
32 MAPS 38 Hans Hagen

Unicode Math in ConTEXt

Abstract
This article is complementary to Taco Hoekwater's article about the upgrade of the
math subsystem in LuaTEX. In parallel (also because we needed a testbed) the math
subsystem of ConTEXt has been upgraded. In this article I will describe how we deal
with Unicode math using the regular Latin Modern and TEXGyre fonts and how we were
able to clean up some of the more nasty aspects of math.

Introduction
The LuaTEX project entered a new stage when end of 2008 and beginning of 2009
math got opened up. Although TEX can handle math pretty well we had a few
wishes that we hoped to fulll in the process. TEX's math machinery is a rather
independent subsystem. This is reected in the fact that after parsing there is an
intermediate list of so called noads (math elements), which then gets converted
into a node list (glyphs, kerns, penalties, glue and more). This conversion can be
intercepted by a callback and a macro package can do whatever it likes with the
list of noads as long as it returns a proper list.

Of course ConTEXt does support math and that is visible in its code base:

Due to the fact that we need to be able to switch to alternative styles the
font system is quite complex and in ConTEXt MkII math font denitions (and
changes) are good for 50% of the time involved. In MkIV we can use a more
efcient model.
Because some usage of ConTEXt demands the mix of several completely differ-
ent encoded math fonts, there is a dedicated math encoding subsystem in MkII.
In MkIV we will use Unicode exclusively.
Some constructs (and symbols) are implemented in a way that we nd subop-
timal. In the perspective of Unicode in MkIV we aim at all symbols being real
characters. This is possible because all important constructs (like roots, accents
and delimiters) are supported by the engine.
In order to t vertical spacing around math (think for instance of typesetting
on a grid) in MkII we have ended up with rather messy and suboptimal code.
(This is because spacing before and after formulas has to cooperate with spac-
ing of structural components that surround it.) The expectation is that we can
improve that.

In the following sections I will discuss a few of the implementation details of the
font related issues in MkIV. Of course a few years from now the actual solutions
we implemented might look different but the principles remain the same. Also, as
with other components of LuaTEX Taco and I worked in parallel on the code and its
usage, which made the tasks easier for both of us.

Transition
In TEX, math typesetting uses a special concept called families. Each math compo-
nent (number, letter, symbol, et cetera) is member of a family. Because we have
three sizes (text, script and scriptscript) this results in a family--size matrix of de-
ned fonts. The number of glyphs in a font was limited to 256, which meant that

Unicode Math in ConTEXt VOORJAAR 2009 33

we had quite some font denitions. The minimum number of families was 4 (ro-
man, italic, symbol, and extension) but in practice several more could be active
(sans, bold, mono-spaced, more symbols, et cetera) for specic alphabets or extra
symbols (for instance ams set A and B). The total number of families in traditional
TEX is limited to 16, and one easily hits this maximum. In that case, some 16 times
3 fonts are dened for one size of which in practice only a few are really used in
the typesetting.

A potential source of confusion is bold math. Bold in math can either mean
having some bold letters, or having the whole formula in bold. In practice this
means that for a complete bold formula one has to dene the whole lot using bold
fonts. A complication is that the math symbols are kind of bound to families and so
we end up with either redening symbols, or reusing the families (which is easier
and faster). In any case there is a performance issue involved due to the rather
massive switch from normal to bold.

In Unicode all alphabets that make sense, as well as all math symbols are part of
the denition, although unfortunately some alphabets have their letters spread over
the Unicode vector and not in a range (like blackboard). This forces all applications
that want to support math to implement similar hacks to deal with it.

In MkIV we will assume that we have Unicode aware math fonts, like OpenType.
The font that sets the standard is Microsoft Cambria. The upcoming (I'm writing
this in January 2009) TEXGyre fonts will be compliant to this standard but they're
not yet there and so we have a problem. The way out is to dene virtual fonts
and now that LuaTEX math is extended to cover all of Unicode, as well as provides
access to the (intermediate) math lists, this has become feasible. This also permits
us to test LuaTEX with both Cambria and Latin Modern Virtual Math.

The advantage is that we can stick to just one family for all shapes which sim-
plies the underlying TEX code enormously. First of all we need to dene way less
fonts (which is partially compensated by loading them as part of the virtual font)
and all math aspects can now be dealt with using the character data tables.

One tricky aspect of the new approach is that the Latin Modern fonts have design
sizes, so we have to dene several virtual fonts. On the other hand, fonts like
Cambria have alternative script and scriptscript shapes which is controlled by the
ssty feature, a gsub alternate that provides some alternative sizes for a couple of
hundred characters that matter.

text lmmi12 at 12pt cambria at 12pt with ssty=no
script lmmi8 at 8pt cambria at 8pt with ssty=1
scriptscript lmmi6 at 6pt cambria at 6pt with ssty=2

So Cambria not so much has design sizes but shapes optimized relative to the text
variant: in the following example we see text in red, script in green and scriptscript
in blue.

