
Hans Hagen Taco Hoekwater Hartmut Henkel VOORJAAR 2009 47

LuaTEX – Halfway

Introduction
We are about halfway the LuaTEX project now. At the
time of writing this document we are only a few days
away from version 0.40 (the BachoTEX cq. TEXlive
version) and around EuroTEX 2009 we will release
version 0.50. Starting with version 0.30 (which we
released around the conference of the Korean TEX User
group meeting) all one-decimal releases are supported
and usable for (controlled) production work. We have
always stated that all interfaces may change until they
are documented to be stable, and we expect to docu-
ment the 󰀂rst stable parts in version 0.50. Currently
we plan to release version 1.00 sometime in 2012, 30
years after TEX82, with 0.60 and 0.70 in 2010, 0.80
and 0.90 in 2011. But of course it might turn out
different.

In this update we assume that the reader knows
what LuaTEX is and what it does.

Design principles
We started this project because we wanted an exten-
sible engine and have chosen Lua as glue language.
We do not regret this choice as it permitted us to open
up TEX's internals pretty well. There have been a few
extensions to TEX itself and there will be a few more
but none of them are fundamental in the sense that
they in󰀄uence typesetting. Extending TEX in that area
is up to the macro package writer who can use the
Lua language combined with TEX macros. In a similar
fashion we made some decisions about Lua libraries
that are included. What we have now is what you will
get. Future versions of LuaTEX will have the ability to
load additional libraries but these will not be part of
the core distribution. There is simply too much choice
and we do not want to enter endless discussions about
what is best. More 󰀄exibility would also add a burden
on maintenance that we do not want. Portability has
always been a virtue of TEX and we want to keep it that
way.

Lua scripting
Before 0.40 there could be multiple instances of the
Lua interpreter active at the same time, but we decided
to limit the number of instances to just one. The reason
is simple: sharing all functionality among multiple Lua

interpreter instances does more bad than good and
Lua has enough possibilities to create namespaces any-
way. The new limit also simpli󰀂es the internal source
code, which is a good thing. While the \directlua
command is now sort of frozen, we might extend
the functionality of \latelua especially in relation to
what is possible in the backend. Both commands still
accept a number but this now refers to an index in a
user--de󰀂nable name table that will be shown when an
error occurs.

Input and output
The current LuaTEX release permits multiple instances
of kpse which can be handy if you mix for instance
a macro package and mplib, as both have there own
‘progname’ (and engine) namespace. However, right
from the start it has been possible to bring most input
under Lua control and one can overload the usual kpse
mechanisms. This is what we do in ConTEXt (and
probably only there).

Logging et cetera is also under Lua control. There is
no support for writing to TEX's opened output channels
except for the log and the terminal. We are thinking



48 MAPS 38 Hans Hagen Taco Hoekwater Hartmut Henkel

about limited write control to numbered channels but
this has a very low priority.

Reading from zip 󰀂les and sockets has been avail-
able for a while now.

Among the 󰀂rst things that have been implemented
is a mechanism for managing category codes (\cat-
code) although this is not really needed for practical
usage as we aim at full compatibility. It just makes
printing back to TEX from Lua a bit more comfortable.

Interface to TEX
Registers can always be accessed from Lua by number
and (when de󰀂ned at the TEX end) also by name.
When writing to a register, grouping is honored. Most
internal registers can be accessed (mostly read-only).
Box registers can be manipulated but users need to be
aware of potential memory management issues.

There will be provisions to use the primitives related
to setting codes (lowercase codes and such). Some of
this functionality will be available in version 0.50.

Fonts
The internal font model has been extended to the
full Unicode range. There are readers for OpenType,
Type1, and traditional TEX fonts. Users can create
virtual fonts on the 󰀄y and have complete control over
what goes into TEX. Font speci󰀂c features can either
be mapped onto the traditional ligature and kerning
mechanisms or be implemented in Lua.

We use code from FontForge that has been stripped
to get a smaller code base. Using the FontForge code
has the advantage that we get a similar view on the
fonts in LuaTEX as in this editor which makes debug-
ging easier and developing fonts more convenient.

The interface is already rather stable but some of
the keys in loaded tables might change. Almost all of
the font interface will be stable in version 0.50.

Tokens
It is possible to intercept tokenization. Once inter-
cepted, a token table can be manipulated before being
piped back into LuaTEX. We still support Omega's
translation processors but that might become obsolete
at some point.

Future versions of LuaTEX might use Lua's so called
user data concept but the interface will mostly be the
same. Therefore this subsystem will not be frozen yet
in version 0.50.

