 0.5 dtransform truncate idtransform setlinewidth pop
closepath gsave fill grestore stroke

In the Mark II converter, we push every number or keyword on a stack and use
keywords as trigger points. In the Mark IV code we convert the stack based
PostScript calls to LUA function calls. Lines as shown are converted to single calls
first. When prologues is set to 2, such line no longer show up and are replaced
by simple calls accompanied by definitions in the preamble. Not only that, instead
of verbose keywords, one or two character shortcuts are used. This means that the
Mark II code can be faster when procsets are used because shorter strings end up
in the stack and comparison happens faster. On the other hand, when no procsets
are used, the runtime is longer because of the larger preamble.

Because the converter is used outside ConTEXt as well, we support all combina-
tions in order not to get error messages, but the converter is supposed to work with
the following settings:

prologues := 1 ;
mpprocset := 1 ;

We don’t need to set prologues to 2 (font encodings in file) or 3 (also font
resources in file). So, in the end, the comparison in speed comes down to 8.0
seconds for Mark II code and 7.2 seconds for the Mark IV code when using the
latest greatest MetaPost. When we simulate LUA output from MetaPost, we end
up with 4.2 seconds runtime and when MetaPost could produce the converter’s
TEX commands, we need only 0.3 seconds for embedding the 250 instances. This
includes TEX taking care of handling the specials, some of which demand building
moderately complex PDF data structures.

But, conversion is not the only factor in convenient MetaPost usage. First of
all, runtime MetaPost processing takes time. The actual time spent on handling

MKII – MKIV NAJAAR 2006 13

embedded MetaPost graphics is also dependent on the speed of starting up Meta-
Post, which in turn depends on the size of the TEX trees used: the bigger these
are, the more time KPSE spends on loading the ls-R databases. Eventually this
bottleneck may go away when we have MetaPost as a library. (In ConTEXt one can
also run MetaPost between runs. Which method is faster, depends on the amount
and complexity of the graphics.)

Another factor in dealing with MetaPost, is the usage of text in a graphic (btex,
textext, etc.). Taco Hoekwater, Fabrice Popineau and I did some experiments with
a persistent MetaPost session in the background in order to simulate a library. The
results look very promising: the overhead of embedded MetaPost graphics goes to
nearly zero, especially when we also let the parent TEX job handle the typesetting
of texts. A side effect of these experiments was a new mechanism in ConTEXt (and
METAFUN) where TEX did all typesetting of labels, and MetaPost only worked with
an abstract representation of the result. This way we can completely avoid nested
TEX runs (the ones triggered by MetaPost). This also works ok in Mark II mode.

Using a persistent MetaPost run and piping data into it is not the final solution
if only because the terminal log becomes messed up too much, and also because
intercepting errors is real messy. In the end we need a proper library approach, but
the experiments demonstrated that we needed to go this way: handling hundreds of
complex graphics that hold typeset paragraphs (being slanted and rotated and more
by MetaPost), tooks mere seconds compared to minutes when using independent
MetaPost runs for each job.

characters
Because LUATEX is UTF based, we need a different way to deal with input encoding.
For this purpose there are callbacks that intercept the input and convert it as
needed. For context this means that the regime related modules get a LUA based
counterparts. As a prelude to advanced character manipulations, we already load
extensive unicode and conversion tables, with the benefit of being able to handle
case handling with LUA.

The character tables are derived from unicode tables and Mark II ConTEXt data
files and generated using MTXTOOLS. The main character table is pretty large, and
this made us experiment a bit with efficiency. It was in this stage that we realized
that it made sense to use precompiled LUA code (using luac). During format
generation we let ConTEXt keep track of used LUA files and compiled them on the
fly. For a production run, the compiled files were loaded instead.

Because at that stage LUATEX was already a merge between PDFTEX and ALEPH,
we had to deal with pretty large format files. About that moment the ConTEXt
format with the english user interface amounted to:

date luatex pdftex xetex aleph
2006-09-18 9 552 042 7 068 643 8 374 996 7 942 044
One reason for the large size of the format file is that the memory footprint of a 32
bit TEX is larger than that of good old TEX, even with some of the clever memory
allocation techniques as used in LUATEX. After some experiments where size and
speed were measured Taco decided to compress the format using a level 3 ZIP
compression. This brilliant move lead to the following size:

date luatex pdftex xetex aleph
2006-10-23 3 135 568 7 095 775 8 405 764 7 973 940
The first zipped versions were smaller (around 2.3 meg), but in the meantime we
moved the LUA code into the format and the character related tables take some
space.