\definefontfeature[math][analyze=false,script=math,language=dflt]

\definefontfeature[text] [math][ssty=no]
\definefontfeature[script] [math][ssty=1]
\definefontfeature[scriptscript][math][ssty=2]

Let us rst look at Cambria:

\startoverlay
{\definedfont[name:cambriamath*scriptscript at 150pt]\mkblue X}
{\definedfont[name:cambriamath*script at 150pt]\mkgreen X}
{\definedfont[name:cambriamath*text at 150pt]\mkred X}

\stopoverlay

34 MAPS 38 Hans Hagen

When we compare them scaled down as happens in real script and scriptscript we
get:

\startoverlay
{\definedfont[name:cambriamath*scriptscript at 120pt]\mkblue X}
{\definedfont[name:cambriamath*script at 80pt]\mkgreen X}
{\definedfont[name:cambriamath*text at 60pt]\mkred X}

\stopoverlay

Next we see (scaled) Latin Modern:

\startoverlay
{\definedfont[LMRoman8-Regular at 150pt]\mkblue X}
{\definedfont[LMRoman10-Regular at 150pt]\mkgreen X}
{\definedfont[LMRoman12-Regular at 150pt]\mkred X}

\stopoverlay

XXX
In practice we will see:

\startoverlay
{\definedfont[LMRoman8-Regular at 120pt]\mkblue X}
{\definedfont[LMRoman10-Regular at 80pt]\mkgreen X}
{\definedfont[LMRoman12-Regular at 60pt]\mkred X}

\stopoverlay

Unicode Math in ConTEXt VOORJAAR 2009 35

XXX
Both methods probably work out well, although you need to keep in mind that the
OpenType ssty feature is not so much a design size related feature.

An OpenType font can have a specication for the script and scriptscript size. By
default we listen to this specication instead of the one imposed by the bodyfont
environment. When you turn on tracing

\enabletrackers[otf.math]

you will get messages like:

asked scriptscript size: 458752, used: 471859.2 (102.86 %)
asked script size: 589824, used: 574095.36 (97.33 %)

The differences between the defaults and the font recommendations are not that
large so by default we listen to the font specication.

∑
𝑛

𝑖=0
∑
𝑛

𝑖=0∫
𝑛

𝑖=0
∫
𝑛

𝑖=0
log

𝑛

𝑖=0
log

𝑛

𝑖=0
cos𝑛𝑖=0cos𝑛𝑖=0∏

𝑛

𝑖=0
∏
𝑛

𝑖=0
In this overlay the white text is scaled according to the specication in the font,
while the black text is scaled according to the bodyfont environment (12/7/5 points).

Going virtual
The number of math fonts (used) in the TEX community is relatively small and of
those only Latin Modern (which builds upon Computer Modern) has design sizes.
This means that the amount of Unicode compliant virtual math fonts that we have to
make is not that large. We could have used an already present virtual composition
mechanism but instead we made a handy helper function that does a more efcient
job. This means that a denition looks (a bit simplied) as follows:

mathematics.make_font ("lmroman10-math", {
{ name="lmroman10-regular", features="virtualmath", main=true },
{ name="lmmi10", vector="tex-mi", skewchar=0x7F },
{ name="lmsy10", vector="tex-sy", skewchar=0x30, parameters=true } ,
{ name="lmex10", vector="tex-ex", extension=true } ,
{ name="msam10", vector="tex-ma" },
{ name="msbm10", vector="tex-mb" },
{ name="lmroman10-bold", "tex-bf" } ,
{ name="lmmib10", vector="tex-bi", skewchar=0x7F } ,
{ name="lmsans10-regular", vector="tex-ss", optional=true },
{ name="lmmono10-regular", vector="tex-tt", optional=true },

})

For the TEXGyre Pagella it looks this way:

mathematics.make_font ("px-math", {
{ name="texgyrepagella-regular", features="virtualmath", main=true },
{ name="pxr", vector="tex-mr" } ,
{ name="pxmi", vector="tex-mi", skewchar=0x7F },

36 MAPS 38 Hans Hagen

{ name="pxsy", vector="tex-sy", skewchar=0x30, parameters=true } ,
{ name="pxex", vector="tex-ex", extension=true } ,
{ name="pxsya", vector="tex-ma" },
{ name="pxsyb", vector="tex-mb" },

})

As you can see, it is possible to add alphabets, given that there is a suitable vector
that maps glyph indices onto Unicodes. It is good to know that this function only
denes the way such a font is constructed. The actual construction is delayed till
the font is needed.