Nodes
Users have access to the node lists in various stages.
This interface has already been quite stable for some

time but some cleanup might still take place. Cur-
rently the node memory maintenance is still explicit,
but we will eventually make releasing unused nodes
automatic.

We have plans for keeping more extensive informa-
tion within a paragraph (initial whatsit) so that one
can build alternative paragraph builders in Lua. There
will be a vertical packer (in addition to the horizontal
packer) and we will open up the page builder (inserts
et cetera). The basic interface will be stable in 0.50.

Attributes
This new kid on the block is now available for most
subsystems but we might change some of its default
behavior. As of 0.40 you can also use negative values
for attributes. The original idea of using negative
values for special purposes has been abandoned as we
consider a secondary (faster and more ef󰀂cient) lim-
ited variant. The basic principles will be stable around
version 0.50, but we reserve the freedom to change
some aspects of attributes until we reach version 1.00.

Hyphenation
In LuaTEX we have clearly separated hyphenation,
ligature building and kerning. Managing patterns as
well as hyphenation is reimplemented from scratch but
uses the same principles as traditional TEX. Patterns
can be loaded at run time and exceptions are quite
ef󰀂cient now. There are a few extensions, like embed-
ded discretionaries in exceptions and pre- as well as
posthyphens.

On the agenda is 󰀂xing some ‘hyphenchar’ related
issues and future releases might deal with compound
words as well. There are some known limitations that
we hope to have solved in version 0.50.

Images
Image handling is part of the backend. This part of
the pdfTEX code has been rewritten and can now be
controlled from Lua. There are already a few more
options than in pdfTEX (simple transformations). The
image code will also be integrated in the virtual font
handler.

Paragraph building
The paragraph builder has been rewritten in C (soon to
be converted back to cweb). There is a callback related
to the builder so it is possible to overload the default
line breaker by one written in Lua.

There are no further short-term revisions on the
agenda, apart from writing an advanced (third order)
Arabic routine for the Oriental TEX project.



LuaTEX -- Halfway VOORJAAR 2009 49

Future releases may provide a bit more control over
\parshapes and multiple paragraph shapes.

Metapost
The closely related mplib project has resulted in a
MetaPost library that is included in LuaTEX. Multiple
instances can be active at the same time and MetaPost
processing is very fast. Conversion to pdf is to be done
with Lua.

On the todo list is a bit more interoperability (pre-
and postscript tables) and this will make it into release
0.50 (maybe even in version 0.40 already).

Mathematics
Version 0.50 will have a stable version of Unicode math
support. Math is backward compatible but provides
solutions for dealing with OpenType math fonts. We
provide math lists in their intermediate form (noads)
so that it is possible to manipulate math in great detail.

The relevant math parameters are reorganized ac-
cording to what OpenType math provides (we use
Cambria as reference). Parameters are grouped by
style. Future versions of LuaTEX will build upon this
base to provide a simple mechanism for switching style
sets and font families in-formula.

There are new primitives for placing accents (top
and bottom variants and extensible characters), creat-
ing radicals, and making delimiters. Math characters
are permitted in text mode.

There will be an additional alignment mechanism
analogous to what MathML provides. Expect more.

Page building
Not much work has been done on opening up the page
builder although we do have access to the intermediate
lists. This is unlikely to happen before 0.50.

Going cweb
After releasing version 0.50 around EuroTEX 2009
there will be a period of relative silence. Apart from
bug 󰀂xes and (private) experiments there will be no
release for a while. At the time of the 0.50 release
the LuaTEX source code will probably be in plain C
completely. After that is done, we will concentrate
strongly on consolidating and upgrading the code base
back into cweb.

Cleanup
Cleanup of code is a continuous process. Cleanup is
needed because we deal with a merge of traditional
TEX, 𝜀-TEX extensions, pdfTEX functionality and some

Omega (Aleph) code.
Compatibility is a prerequisite, with the exception

of logging and rather special ligature reconstruction
code.

We also use the opportunity to slowly move away
from all the global variables that are used in the Pascal
version.

Alignments
We do have some ideas about opening up alignments,
but it has a low priority and it will not happen before
the 0.50 release.

Error handling
Once all code is converted to cweb, we will look into
error handling and recovery. It has no high priority as
it is easier to deal with after the conversion to cweb.

Backend
The backend code will be rewritten stepwise. The
image related code has already been redone, and cur-
rently everything related to positioning and directions
is redesigned and made more consistent. Some bugs
in the Aleph code (inherited from Omega) have been
removed and we are trying to come up with a con-
sistent way of dealing with directions. Conceptually
this is somewhat messy because much directionality is
delegated to the backend.

