TEX beauties and oddities

TgX beauties and oddities

Abstract
The BacholgX 2009 conference continued the Pearls of TEX Programming open session
introduced in 2005 during which volunteers present TEX-related tricks and shorties.

A permanent call for TEX pearls
What is wanted:

o short TgX or MetaPost macro/macros (half A4 page or half a screen at most),

o the code should be generic; potentially understandable by plain-oriented users,

o results need not be useful or serious, but language-specific, tricky, preferably
non-obvious,

o obscure oddities, weird TEX behaviour, dirty and risky tricks and traps are also
welcome,

o the code should be explainable in a couple of minutes.

The already collected pearls can be found at http://www.gust.org.pl/pearls. All
pearl-divers and pearlgrowers are kindly asked to send the pearl-candidates to
pearls@gust.org.pl, where Pawel Jackowski, our pearl-collector, is waiting impa-
tiently. The pearls market-place is active during the entire year, not just before the
annual BachoTgX Conference.

Note: The person submitting pearl proposals and/or participating in the BachoTX
pearls session does not need to be the inventor. Well known hits are also welcome,
unless already presented at one of our sessions.

Since some seasoned TgX programmers felt indignant of calling ugly TgX constructs
‘Pearls of TgX programming’, we decided not to irritate them any longer. We hope
they will accept ‘TgX beauties and oddities’ as the session title.

If you yourself have something that fits the bill, please consider. If you know some-
body's work that does, please let us know, we will contact the person. We await
your contributions even if you are unable to attend the conference. In such a case
you are free either to elect one of the participants to present your work or ‘leave the
proof to the gentle reader’ (cf. e.g. http://www.aurora.edu/mathematics/bhaskara
.htm).

Needless to say that all contributions will be published in a separate section of the
conference proceedings, possibly also reprinted in different TgX bulletins.

VOORJAAR 2009

57

58 MAPS 38 Pawet Jackowski
Scary space
Hans Hagen & Taco Hoekwater
In pure TeX

\show\
\show\ %

gives different logs on Hans' and Taco's machines (Hans' is on the left)

**space.tex **space.tex
(./space.tex (./space.tex
>\ > \~"M=macro:
=macro: =\ .
->\ . 1.1 \show\
1.1 \show\
?

? >\ =\ .
>\ =\ . 1.2 \show \
1.2 \show \ yA

A ?
?)
) No pages of output.

No pages of output.

The visualization of a ="M depends of the platform but since there's definitely a
newline involved we need to take care of it.

When parsing the input the following happens (this is mentioned in one of the
dangerous bends in the TgXbook):

\let\x\ <newline> => \let\x\<endlinechar>

This means that when you want to store the meaning of this primitive, you need
to make sure that TgX explicitly sees a space instead of a newline. So we get:

\let\normalspaceprimitive=\ % space-comment is really needed
In ConTeXt this is used for:

\unexpanded\def
\ {\mathortext\normalspaceprimitive{\dontleavehmode\spacel}}

If you don't use the explicit space a simple
$\ $

will execute \~"M. In Plain TeX (and in ConTeXt) we have:
\def\""M{\ } % control <return> = control <space>

So this will result in a loop.

TEX beauties and oddities

Null control sequence
Hans Hagen & Taco Hoekwater

When you do:

\endlinechar=-1

\let\x\

the macro \x is undefined...

Actually \x becomes equal to the 'null control sequence' that you would get from
\expandafter\def\csname\endcsname{}

but that is usually undefined.

And you can even use this effect to assign to the null control sequence without
needing \expandafter:

\endlinechar=-1
\gdef\
{\message{NULL CS}}

\csname\endcsname

$$: empty formula or unmatched display
Hans Hagen & Taco Hoekwater

When you try the following under TgX'S normal catcode regime, you will get an
error:

$$ $21-09%
The message is:
! Display math should end with $$.
<to be read again>
2
1.7 3% $2
1-09%
But how about this then:
\halign{#&#\cr $$ & $21-09%\cr}

It magically works! The actual effect is similar to

\hbox{$$} % or
\hbox{${}$}

In words of the TgXbook (chapter 25, page 287):

“One consequence of these rules is that *$$' in restricted horizontal mode
simply yields an empty math formula.”

VOORJAAR 2009

59

60 MAPS 38 Pawet Jackowski

<macro> macro
Philip Taylor

Typesetting a multi-lingual document, even something as simple as a Christ-
mas letter, can be time-consuming and error-prone if the embedded languages
make frequent use of diacritics. To eliminate both of these problems, I wrote a
macro called \macro which enables me to encapsulate all of the tricky words
and phrases into macros whose names are (normally) identical to the words or
phrases but without the corresponding diacritics.

The following code implements the \macro macro, and is followed by some
sample definitions and applied occurrences.

\catcode\<=\active
\def<#1>{%
% cf. Bernd Raichle: check if defined, no side effects (2006)
\if \csname macro:#1\endcsname \relax
{\bf {$\11$}#1{\gg}}"
\else
\csname macro:#1\endcsname

\fi}
\def\macro#1#2{\expandafter\def\csname macro:#1\endcsname{#2}}

\macro {Zhou Shang Zhi}{Zh\=ou Sh\ ang Zh\=\i}

\macro {Shangzhi}{Sh\ angzh\=\i}

\macro {Sai Gon}{S\ ai G\ on}

\macro {HCM}{H\raise 0.5ex \rlap {\~ }\“o Ch\'\i{} Minh}
\macro {Mui Ne}{M\~ui N\'e}

%\macro {Le}{L\rlap {\d e}\~"e}

On a~happier note, the year started with both Khanh \&~I~being
invited to spend time with one of my former Chinese teachers,
<Zhou Shang Zhi>, and his family in Kyoto, Japan. <Shangzhi>
was there for one year, teaching at a~local university, and
the last three months were effectively a~holiday for him with
very few formal duties. Knowing that we might like to visit
Kyoto, <Shangzhi> very kindly invited both of us, which we
accepted with great pleasure.

