
Hans Hagen VOORJAAR 2007 5

Tokens in LuaTEX
Hans Hagen

tokenization
Most TEX users only deal with (keyed in) characters
and (produced) output. Some will play with boxes,
skips and kerns or maybe even leaders (repeated
sequences of the former). Others will be grateful that
macro package writers take care of such things.

Macro writers on the other hand deal with prop-
erties of characters, like catcodes and a truckload of
other codes, with lists made out of boxes, skips, kerns
and penalties. But even they cannot look much deeper
into TEX’s internals. Their deeper understanding
comes from reading the TEXbook or even looking at
the source code.

When someone enters the magic world of TEX and
starts asking around a bit, he or she will at some point
get confronted with the concept of tokens. A token is
what ends up in TEX after characters have entered its
machinery. Sometimes it even seems that one is only
considered a qualified macro writer if one can talk the
right token--speak. So, what are those magic tokens
and how can LuaTEX shed light on this?

In a moment we will show examples of how LuaTEX
turns characters into tokens, but when looking at those
sequences, you need to keep a few things in mind:

A sequence of characters that starts with an escape
symbol (normally this is the backslash) is looked
up in the hash table (which relates those names to
meanings) and replaced with its reference. Such
a reference is much faster than looking up the se-
quence each time.
Characters can have special meanings, for instance
a dollar is often used to enter and exit math mode,
and a percent symbol starts a comment and hides
everything following it on the same line. These
meanings are determined by the character’s cat-
code.
All the characters that will end up actually typeset
have catcode letter or other assigned. A sequence
of items with catcode letter is considered a word
and can potentially become hyphenated.

examples
We will now provide a few examples of how TEX sees
your input.

Hi there!

Hi there!

cmd chr id name
letter 72 H
letter 105 i
spacer 32
letter 116 t
letter 104 h
letter 101 e
letter 114 r
letter 101 e
other_char 33 !

Here we see three kinds of tokens. At this stage a space
is still recognizable as such, but later this will become
a skip. In our current setup, the exclamation mark is
not a letter.

Hans \& Taco use Lua\TeX \char 33\relax

Hans & Taco use LuaTEX!

cmd chr id name
letter 72 H
letter 97 a
letter 110 n
letter 115 s
spacer 32
char_given 38 1114152 &
spacer 32
letter 84 T
letter 97 a
letter 99 c
letter 111 o
spacer 32
letter 117 u
letter 115 s
letter 101 e
spacer 32
letter 76 L
letter 117 u
letter 97 a
call 1554614 1114740 TeX
char_num 0 1115630 char

6 MAPS 35 Hans Hagen

other_char 51 3
other_char 51 3
relax 1114112 1117492 relax

Here we see a few new tokens, a char_given and a
call. The first represents a \chardef i.e. a reference
to a character slot in a font, and the second one a macro
that will expand to the TEX logo. Watch how the space
after a control sequence is eaten up. The exclamation
mark is a direct reference to character slot 33.

\noindent {\bf Hans} \par \hbox{Taco} \endgraf

Hans
Taco

cmd chr id name
start_par 0 1141958 noindent
left_brace 123
call 1650250 1114412 bf
letter 72 H
letter 97 a
letter 110 n
letter 115 s
right_brace 125
spacer 32
par_end 1114112 1114870 par
make_box 122 1115680 hbox
left_brace 123
letter 84 T
letter 97 a
letter 99 c
letter 111 o
right_brace 125
spacer 32
par_end 1114112 1127274 endgraf

As you can see, some primitives and macros that
are bound to them (like \endgraf) have an internal
representation on top of their name.

before \dimen2=10pt after \the\dimen2

before after 10.0pt

cmd chr id name
letter 98 b
letter 101 e
letter 102 f
letter 111 o
letter 114 r
letter 101 e
spacer 32
register 1 1117302 dimen
other_char 50 2

other_char 61 =
other_char 49 1
other_char 48 0
letter 112 p
letter 116 t
spacer 32
letter 97 a
letter 102 f
letter 116 t
letter 101 e
letter 114 r
spacer 32
the 0 1114887 the
register 1 1117302 dimen
other_char 50 2

As you can see, registers are not explicitly named, one
needs the associated register code to determine it’s
character (a dimension in our case).

before \inframed[width=3cm]{whatever} after

before whatever after

cmd chr id name
letter 98 b
letter 101 e
letter 102 f
letter 111 o
letter 114 r
letter 101 e
spacer 32
call 1824889 3226639 inframed
other_char 91 [
letter 119 w
letter 105 i
letter 100 d
letter 116 t
letter 104 h
other_char 61 =
other_char 51 3
letter 99 c
letter 109 m
other_char 93]
left_brace 123
letter 119 w
letter 104 h
letter 97 a
letter 116 t
letter 101 e
letter 118 v
letter 101 e
letter 114 r
right_brace 125
spacer 32