14 MAPS 34 Hans Hagen

debugging
In the process of experimenting with callbacks I played a bit with handling TEX
error information. An option is to generate an HTML page instead of spitting out the
usual blob of into on the terminal. In figure 2 and figure 3 you can see an example
of this.

Figure 2. An example error screen.
Playing with such features gives us an impression of what kind of access we need
to TEX’s internals. It also formed a starting point for conversion routines and a
mechanism for embedding LUA code in HTML pages generated by ConTEXt.

file io
Replacing TEX’s in- and output handling is non--trival. Not only is the code quite
interwoven in the WEB2C source, but there is also the KPSE library to deal with. This
means that quite some callbacks are needed to handle the different types of files.
Also, there is output to the log and terminal to take care of.

Getting this done took us quite some time and testing and debugging was good
for some headaches. The mechanisms changed a few times, and TEX and LUA
code was thrown away as soon as better solutions came around. Because we were
testing on real documents, using a fully loaded ConTEXt we could converge to a
stable version after a while.

Getting this IO stuff done is tightly related to generating the format and starting
up LUATEX. If you want to overload the file searching and IO handling, you need
overload as soon as possible. Because LUATEX is also supposed to work with the
existing KPSE library, we still have that as fallback, but in principle one could think
of a KPSE free version, in which case the default file searching is limited to the
local path and memory initialization also reverts to the hard coded defaults. A
complication is that the soure code has KPSE calls and references to KPSE variables
all over the place, so occasionally we run into interesting bugs.

Anyhow, while Taco hacked his way around the code, I converted my existing
RUBY based KPSE variant into LUA and started working from that point. The advan-
tage of having our own IO handler is that we can go beyond KPSE. For instance,

MKII – MKIV NAJAAR 2006 15

Figure 3. An example debug screen.

since LUATEX has, among a few others, the ZIP libraries linked in, we can read from
ZIP files, and keep all TEX related files in TDS compliant ZIP files as well. This means
that one can say:

\input zip::somezipfile::somefile.tex
\input zip://somezipfile.zip/somepath/somefile.tex

and use similar references to access files. Of course we had to make sure that
KPSE like searching in the TDS (standardized TEX trees) works smoothly. There are
plans to link the curl library into LUATEX, so that we can go beyong this and access
repositories.

Of course, in order to be more or less KPSE and WEB2C compliant, we also need
to support this paranoid file handling, so we provide mechanisms for that as well.
In addition, we provide ways to create sandboxes for system calls.

Getting to intercept all log output (well, most log output) was a problem in itself.
For this I used a (preliminary) XML based log format, which will make log parsing
easier. Because we have full control over file searching, opening and closing, we
can also provide more information about what files are loaded. For instance we
can now easily trace what TFM files TEX reads.

Implementing additional methods for locating and opening files is not that com-
plex because the library that ships with ConTEXt is already prepared for this. For
instance, implementing support for:

\input http://www.someplace.org/somepath/somefile.tex

involved a few lines of code, most of which deals with caching the files. Because
we overload the whole IO handling, this means that the following works ok:

\placefigure
{http handling}
{\externalfigure

[http://www.pragma-ade.com/show-gra.pdf]
[page=1,width=\textwidth]}

16 MAPS 34 Hans Hagen

MetaPost
Graphics

Once upon a time we started using METAPOST, the

graphic companion to TEX. Since then it has been

our main tool for making graphics. Welcome to our

little showcase. You can click on the graphic to

show the real thing.

Figure 4. http handling
Other protocols, like FTP are also supported, so one can say:

\typefile {ftp://anonymous:@ctan.org/tex-archive/systems\
/knuth/lib/plain.tex}

On the agenda is playing with database, but by the time that we enter that stage
linking the curl libraries into LUATEX should have taken place.

verbatim
The advance of LUATEX also permitted us to play with a long standing wish of
catcode tables, a mechanism to quickly switch between different ways of treating
input characters. An example of a place where such changes take place is verbatim
(and in ConTEXt also when dealing with XML input).

We already had encountered the phenomena that when piping back results from
LUA to TEX, we needed to take care of catcodes so that TEX would see the input as we
wished. Earlier experiments with applying \scantokens to a result and thereby
interpreting the result conforming the current catcode regime was not sufficient
or at least not handy enough, especially in the perspective of fully expandable LUA
results. To be honest, \scantokens was rather useless for this purposes due to
its pseudo file nature and its end--of--file handling but in LUATEX we now have a
convenient \scantextokens which has no side effects.