Such a virtual font is used in typescripts (the building blocks of typeface deni-
tions in ConTEXt) as follows:

\starttypescript [math] [palatino] [name]
\definefontsynonym [MathRoman] [pxmath@px-math]
\loadmapfile[original-youngryu-px.map]

\stoptypescript

If you are familiar with the way fonts are dened in ConTEXt, you will notice that
we no longer need to dene MathItalic, MathSymbol and additional symbol fonts.
Of course users don't have to deal with these issues themselves. The @ triggers the
virtual font builder.

You can imagine that in MkII switching to another font style or size involves
initializing (or at least checking) some 30 to 40 font denitions when it comes to
math (the number of used families times 3, the number of math sizes.). And even
if we take into account that fonts are loaded only once, this checking and enabling
takes time. Keep in mind that in ConTEXt we can have several math font sets active
in one document which comes at a price.

In MkIV we use one family (at three sizes). Of course we need to load the font
(and more than one in the case of virtual variants) but when switching bodyfont
sizes we only need to enable one (already dened) math font. And that really saves
time. This is one of the areas where we gain back time that we loose elsewhere by
extending core functionality using Lua (like OpenType support).

Dimensions
By setting font related dimensions you can control the way TEX positions math ele-
ments relative to each other. Math fonts have a few more dimensions than regular
text fonts. But OpenType math fonts like Cambria have quite some more. There is
a nice booklet published by Microsoft, ‘Mathematical Typesetting’, where dealing
with math is discussed in the perspective of their word processor and TEX. In the
booklet some of the parameters are discussed and since many of them are rather
special it makes no sense (yet) to elaborate on them here. Figuring out their mean-
ing was quite a challenge.

I am the rst to admit that the current code in MkIV that deals with math para-
meters is somewhat messy. There are several reasons for this:

We can pass parameters as a MathConstants table in the tfm table that we
pass to the core engine.
We can use some named parameters, like x_height and pass those in the pa-
rameters table.
We can use the traditional font dimension numbers in the parameters table,
but since they overlap for symbol and extensible fonts, that is asking for trou-
bles.

Because in MkIV we create virtual fonts at run-time and use just one family, we
ll the MathConstants table for traditional fonts as well. Future versions may use
the upcoming mechanisms of font parameter sets at the macro level. These can be

Unicode Math in ConTEXt VOORJAAR 2009 37

dened for each of the sizes (display, text, script and scriptscript, and the last three
in cramped form as well) but since a font only carries one set, we currently use a
compromise.

Tracing
One of the nice aspects of the opened up math machinery is that it permits us to
get a more detailed look at what happens. It also ts nicely in the way we always
want to visualize things in ConTEXt using color, although most users are probably
unaware of many such features because they don't need them as I do.

\enabletrackers[math.analyzing]
\ruledhbox{$a = \sqrt{b^2 + \sin{c} - {1 \over \gamma}}$}
\disabletrackers[math.analyzing]

𝑎 = √𝑏2 + sin 𝑐 −
1

𝛾

This tracker option colors characters depending on their nature and the fact that
they are remapped. The tracker also was handy during development of LuaTEX
especially for checking if attributes migrated right in constructed symbols.

For over a year I had been using a partial Unicode math implementation in some
projects but for serious math the vectors needed to be completed. In order to help
the ‘math department’ of the ConTEXt development team (Aditya Mahajan, Mojca
Miklavec, Taco Hoekwater and myself) we have some extra tracing options, like

\showmathfontcharacters[][0x0007B]

U+0007B: { left curly bracket
width: 253760, height: 463680, depth: 146560, italic: 0
mathclass: open, mathname: lbrace

next: U+F03B0 { =>U+F04CE { =>U+F03B1 { =>U+F04D4 {=>

U+F03B2 { => U+F04DA { => U+F03B3 { => variants: U+023A9 ⎩

=> U+023AA ⎪ => U+023A8 ⎨ => U+023AA ⎪ => U+023A7 ⎧

The simple variant with no arguments would have extended this document with
many pages of such descriptions.