Khanh's journey commenced with a~flight to <Sai Gon>

(" "<HCM> City''), from where she took a~'bus south to <Mui Ne>
(a~distance of some 100 miles or so), where her sister
<Le>~Hoa had booked her into a~very posh hotel by the

beach. Once in <Mui Ne>, Khanh hired a~moped driver.

On a happier note, the year started with both Khanh & I being invited to spend
time with one of my former Chinese teachers, Zhou Shang Zhi, and his family in
Kyoto, Japan. Shangzhi was there for one year, teaching at a local university,
and the last three months were effectively a holiday for him with very few formal
duties. Knowing that we might like to visit Kyoto, Shangzht very kindly invited
both of us, which we accepted with great pleasure.

Khanh’s journey commenced with a flight to Sai Gon (“Hé Chi Minh City”),
from where she took a ’bus south to Miii Né (a distance of some 100 miles or so),
where her sister <Le>> Hoa had booked her into a very posh hotel by the beach.
Once in Mui Né, Khanh hired a moped driver.

TEX beauties and oddities

UTE-8 support detection
Arthur Reutenauer

When you need to detect if you are running an extension of TgX that supports
UTEF-8 input, you can use an extensive approach by making the list of engines that
could be concerned, and check for particular control sequences like
\XeTeXversion for XqIEX, or \directlua for luaTgX. But you can also simply
check for UTE-8 directly, by counting the bytes:

Take T, the letter Tau from the Greek alphabet, not the Latin one that looks
like it. In UTE-8, its encoding form uses two bytes, which means it is read as
two characters by 8-bit TgX engines, but only one by UTF-8 engines. Hence, the
following lines detect UTF-8 engines:
\def\testengine#1#2!{\def\secondarg{#2}}

That's Tau (as in TgX),

\testengine T!\relax

UTF-8
\ifx\secondarg\empty

is % We're UTF-8
\else

not % We're 8-bit
\fi
supported.

Abba Don

Grzegorz Murzynowski

What is and what is not a number for TgX? Adoremus magna et mirabilia opera
pappa Knuth!

\ifnum 666>'0888${}-222 = 2\times32\times37={}$DCLXVI
(all the Roman digits except the largest)\fi

\ifnum 666>"000ecce Angelus Pulcherissimus regnavit!\fi

\ifnum 666>"0000ABBA Father call I from the deepest of my s***
\else Breke kekk, breke kekk!\fi

\ifnum 11254493="ABBADDON(\aleph_0)\fi
Note that A, B, ¢, D and e are (in some contexts) hexadecimal digits and (in those

contexts) Oxecce = 60622 and (in some other contexts) Abbaddon is the name
of the Angel of Extinction.

VOORJAAR 2009

61

62 MAPS 38 Pawet Jackowski

inlinedef: a general recursive token scanner with callbacks
Stephen Hicks

There have been several discussions about uses of \expandafter that border
on the ridiculous, with as many as fifteen in a row found in actual TeX input
files! Additionally, trying to expand past macro parameters #1 causes problems
because there is no guarantee that #1 is a single token. It would instead be
nice to insert something right before a single token we want to expand far in
advance. A slightly more general problem is to scan tokens in the input stream
while preserving spaces and grouping.

\let\xa\expandafter

\def\scan{\futurelet\foo\switch}
\def\switch{’
\let\next\normal
\ifcat\noexpand\foo\space \let\next\dospace\fi
\ifcat\noexpand\foo\bgroup \let\next\trygroup\fi
\ifcat\noexpand\foo\relax \try{&\meaning\fool}\fi
\next}
\def\try#1{\ifcsname #1\endcsname\xa
\let\xa\next \csname #1\endcsname\fi}
\def\dospace{\toksO\xa{\the\toks\xa0 \spacel}\xa\scan\unspace}

\xa\def\xa\unspace\space{}
\long\def\trygroup#1#{/,
\def\temp{#1}\xa\let\xa\next
\ifx\temp\empty\recurse\else \normal\fi\next#1}
\long\def\recurse#1{/
\begingroup\toksO{}\scan#1\END{}\xa\endgroup\xa
\toks\xa0O\xa\xa\xa{\xa\the\xa\toks\xa0\xa{\the\toks0}}\scan}
\long\def\normal#1{\toksO\xa{\the\toksO #1}\scan}

\def\callback#1#2#{J,
\def#1{\noexpand#1}\xa\def\csname&\meaning#1\endcsname#2}

We can set up a few callbacks, e.g. \END to end scanning, and \EXPAND to expand
the next token:

\callback\END#1{}
\callback\EXPAND#1{\expandafter\scan}

And now we can get arbitrary tokens from the input stream into \toksO0 using

\def\baz{!}
\scan foo {bar \EXPAND\baz} \baz \END
\message{\the\toks0} % foo\space {bar\space !}\space \baz

This can be made more general in several ways: if we don't check \ifcat
\noexpand\foo\relax then we can execute callbacks on arbitrary tokens, in-
cluding spaces and grouping symbols. Of course this slows things down quite a
bit further, which brings me to the main disadvantage of this approach: it takes
about 25 times as long as a simple string of \expandafter's, and is therefore not
suitable for inner loops. But the code it allows us to write, as long as efficiency
isn't important, is much more readable.