Once catcode tables were in place, and the relevant ConTEXt code adapted, I
could start playing with one of the trickier parts of TEX programming: typesetting
TEX using TEX, or verbatim. Because in ConTEXt verbatim is also related to buffering
and pretty printing, all these mechanism were handled at once. It proved to be
a pretty good testcase for writing LUA results back to TEX, because anything you
can imagine can and will interfere (line endings, catcode changes, looking ahead
for arguments, etc). This is one of the areas where Mark IV code will make
things look more clean and understandable, especially because we could move all
kind of postprocessing (needed for pretty printing, i.e. syntax highlighting) to LUA.
Interesting is that the resulting code is not beforehand faster.

MKII – MKIV NAJAAR 2006 17

Pretty printing 1000 small (one line) buffers and 5000 simple \type commands
perform as follows:

TEX normal TEX pretty Lua normal Lua pretty
buffer 2.5 (2.35) 4.5 (3.05) 2.2 (1.8) 2.5 (2.0)
inline 7.7 (4.90) 11.5 (7.25) 9.1 (6.3) 10.9 (7.5)
Between braces the runtime on Taco’s more modern machine is shown. It’s not that
easy to draw conclusions from this because TEX uses files for buffers and with LUA
we store buffers in memory. For inline verbatim, LUA call’s bring some overhead,
but with more complex content, this becomes less noticable. Also, the LUA code is
probably less optimized than the TEX code, and we don’t know yet what benefits a
Just In Time LUA compiler will bring.

xml
Interesting is that the first experiments with XML processing don’t show the expected
gain in speed. This is due to the fact that the ConTEXt XML parser is highly optimized.
However, if we want to load a whole XML file, for instance the formal ConTEXt
interface specification cont-en.xml, then we can bring down loading time (as
well as TEX memory usage) down from multiple seconds to a blink of the eyes.
Experiments with internal mappings and manipulations demonstrated that we may
not so much need an alternative for the current parser, but can add additional,
special purpose ones.

We may consider linking XSLTPROC into LUATEX, but this is yet undecided. After
all, the problem of typesetting does not really change, so we may as well keep the
process of manipulating and typesetting separated.

multipass data
Those who know ConTEXt a bit will know that it may need multiple passes to
typeset a document. ConTEXt not only keeps track of index entries, list entries, cross
references, but also optimizes some of the output based on information gathered in
previous passes. Especially so called two--pass data and positional information puts
some demands on memory and runtime. Two--pass data is collapsed in lists because
otherwise we would run out of memory (at least this was true years ago when these
mechanisms were introduced). Positional information is stored in hashes and has
always put a bit of a burden on the size of a so called utility file (ConTEXt stores all
information in one auxiliary file).

These two datatypes were the first we moved to a LUA auxiliary file and eventually
all information will move there. The advantage is that we can use efficient hashes
(without limitations) and only need to run over the file once. And LUA is incredibly
fast in loading the tables where we keep track of these things. For instance, a test
file storing and reading 10.000 complex positions takes 3.2 seconds runtime with
LUATEX but 8.7 seconds with traditional PDFTEX. Imagine what this will save when
dealing with huge files (400 page 300 Meg files) that need three or more passes to
be typeset. And, now we can without problems bump position tracking to milions
of positions.

Initialization revised
Initializing LUATEX in such a way that it does what you want it to do your way can
be tricky. This has to do with the fact that if we want to overload certain features
(using callbacks) we need to do that before the orginals start doing their work.
For instance, if we want to install our own file handling, we must make sure that
the built--in file searching does not get initialized. This is particularly important
when the built in search engine is based on the KPSE library. In that case the first
serious file access will result in loading the ls-R filename databases, which will
take an amount of time more or less linear with the size of the TEX trees. Among the

18 MAPS 34 Hans Hagen

reasons why we want to replace KPSE are the facts that we want to access ZIP files,
do more specific file searches, use HTTP, FTP and whatever comes around, integrate
ConTEXt specific methods, etc.