Another handy command (dened in module fnt-25) is the following:

\ShowCompleteFont{name:cambria}{9pt}{1}
\ShowCompleteFont{dummy@lmroman10-math}{10pt}{1}

For Cambria this will generate between 50 and 100 pages of character tables.
If you look at the following samples you can imagine how coloring the characters

and replacements helped guring out the alphabets. We use the following input
(stored in a buffer):

$abc \bf abc \bi abc$
$\mathscript abcdefghijklmnopqrstuvwxyz $
$\mathscript 1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ$
$\mathfraktur abcdefghijklmnopqrstuvwxyz$
$\mathfraktur 1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ$
$\mathblackboard abcdefghijklmnopqrstuvwxyz $
$\mathblackboard 1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ$

38 MAPS 38 Hans Hagen

$\mathscript abc IRZ \mathfraktur abc IRZ $
$\mathblackboard abc IRZ \ss abc IRZ 123$

For testing Cambria we say:

\usetypescript[cambria]
\switchtobodyfont[cambria,11pt]
\enabletrackers[math.analyzing]
\getbuffer[mathtest] % the input shown before
\disabletrackers[math.analyzing]

And we get:

𝑎𝑏𝑐𝐚𝐛𝐜𝒂𝒃𝒄
𝒶𝒷𝒸𝒹ℯ𝒻ℊ𝒽𝒾𝒿𝓀𝓁𝓂𝓃ℴ𝓅𝓆𝓇𝓈𝓉𝓊𝓋𝓌𝓍𝓎𝓏
1234567890𝒜ℬ𝒞𝒟ℰℱ𝒢ℋℐ𝒥𝒦ℒℳ𝒩𝒪𝒫𝒬ℛ𝒮𝒯𝒰𝒱𝒲𝒳𝒴𝒵
𝔞𝔟𝔠𝔡𝔢𝔣𝔤𝔥𝔦𝔧𝔨𝔩𝔪𝔫𝔬𝔭𝔮𝔯𝔰𝔱𝔲𝔳𝔴𝔵𝔶𝔷
1234567890𝔄𝔅ℭ𝔇𝔈𝔉𝔊ℌℑ𝔍𝔎𝔏𝔐𝔑𝔒𝔓𝔔ℜ𝔖𝔗𝔘𝔙𝔚𝔛𝔜ℨ
𝕒𝕓𝕔𝕕𝕖𝕗𝕘𝕙𝕚𝕛𝕜𝕝𝕞𝕟𝕠𝕡𝕢𝕣𝕤𝕥𝕦𝕧𝕨𝕩𝕪𝕫
𝟙𝟚𝟛𝟜𝟝𝟞𝟟𝟠𝟡𝟘𝔸𝔹ℂ𝔻𝔼𝔽𝔾ℍ𝕀𝕁𝕂𝕃𝕄ℕ𝕆ℙℚℝ𝕊𝕋𝕌𝕍𝕎𝕏𝕐ℤ
𝒶𝒷𝒸ℐℛ𝒵𝔞𝔟𝔠ℑℜℨ
𝕒𝕓𝕔𝕀ℝℤ𝖺𝖻𝖼𝖨𝖱𝖹123

For the virtualized Latin Modern we say:

\usetypescript[modern]
\switchtobodyfont[modern,11pt]
\enabletrackers[math.analyzing]
\getbuffer[mathtest] % the input shown before
\disabletrackers[math.analyzing]

This gives:

abcabcabc
abcdefghijklmnopqrstuvwxyz
1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcIRZabcIRZ
abcIRZabcIRZ123
These two samples demonstrate that Cambria has a rather complete repertoire of
shapes which is no surprise because it is a recent font that also serves as a showcase
for Unicode and OpenType driven math.

Commands like \mathscript set an attribute. When we post-process the noad
list and encounter this attribute, we remap the characters to the desired variant. Of
course this happens selectively. So, a capital A (0x0041) becomes a capital script A
(0x1D49C). Of course this solution is rather ConTEXt-specic and there are other
ways to achieve the same goal (like using more families and switching family.)

Special cases
Because we now are operating in the Unicode domain, we run into problems if
we keep dening some of the math symbols in the traditional TEX way. Even with
the ams fonts available, we still end up with some characters that are represented
by combining others. Take for instance ≠ which is composed of two characters.
Because in MkIV we want to have all characters in their pure form, we use a virtual
replacement for them. In MkIV speak it looks like this:

Unicode Math in ConTEXt VOORJAAR 2009 39

local function negate(main,unicode,basecode)
local characters = main.characters
local basechar = characters[basecode]
local ht, wd = basechar.height, basechar.width
characters[unicode] = {

width = wd,
height = ht,
depth = basechar.depth,
italic = basechar.italic,
kerns = basechar.kerns,
commands = {

{ "slot", 1, basecode },
{ "push" },
{ "down", ht/5},
{ "right", - wd/2},
{ "slot", 1, 0x2215 },
{ "pop" },

}
}

end

In case you're curious, there are indeed kerns, in this case the kerns with the Greek
Delta.