We are experimenting with positioning (preroll)
and better literal injection. Currently we still use the
somewhat fuzzy pdfTEX methods that evolved over
time (direct, page and normal injection) but we will
come up with a clearer model.

Accuracy of the output (pdf) will be improved and
character extension (hz) will be done more ef󰀂cient.
Experimental code seems to work okay. This will
become available from release 0.40 and onwards and
further cleanup will take place when the cweb code is
there as much of the pdf backend code is already C.

Context MkIV
When we started with LuaTEX we decided to use a
branch of ConTEXt for testing as it involves quite dras-
tic changes, many rewrites, a tight connection with
binary versions, et cetera.

As a result for some time we now have two versions
of ConTEXt: MkII and MkIV, where the 󰀂rst one targets
at pdfTEX and X ETEX, and the second one is exclusively
using LuaTEX. Although the user interface is downward
compatible, the code base starts to diverge more and
more. Therefore at the last ConTEXt meeting it was
decided to freeze the current version of MkII and only



50 MAPS 38 Hans Hagen Taco Hoekwater Hartmut Henkel

apply bug 󰀂xes and an occasional simple extension.
This policy change opened the road to rather drastic

splitting of the code, also because full compatibility
between MkII and MkIV is not required. Around
LuaTEX version 0.40 the new, currently still experimen-
tal, document structure related code will be merged
into the regular MkIV version. This might have some
impact as it opens up new possibilities.

The future
In the future, MkIV will try to create (more) clearly
separated layers of functionality so that it will become
possible to make subsets of ConTEXt for special pur-
poses. This is done under the name MetaTEX. Think of
layering like:

io, catcodes, callback management, helpers
input regimes, characters, 󰀂ltering
nodes, attributes and noads
user interface
languages, scripts, fonts and math
spacing, par building and page construction
xml, graphics, MetaPost, job management, struc-
ture (huge impact)
modules, styles, speci󰀂c features
tools

Fonts
At this moment MkIV is already quite capable of deal-
ing with OpenType fonts. The driving force behind this
is the Oriental TEX project which brings along some
very complex and feature--rich Arabic font technology.
Much time has gone into reverse engineering the speci-
󰀂cation and behavior of these fonts in Uniscribe (which
we use as reference for Arabic).

Dealing with the huge cjk fonts is less a font issue
and more a matter of node list processing. Around the
annual meeting of the Korean User Group we got much
of the machinery working, thanks to discussions on the
spot and on the mailing list.

Math
Between LuaTEX versions 0.30 and 0.40 the math
machinery was opened up (stage one). In order to test
this new functionality, MkIV's math subsystem (that
was then already partially Unicode aware) had to be
adapted.

First of all Unicode permits us to use only one
math family and so MkIV now does that. The im-
plementation uses Microsoft's Cambria Math font as
a benchmark. It creates virtual fonts from the other
(old and new) math fonts so they appear to match up
to Cambria Math. Because the TEXGyre math project
is not yet up to speed, MkIV currently uses virtual
variants of these fonts that are created at run time. The
missing pieces in for instance Latin Modern and friends
are compensated for by means of virtual characters.

Because it is now possible to parse the intermediate
noad lists MkIV can do some manipulations before
the formula is typeset. This is for instance used for
alphabet remapping, forcing sizes, and spacing around
punctuation.

Although MkIV already supports most of the math
that users expect, there is still room for improvement
once there is even more control over the machinery.
This is possible because MkIV is not bound to down-
ward compatibility.

As with all other LuaTEX related MkIV code, it is
expected that we will have to rewrite most of the
current code a few times as we proceed, so MkIV math
support is not yet stable either. We can take such dras-
tic measures because MkIV is still experimental and
because users are willing to do frequent synchronous
updating of macros and engine. In the process we hope
to get away from all ad-hoc boxing and kerning and
whatever solutions for creating constructs, by using
the new accent, delimiter, and radical primitives.

Tracing and testing
Whenever possible we add tracing and visualization
features to ConTEXt because the progress reports and
articles need them. Recent extensions concerned trac-
ing math and tracing OpenType processing.

The OpenType tracing options are a great help in
stepwise reaching the goals of the Oriental TEX project.
This project gave the LuaTEX project its initial boost
and aims at high quality right to left typesetting. In
the process complex (test)fonts are made which, com-
bined with the tracing mentioned, helps us to reveal
the secrets of OpenType.

Hans Hagen
Taco Hoekwater
Hartmut Henkel