Although modern operating systems will cache files in memory, creating the
internal data structures (hashes) from the rather dumb files take some time. On
the machine where I was developing the first experimental LUATEX code, we’re
talking about 0.3 seconds for PDFTEX. One would expect a LUA based alternative to
be slower, but it is not. This may be due to the different implementation, but for
sure the more efficient file cache plays a role as well. So, by completely disabling
KPSE, we can have more advanced IO related features (like reading from ZIP files) at
about the same speed (or even faster). In due time we will also support progname
(and format) specific caches, which speeds up loading. In case one wonders why
we bother about a mere few hundreds of milliseconds: imagine frequent runs from
an editor or sub--runs during a job. In such situation every speed up matters.

So, back to initialization: how do we initialize LUATEX. The method described
here is developed for ConTEXt but is not limited to this macro package; when one
tells TEXEXEC to generate formats using the --luatex directive, it will generate the
ConTEXt formats as well as MPTOPDF using this engine.

For practical reasons, the Lua based IO handler is KPSE compliant. This means
that the normal texmf.cnf and ls-R files can be used. However, their content
is converted in a more LUA friendly way. Although this can be done at runtime, it
makes more sense to to this in advance using LUATOOLS. The files involved are:

input raw input runtime input runtime fallback
ls-R files.luc files.lua

texmf.lua temxf.cnf configuration.luc configuration.lua

In due time LUATOOLS will generate the directory listing itself (for this some extra
libraries need to be linked in). The configuration file(s) eventually will move to a
LUA table format, and when a texmf.lua file is present, that one will be used.

luatools --generate

This command will generate the relevant databases. Optionally you can provide
--minimize which will generate a leaner database, which in turn will bring down
loading time to (on my machine) about 0.1 sec instead of 0.2 seconds. The --sort
option will give nicer intermediate (.lua) files that are more handy for debugging.

When done, you can use LUATOOLS roughly in the same manner as KPSEWHICH,
for instance to locate files:

luatools texnansi-lmr10.tfm
luatools --all tufte.tex

You can also inspect its internal state, for instance with:

luatools --variables --pattern=TEXMF
luatools --expansions --pattern=context

This will show you the (expanded) variables from the configuration files. Normally
you don’t need to go that deep into the belly.

The LUATOOLS script can also generate a format and run LUATEX. For ConTEXt this
is normally done with the TEXEXEC wrapper, for instance:

texexec --make --all --luatex

When dealing with this process we need to keep several things in mind:

LUATEX needs a LUA startup file in both ini and runtime mode
these files may be the same but may also be different

MKII – MKIV NAJAAR 2006 19

here we use the same files but a compiled one in runtime mode
we cannot yet use a file location mechanism

A .luc file is a precompiled LUA chunk. In order to guard consistency between
LUA code and tex code, ConTEXt will preload all LUA code and store them in the
bytecode table provided by LUATEX. How this is done, is another story. Contrary to
these tables, the initialization code can not be put into the format, if only because
at that stage we still need to set up memory and other parameters.

In our case, especially because we want to overload the IO handler, we want to
store the startup file in the same path as the format file. This means that scripts
that deal with format generation also need to take care of (relocating) the startup
file. Normally we will use TEXEXEC but we can also use LUATOOLS.

Say that we want to make a plain format. We can call LUATOOLS as follows:

luatools --ini plain

This will give us (in the current path):

120,808 plain.fmt
2,650 plain.log

80,767 plain.lua
64,807 plain.luc

From now on, only the plain.fmt and plain.luc file are important. Processing
a file

test \end

can be done with:

luatools --fmt=./plain.fmt test

This returns:

This is luaTeX, Version 3.141592-0.1-alpha-20061018 (Web2C 7.5.5)
(./test.tex [1])
Output written on test.dvi (1 page, 260 bytes).
Transcript written on test.log.

which looks rather familiar. Keep in mind that at this stage we still run good old
Plain TEX. In due time we will provide a few files that will making work with LUA
more convenient in Plain TEX, but at this moment you can already use for instance
\directlua.

In case you wonder how this is related to ConTEXt, well only to the extend that
it uses a couple of rather generic ConTEXt related LUA files.

ConTEXt users can best use TEXEXEC which will relocate the format related files
to the regular engine path. In LUATOOLS terms we have two choices:

luatools --ini cont-en
luatools --ini --compile cont-en

The difference is that in the first case context.lua is used as startup file. This LUA
file creates the cont-en.luc runtime file. In the second call LUATOOLS will create
a cont-en.lua file and compile that one. An even more specific call would be:

luatools --ini --compile --luafile=blabla.lua cont-en
luatools --ini --compile --lualibs=bla-1.lua,bla-2.lua cont-en

This call does not make much sense for ConTEXt. Keep in mind that LUATOOLS does
not set up user specific configurations, for instance the --all switch in TEXEXEC
will set up all patterns.