Another thing we need to handle is positioning of accents on top of slanted
(italic) shapes. For this TEX uses a special character in its fonts (set with \skew-
char). In its kerning table, any character can have a kern towards this special char-
acter. From this kern we can calculate the top_accent variable that we can pass
for each character. This variable lives at the same level as width, height, depth
and italic and is calculated as: 𝑤/2 + 𝑘, so it denes the horizontal anchor. A
nice side effect is that (in the ConTEXt font management subsystem) this saves us
passing information associated with specic fonts such as the skew character.

A couple of concepts are unique to TEX, like having \hat and \widehat where
the wide one has sizes. In OpenType and Unicode we don't have this distinction so
we need special trickery to simulate this. We do so by adding extra code points in a
private Unicode space which in return results in them being dened automatically
and the relevant rst size variant being used for \hat. For some users this might
still be too wide but at least it's better than a wrongly positioned ascii variant. In
the future we might use this private space for similar cases.

Arrows, horizontal extenders and radicals also fall in the category ‘troublesome’
if only because they use special dimensions to get the desired effect. Fortunately
OpenType math is modeled after TEX, so in LuaTEX we introduce a couple of new
constructs to deal with this. One such simplication at the macro level is in the
denition of \root. Here we use the new \Uroot primitive. The placement re-
lated parameters are those used by traditional TEX, but when they are available the
OpenType variants are applied. The simplied plain denitions are now:

\def\rootradical{\Uroot 0 "221A }

\def\root#1\of{\rootradical{#1}}

\def\sqrt{\rootradical{}}

The successive sizes of the root will be taken from the font in the same way as
traditional TEX does it. In that sense LuaTEX is not doing anything differently, it only
has more parameters to control the process. The denition of \sqrt in ConTEXt
permits an optional rst argument that sets the degree.

40 MAPS 38 Hans Hagen

U+0221A: √ square root
width: 430400, height: 603520, depth: 27200, italic: 0
mathclass: radical, mathname: surd

next: U+F03F8 √ => U+F03F9 √ => U+F03FA √ => U+F03FB √

=>U+F03FC√=>variants: U+023B7⎷=>U+020D3⃓=>U+F04A1√

Note that we have collected all characters in family 0 (simply because that is what
TEX defaults characters to) and that we use the formal Unicode slots. When we use
the Latin Modern fonts we just remap traditional slots to the right ones.

Another neat trick is used when users choose among the bigger variants of some
characters. The traditional approach is to create a box of a certain size and create
a fake delimited variant which is then used.

\definemathcommand [big] {\choosemathbig\plusone }
\definemathcommand [Big] {\choosemathbig\plustwo }
\definemathcommand [bigg] {\choosemathbig\plusthree}
\definemathcommand [Bigg] {\choosemathbig\plusfour }

Of course this can become a primitive operation and we might decide to add such
a primitive later on so we won't bother you with more details.

Attributes are also used to make live easier for authors who have to enter lots of
pairs. Compare:

\setupmathematics[autopunctuation=no]

$ (a,b) = (1.20,3.40) $

(𝑎, 𝑏) = (1.20, 3.40)

with:

\setupmathematics[autopunctuation=yes]

$ (a,b) = (1.20,3.40) $

(𝑎,𝑏) = (1.20,3.40)

So we don't need to use this any more:

$ (a{,}b) = (1{.}20{,}3{.}40) $

Features like this are implemented on top of an experimental math manipulation
framework that is part of MkIV. When the math font system is stable we will rework
the rest of math support and implement additional manipulating frameworks.

Control
Aswith all other character related issues, inMkIV everything is driven by a character
table (consider it a database). Quite some effort went into getting that one right
and although by now math is represented well, more data will be added in due
time.

Unicode Math in ConTEXt VOORJAAR 2009 41

In MkIV we no longer have huge lists of TEX denitions for math related symbols.
Everything is initialized using the mentioned table: normal symbols, delimiters,
radicals, with or without name. Take for instance the square root:

U+0221A: √ square root
width: 430400, height: 603520, depth: 27200, italic: 0
mathclass: radical, mathname: surd

next: U+F03F8 √ => U+F03F9 √ => U+F03FA √ => U+F03FB √

=>U+F03FC√=>variants: U+023B7⎷=>U+020D3⃓=>U+F04A1√

Its entry is:

[0x221A] = {
adobename = "radical",
category = "sm",
cjkwd = "a",
description = "SQUARE ROOT",
direction = "on",
linebreak = "ai",
mathclass = "radical",
mathname = "surd",
unicodeslot = 0x221A,

}

The fraction symbol also comes in sizes (this symbol is not to be confused with the
negation symbol 0x2215 – which is known as \not in TEX terminology):

U+02044: ⁄ fraction slash
width: 362880, height: 457920, depth: 137600, italic: 0
mathclass: binary, mathname: slash
mathclass: close, mathname: solidus

next: U+F03AC ⁄ => U+F03AD ⁄ => U+F03AE⁄=> U+F03AF⁄

[0x2044] = {
adobename = "fraction",
category = "sm",
contextname = "textfraction",
description = "FRACTION SLASH",
direction = "cs",
linebreak = "is",
mathspec = {

{ class = "binary", name = "slash" },
{ class = "close", name = "solidus" },

},
unicodeslot = 0x2044,

}

42 MAPS 38 Hans Hagen

However, since most users don't have this symbol visualized in their word proces-
sor, they expect the same behavior from the regular slash. This is why we nd a
reference to the real symbol in its denition.