Tokens in LuaTEX VOORJAAR 2007 7

letter 97 a
letter 102 f
letter 116 t
letter 101 e
letter 114 r

As you can see, even when control sequences are
collapsed into a reference, we still end up with many
tokens, and because each token has three properties
(cmd, chr and id) in practice we end up with more
memory used after tokenization.

compound|-|word

compound-word

cmd chr id name
letter 99 c
letter 111 o
letter 109 m
letter 112 p
letter 111 o
letter 117 u
letter 110 n
letter 100 d
call 1869296 125 |
other_char 45 -
call 1869296 125 |
letter 119 w
letter 111 o
letter 114 r
letter 100 d

This example uses an active character to handle
compound words (a ConTEXt feature).

hm, \directlua 0 { tex.sprint("Hello World") }

hm, Hello World!

cmd chr id name
letter 104 h
letter 109 m
other_char 44 ,
spacer 32
convert 23 1166957 directlua
other_char 48 0
spacer 32
left_brace 123
spacer 32
letter 116 t
letter 101 e
letter 120 x
other_char 46 .
letter 115 s

letter 112 p
letter 114 r
letter 105 i
letter 110 n
letter 116 t
other_char 40 (
other_char 34 "
letter 72 H
letter 101 e
letter 108 l
letter 108 l
letter 111 o
spacer 32
letter 87 W
letter 111 o
letter 114 r
letter 108 l
letter 100 d
other_char 33 !
other_char 34 "
other_char 41)
spacer 32
right_brace 125

The previous example shows what happens when we
include a bit of lua code . . . it is just seen as regular
input, but when the string is passed to Lua, only the
chr property is passed, so we no longer can distinguish
between letters and other characters.

A macro definition converts to tokens as follows.

[B][A]

cmd chr id name
def 0 1114818 def
undefined_cs 1115536 Test
mac_param 35
other_char 49 1
mac_param 35
other_char 50 2
left_brace 123
other_char 91 [
mac_param 35
other_char 50 2
other_char 93]
other_char 91 [
mac_param 35
other_char 49 1
other_char 93]
right_brace 125
spacer 32
undefined_cs 1115536 Test
left_brace 123
letter 65 A
right_brace 125

8 MAPS 35 Hans Hagen

left_brace 123
letter 66 B
right_brace 125

As we already mentioned, a token has three properties.
More details can be found in the reference manual so
we will not go into much detail here. A stupid callback
looks like:

callback.register(’token_filter’,token.get_next)

In principle you can call token.get_next anytime you
want to intercept a token. In that case you can feed
back tokens into TEX by using a trick like:

function tex.printlist(data)
callback.register(’token_filter’,function ()

callback.register(’token_filter’, nil)
return data

end)
end

Another example of usage is:

callback.register(’token_filter’, function ()
local t = token.get_next
local cmd, chr, id = t[1], t[2], t[3]
-- do something with cmd, chr, id
return { cmd, chr, id }

end)

There is a whole repertoire of related functions, one is
token.create, which can be used as:

tex.printlist{
token.create("hbox"),
token.create(utf.byte("{"), 1),
token.create(utf.byte("?"), 12),
token.create(utf.byte("}"), 2),

}

This results in: ?

While playing with this we made a few auxiliary
functions which permit things like:

tex.printlist (
table.unnest ({

tokens.hbox,
tokens.bgroup,
tokens.letters("12345"),
tokens.egroup,

}))

Unnesting is needed because the result of the letters
call is a table, and the printlist function wants a
flattened table.

The result looks like: 12345

cmd chr id name
make_box 122 1115680 hbox
left_brace 123
letter 49 1
letter 50 2
letter 51 3
letter 52 4
letter 53 5
right_brace 125

In practice, manipulating tokens or constructing lists of
tokens this way is rather cumbersome, but at least we
now have some kind of access, if only for illustrative
purposes.

\hbox{12345\hbox{54321}}

can also be done by saying:

tex.sprint("\\hbox{12345\\hbox{54321}}")

or under ConTEXt’s basic catcode regime:

tex.sprint(tex.ctxcatcodes,
"\\hbox{12345\\hbox{54321}}")

If you like it the hard way:

tex.printlist (table.unnest ({
tokens.hbox,

tokens.bgroup,
tokens.letters("12345"),
tokens.hbox,

tokens.bgroup,
tokens.letters(string.reverse("12345")),
tokens.egroup,

tokens.egroup
}))

This method may attract those who dislike the tradi-
tional TEX syntax for doing the same thing. Okay, a
carefull reader will notice that reversing the string in
TEX takes a bit more trickery, so . . .

Hans Hagen