20 MAPS 34 Hans Hagen

I know that it sounds a bit messy, but till we have a more clear picture of where
LUATEX is heading this is the way to proceed. The average ConTEXt user won’t
notice those details, because TEXEXEC will take care of things.

Currently we follow the TDS and WEB2C conventions, but in the future we may
follow different or additional approaches. This may as well be driven by more
complex IO models. For the moment extensions still fit in. For instance, in order
to support access to remote resources and related caching, we have added to the
configuration file the variable:

TEXMFCACHE = $TMP;$TEMP;$TMPDIR;$HOME;$TEXMFVAR;$VARTEXMF;.

An example: CalcMath
introduction
For a long time TEX’s way of coding math has dominated the typesetting world.
However, this kind of coding is not that well suited for non academics, like
schoolkids. Often kids do know how to key in math because they use advanced
calculators. So, when a couple of years ago we were implementing a workflow
where kids could fill in their math workbooks (with exercises) on--line, it made
sense to support so called Texas Instruments math input. Because we had to parse
the form data anyway, we could use a [[and]] as math delimiters instead of $.
The conversion too place right after the form was received by the web server.

sin(x) + xˆ2 + xˆ(1+x) + 1/xˆ2 sin(x) + x2 + x1+x + 1
x2

mean(x+mean(y)) x + y

int(a,b,c)
∫a

b
c

(1+x)/(1+x) + (1+x)/(1+(1+x)/(1+x)) 1+x
1+x

+ 1+x

1+ 1+x
1+x

10E-2 10 × 10−2

(1+x)/x 1+x
x

(1+x)/12 1+x
12

(1+x)/-12 1+x
−12

1/-12 1
−12

12x/(1+x) 12x
1+x

exp(x+exp(x+1)) ex+ex+1

abs(x+abs(x+1)) + pi + inf |x + |x + 1|| + π + inf

Dx Dy dx
dx

dy
dx

D(x+D(y)) d
dx

(x + d
dx

(y))

Df(x) f′(x)

g(x) g(x)

sqrt(sinˆ2(x)+cosˆ2(x))
√

sin2(x) + cos2(x)

By combining LUA with TEX, we can do the conversion from calculator math to TEX
immediately, without auxiliary programs or complex parsing using TEX macros.

MKII – MKIV NAJAAR 2006 21

tex
In a ConTEXt source one can use the \calcmath command, as in:

The strange formula \calcmath {sqrt(sinˆ2(x)+cosˆ2(x))} boils
down to ...

One needs to load the module first, using:

\usemodule[calcmath]

Because the amount of code involved is rather small, eventually we may decide to
add this support to the Mark IV kernel.

xml
Coding math in TEX is rather efficient. In XML one needs way more code. Pre-
sentation MATHML provides a few basic constructs and boils down to combining
those building blocks. Content MATHML is better, especially from the perspective
of applications that need to do interpret the formulas. It permits for instance the
ConTEXt content MATHML handler to adapt the rendering to cultural driven needs.
The OPENMATH way of coding is like content MATHML, but more verbose with less
tags. Calculator math is more restrictive than TEX math and less verbose than any
of the XML variants. It looks like:

<icm>sqrt(sinˆ2(x)+cosˆ2(x))</icm> test

And in display mode:

<dcm>sqrt(sinˆ2(x)+cosˆ2(x))</dcm> test

speed
This script (which you can find in the ConTEXt distribution as soon as the Mark IV
code variants are added) is the first real TEX related LUA code that I wrote; so far
I had only written some wrapping and spell checking code for the SCITE editor. It
also made a nice demo for a couple of talks that I held at usergroup meetings. The
script has a lot of expressions. These convert one string into another. They are less
powerful than regular expressions, but pretty fast and adequate. The feature I miss
most is alternation like (l|st)uck but it’s a small price to pay. As the LUA manual
explains: adding a POSIX compliant regexp parser would take more lines of code
than LUA currently does.

On my machine, running this first version took 3.5 seconds for 2500 times
typesetting the previously shown square root of sine and cosine. Of this, 2.1 seconds
were spent on typesetting and 1.4 seconds on converting. After optimizing the code,
0.8 seconds were used for conversion. A stand alone LUA takes .65 seconds, which
includes loading the interpreter. On a test of 25.000 sample conversions, we could
gain some 20% conversion time using the LUAJIT just in time compiler.

Hans Hagen