U+0002F: / solidus
width: 321280, height: 457920, depth: 137600, italic: 0
mathsymbol: U+02044 ⁄

The denition is:

[0x002F] = {
adobename = "slash",
category = "po",
cjkwd = "na",
contextname = "textslash",
description = "SOLIDUS",
direction = "cs",
linebreak = "sy",
mathsymbol = 0x2044,
unicodeslot = 0x002F,

}

One problem left is that currently we have only one class per character (apart
from the delimiter and radical usage which have their own denitions). Future
releases of ConTEXt will provide support for math dictionaries (as in OpenMath
and MathML 3). At that point we will also have a mathdict entry.

There is another issue with character mappings, one that will seldom reveal itself
to the user, but might confuse macro writers when they see an error message.

In traditional TEX, and therefore also in the Latin Modern fonts, a chain from
small to large character goes in two steps: the normal size is taken from one family
and the larger variants from another. The larger variant then has a pointer to an
even larger one and so on, until there is no larger variant or an extensible recipe
is found. The default family is number 0. It is for this reason that some of the
denition primitives expect a small and large family part.

However, in order to support OpenType in LuaTEX, the alternative method no
longer assumes this split. After all, we no longer have a situation where the 256
limit forces us to take the smaller variant from one font and the larger sequence
from another (so we need two family--slot pairs where each family eventually re-
solves to a font).

It is for that reason that the new \U... primitives expect only one family spec-
ication: the small symbol, which then has a pointer to a larger variant when ap-
plicable. However deep down in the engine, there is still support for the multiple
family solution (after all, we don't want to drop compatibility). As a result, in error
messages you can still nd references (defaulting to 0) to large specications, even
if you don't use them. In that case you can simply ignore the large symbol (0,0),
since it is not used when the small symbol provides a link.

Extensibles
In TEX fences can be told to become larger automatically. In traditional TEX a char-
acter can have a linked list of next larger shapes ending in a description of how to
compose even larger variants.

A parenthesis in Cambria has the following list:

U+00028: (left parenthesis
width: 272000, height: 462400, depth: 144640, italic: 0
mathclass: open, mathname: lparent

Unicode Math in ConTEXt VOORJAAR 2009 43

next: U+F03C0 (=>U+F04CA (=>U+F03C1 (=>U+F04D0(=>

U+F03C2 (=>U+F04D6 (=>U+F03C3 (=> variants: U+0239D⎝

=> U+0239C ⎜ => U+0239B ⎛

In Latin Modern we have:

U+00028: (left parenthesis
width: 254935.04, height: 491520, depth: 163840, italic: 0
mathclass: open, mathname: lparent
next: U+FF000 (=>U+FF010 (=>U+FF012 (=>U+FF020(

=> U+FF030 => variants: U+FF040 => U+FF042 =>

U+FF030
Of course, LuaTEX is downward compatible with respect to this feature, but the
internal representation is now closer to what OpenType math provides (which is
not that far from how TEX works, simply because it is inspired by TEX). Because
Cambria has different parameters we get slightly different results. In the following
list of pairs, you see Cambria on the left, Latin Modern on the right. Both start with
stepwise larger shapes, followed by a more gradual growth. The thresholds for a
next step are driven by parameters set in the OpenType font or by TEX's default.

{ }{ } { }{ } { }

{ }
{ }

{ }
{ }

{ }
{ }

{ }
{ }

{ }

⎧

⎨
⎩

⎫

⎬
⎭

⎧

⎨

⎩

⎫

⎬

⎭

⎧
⎪

⎨
⎪
⎩

⎫
⎪

⎬
⎪
⎭

⎧
⎪

⎨
⎪
⎩

⎫
⎪

⎬
⎪
⎭

⎧
⎪

⎨
⎪
⎩

⎫
⎪

⎬
⎪
⎭

⎧
⎪

⎨
⎪
⎩

⎫
⎪

⎬
⎪
⎭

⎧
⎪
⎪

⎨
⎪
⎪
⎩

⎫
⎪
⎪

⎬
⎪
⎪
⎭

⎧
⎪
⎪

⎨
⎪
⎪
⎩

⎫
⎪
⎪

⎬
⎪
⎪
⎭

⎧
⎪
⎪

⎨
⎪
⎪
⎩

⎫
⎪
⎪

⎬
⎪
⎪
⎭

⎧
⎪
⎪

⎨
⎪
⎪
⎩

⎫
⎪
⎪

⎬
⎪
⎪
⎭

⎧
⎪
⎪

⎨
⎪
⎪

⎩

⎫
⎪
⎪

⎬
⎪
⎪

⎭

44 MAPS 38 Hans Hagen

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

⎫
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎭

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

⎫
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎭

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪

⎩

⎫
⎪
⎪
⎪

⎬
⎪
⎪
⎪

⎭

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪

⎩

⎫
⎪
⎪
⎪

⎬
⎪
⎪
⎪

⎭

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

⎫
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪
⎭

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

⎫
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪
⎭

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪

⎩

⎫
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪

⎭

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪

⎩

⎫
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪

⎭

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪

⎩

⎫
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪

⎭

In traditional TEX horizontal extensibles are not really present. Accents are cho-

sen from a linked list of variants and don't have an extensible specication. This is
because most such accents grow in two dimensions and the only extensible accents
are rules and braces. However, in Unicode we have a few more and also because
of symmetry we decided to add horizontal extensibles too. Take:

$ \overbrace {a+1} \underbrace {b+2} \doublebrace {c+3} $ \par
$ \overparent{a+1} \underparent{b+2} \doubleparent{c+3} $ \par

This gives:
⏜⏞⏜𝑎 + 1𝑏 + 2⏝⏟⏝ ⏜⏞⏜𝑐 + 3⏝⏟⏝

⏜⎴⏜𝑎 + 1𝑏 + 2⏝⎵⏝ ⏜⎴⏜𝑐 + 3⏝⎵⏝

Contrary to Cambria, Latin Modern Math, which is just like Computer Modern
Math, has no ready overbrace glyphs. Keep in mind that in the latter we are dealing
with fonts that have only 256 slots and that the traditional font mechanism has the
same limitation. For this reason, the (extensible) braces are traditionally made
from snippets as is demonstrated below.

\hbox\bgroup
\ruledhbox{\getglyph{lmex10}{\char"7A}}
\ruledhbox{\getglyph{lmex10}{\char"7B}}
\ruledhbox{\getglyph{lmex10}{\char"7C}}
\ruledhbox{\getglyph{lmex10}{\char"7D}}
\ruledhbox{\getglyph{lmex10}{\char"7A\char"7D\char"7C\char"7B}}
\ruledhbox{\getglyph{name:cambriamath}{\char"23DE}}
\ruledhbox{\getglyph{lmex10}{\char"7C\char"7B\char"7A\char"7D}}
\ruledhbox{\getglyph{name:cambriamath}{\char"23DF}}

\egroup

This gives:︷ ︷ ︸ ︸ ︷︸︸︷ ⏞ ︸︷︷︸ ⏟

Unicode Math in ConTEXt VOORJAAR 2009 45

The four snippets have the height and depth of the rule that will connect them.
Since we want a single interface for all fonts we no longer will use macro based
solutions. First of all fonts like Cambria don't have the snippets, and using active
character trickery (so that we can adapt the meaning to the font) has no preference
either. This connes us to virtual glyphs.

It took us a bit of experimenting to get the right virtual denition because it is a
multi--step process:

The right Unicode character (0x23DE) points to a character that has no glyph
itself but only horizontal extensibles.
The snippets that make up the extensible don't have the right dimensions (as
they dene the size of the connecting rule), so we need to make them virtual
themselves and give them a size that matches LuaTEX's expectations.
Each virtual snippet contains a reference to the physical snippet and moves it
up or down as well as xes its size.
The second and fth snippet are actually not real glyphs but rules. The dimen-
sions are derived from the snippets and it is shifted up or down too.

You might wonder if this is worth the trouble. Well, it is if you take into account
that all upcoming math fonts will be organized like Cambria.

Math kerning
While reading Microsofts orange booklet, it became clear that OpenType provides
advanced kerning possibilities and we decided to put it on the agenda for LuaTEX.

It is possible to dene a ladder--like boundary for each corner of a character
where the ladder more or less follows the shape of a character. In theory this means
that when we attach a superscript to a base character we can use two such ladders
to determine the optimal spacing between them.

Let's have a look at a few characters, the upright f and its italic cousin.

f
top_right

(-30,680)

(250,780)𝑓
bottom_left

(100,0)

(0,100)

top_right

(0,620)

(65,720)

bottom_right

(-400,420)

(-320,720)

(0,1020)

italic 60

top_accent

840

U+00066 0x1D453

The ladders on the right can be used to position a super- or subscript, that is, they
are positioned in the normal way but the ladder, as well as the boundingbox and/or
left ladders of the scripts, can be used to ne tune the positioning.

Should we use this information? I made this visualizer for checking some Ara-
bic fonts anchoring and cursive features and then it made sense to add some of
the information related to math as well. (Taco extended the visualizer for his pre-
sentation at Bachotek 2009 so you might run into variants.) The orange booklet

46 MAPS 38 Hans Hagen

shows quite advanced ladders, and when looking at the 3500 shapes in Cambria,
it quickly becomes clear that in practice there is not that much detail in the spec-
ication. Nevertheless, because without this feature the result is not acceptable,
LuaTEX gracefully supports it.

V aa V
aVaV

1
2 V

1V2f
afaf

a
a

V ff V
fVfV

1
2 V

1V2f
ffff

f
f

T aa T
aTaT

1
2 T

1T2f
afff

a
f

T ff T
fTfT

1
2 T

1T2f
ffaf

f
a

𝑉𝑎𝑎𝑉
𝑎𝑉𝑎𝑉

1
2𝑉

1𝑉2𝑓
𝑎𝑓𝑎𝑓

𝑎
𝑎

𝑉
𝑓
𝑓𝑉

𝑓𝑉𝑓𝑉
1
2𝑉

1𝑉2𝑓
𝑓𝑓𝑓𝑓

𝑓
𝑓

𝑇𝑎𝑎𝑇
𝑎𝑇𝑎𝑇

1
2𝑇

1𝑇2𝑓
𝑎𝑓𝑓𝑓

𝑎
𝑓

𝑇
𝑓
𝑓𝑇

𝑓𝑇𝑓𝑇
1
2𝑇

1𝑇2𝑓
𝑓𝑓𝑎𝑓

𝑓
𝑎

𝑉𝑎𝑎 𝑉
𝑎𝑉𝑎𝑉

1
2 𝑉

1𝑉2𝑓
𝑎𝑓𝑎𝑓

𝑎
𝑎

𝑉
𝑓
𝑓 𝑉

𝑓𝑉𝑓𝑉
1
2 𝑉

1𝑉2𝑓
𝑓𝑓𝑓𝑓

𝑓
𝑓

𝑇𝑎𝑎 𝑇
𝑎𝑇𝑎𝑇

1
2 𝑇

1𝑇2𝑓
𝑎𝑓𝑓𝑓

𝑎
𝑓

𝑇
𝑓
𝑓 𝑇

𝑓𝑇𝑓𝑇
1
2 𝑇

1𝑇2𝑓
𝑓𝑓𝑎𝑓

𝑓
𝑎

latin modern cambria
without kerning

cambria with kerning

Faking glyphs
A previous section already discussed virtual shapes. In the process of replacing all
shapes that lack in Latin Modern and are composed of snippets instead, we ran into
the dots. As they are a nice demonstration of something that, although somewhat of
a hack, survived 30 years without problems we show the denition used in ConTEXt
MkII:

\def\PLAINldots{\ldotp\ldotp\ldotp}
\def\PLAINcdots{\cdotp\cdotp\cdotp}

\def\PLAINvdots
{\vbox{\forgetall\baselineskip.4\bodyfontsize\lineskiplimit\zeropoint

\kern.6\bodyfontsize\hbox{.}\hbox{.}\hbox{.}}}

\def\PLAINddots
{\mkern1mu%
\raise.7\bodyfontsize\ruledvbox{\kern.7\bodyfontsize\hbox{.}}%
\mkern2mu%
\raise.4\bodyfontsize\relax\ruledhbox{.}%
\mkern2mu%
\raise.1\bodyfontsize\ruledhbox{.}%
\mkern1mu}

This permitted us to say:

\definemathcommand [ldots] [inner] {\PLAINldots}
\definemathcommand [cdots] [inner] {\PLAINcdots}
\definemathcommand [vdots] [nothing] {\PLAINvdots}
\definemathcommand [ddots] [inner] {\PLAINddots}

However, in MkIV we use virtual shapes instead.
The following lines show the virtual shapes in greyscale. In each triplet we see

the original, the virtual and the overlaid character.

. · · ·· · ·· · ·· · ·
.....
......
.

As you can see here, the virtual variants are rather close to the originals. At 12pt
there are no real differences but (somehow) at other sizes we get slightly different
results but it is hardly visible. Watch the special spacing above the shapes. It is
probably needed for getting the spacing right in matrices (where they are used).

Hans Hagen

