
2 MAPS 40 Hans Hagen

The font name mess
Keywords
ConTeXt mkiv, luatex, font names

Introduction
When TEX came around it shipped with its own fonts. At that moment the TEX font
universe was a small and well known territory. The ‘only’ hassle was that one needed
to make sure that the right kind of bitmap was available for the printer.

When other languages than English came into the picture things became more com-
plex as now fonts instances in specific encodings showed up. After a couple of years
the by then standardised TEX distributions carried tens of thousands of font files. The
reason for this was simple: TEX fonts could only have 256 characters and therefore there
were quite some encodings. Also, large cjk fonts could easily have hundreds of metric
files per font. Distributions also provide metrics for commercial fonts although I could
never use them and as a result have many extra metric files in my personal trees (gen-
erated by TEXfont). (Distributions like TEXLive have between 50.000 and 100.000 files,
but derivatives like the ConTEXt minimals are much smaller.)

At the input side many problems related to encodings were solved by Unicode. So,
when the more Unicode aware fonts showed up, it looked like things would become
easier. For instance, no longer were choices for encodings needed. Instead one had to
choose features and enable languages and scripts and so the problem of the multitude
of files was replaced by the necessity to know what some font actually provides. But
still, for the average user it can be seen as an improvement.

A rather persistent problem remained, especially for those who want to use different
fonts and or need to install fonts on the system that come from elsewhere (either free
or commercial): the names used for fonts. You may argue that modern TEX engines
and macro packages can make things easier, especially as one can call up fonts by
their names instead of their file names, but actually the problem has worsened. With
traditional TEX you definitely get an error when you mistype a file name or call for a
font that is not on your system. The more modern TEX's macro packages can provide
fall-back mechanisms and you can end up with something you didn't ask for.

For years one of the good things of TEXwas its stability. If we forget about changes in
content, macro packages and/or hyphenation patterns, documents could render more
or less the same for years. This is because fonts didn't change. However, now that fonts
are more complex, bugs gets fixed and thereby results can differ. Or, if you use platform
fonts, your updated operating system might have new or even different variants. Or, if
you access your fonts by font name, a lookup can resolve differently.

The main reason for this is that font names as well as file names of fonts are highly
inconsistent across vendors, within vendors and platforms. As we have to deal with
this matter, in MkIV we have several ways to address a font: by file name, by font
name, and by specification. In the next sections I will describe all three.

Method 1: file
The most robust way to specify what fonts is to be used is the file name. This is done
as follows:

\definefont[SomeFont][file:lmmono10-regular]



3 MAPS 40 Hans Hagen

A file name lookup is case insensitive and the name you pass is exact. Of course the
file: prefix (as with any prefix) can be used in font synonyms as well. You may add
a suffix, so this is also valid:

\definefont[SomeFont][file:lmmono10-regular.otf]

By default ConTEXt will first look for an OpenType font so in both cases you will get
such a font. But how do you know what the file name is? You can for instance check
it out with:

mtxrun --script font --list --method=file --pattern="lm*mono" --all

This reports some information about the file, like the weight, style, width, font name,
file name and optionally the subfont id and a mismatch between the analysed weight
and the one mentioned by the font.

latinmodernmonolight light normal normal lmmonolt10regular lmmonolt10-regular.otf

latinmodernmonoproplight light italic normal lmmonoproplt10oblique lmmonoproplt10-oblique.otf

latinmodernmono normal normal normal lmmono9regular lmmono9-regular.otf

latinmodernmonoprop normal italic normal lmmonoprop10oblique lmmonoprop10-oblique.otf

latinmodernmono normal italic normal lmmono10italic lmmono10-italic.otf

latinmodernmono normal normal normal lmmono8regular lmmono8-regular.otf

latinmodernmonolightcond light italic condensed lmmonoltcond10oblique lmmonoltcond10-oblique.otf

latinmodernmonolight light italic normal lmmonolt10oblique lmmonolt10-oblique.otf

latinmodernmonolightcond light normal condensed lmmonoltcond10regular lmmonoltcond10-regular.otf

latinmodernmonolight bold italic normal lmmonolt10boldoblique lmmonolt10-boldoblique.otf

latinmodernmonocaps normal italic normal lmmonocaps10oblique lmmonocaps10-oblique.otf

latinmodernmonoproplight bold italic normal lmmonoproplt10boldoblique lmmonoproplt10-boldoblique.otf

latinmodernmonolight bold normal normal lmmonolt10bold lmmonolt10-bold.otf

latinmodernmonoproplight bold normal normal lmmonoproplt10bold lmmonoproplt10-bold.otf

latinmodernmonoslanted normal normal normal lmmonoslant10regular lmmonoslant10-regular.otf

latinmodernmono normal normal normal lmmono12regular lmmono12-regular.otf

latinmodernmonocaps normal normal normal lmmonocaps10regular lmmonocaps10-regular.otf

latinmodernmonoprop normal normal normal lmmonoprop10regular lmmonoprop10-regular.otf

latinmodernmono normal normal normal lmmono10regular lmmono10-regular.otf

latinmodernmonoproplight light normal normal lmmonoproplt10regular lmmonoproplt10-regular.otf

Method 2: name
Instead of lookup by file, you can also use names. In the font database we store refer-
ences to the font name and full name as well as some composed names from informa-
tion that comes with the font. This permits rather liberal naming and the main reason
is that we can more easily look up fonts. In practice you will use names that are as close
to the file name as possible.

mtxrun --script font --list --method=name --pattern="lmmono*regular" --all

This gives on my machine:

lmmono10regular lmmono10regular lmmono10-regular.otf

lmmono12regular lmmono12regular lmmono12-regular.otf

lmmono8regular lmmono8regular lmmono8-regular.otf

lmmono9regular lmmono9regular lmmono9-regular.otf

lmmonocaps10regular lmmonocaps10regular lmmonocaps10-regular.otf

lmmonolt10regular lmmonolt10regular lmmonolt10-regular.otf



The font name mess VOORJAAR 2010 4

lmmonoltcond10regular lmmonoltcond10regular lmmonoltcond10-regular.otf

lmmonoprop10regular lmmonoprop10regular lmmonoprop10-regular.otf

lmmonoproplt10regular lmmonoproplt10regular lmmonoproplt10-regular.otf

lmmonoslant10regular lmmonoslant10regular lmmonoslant10-regular.otf

It does not show from this list but with name lookups first OpenType fonts are
checked and then Type1. In this case there are Type1 variants as well but they are
ignored. Fonts are registered under all names that make sense and can be derived from
their description. So:

mtxrun --script font --list --method=name --pattern="latinmodern*mono" --all

will give:

latinmodernmono lmmono9regular lmmono9-regular.otf

latinmodernmonocaps lmmonocaps10oblique lmmonocaps10-oblique.otf

latinmodernmonocapsitalic lmmonocaps10oblique lmmonocaps10-oblique.otf

latinmodernmonocapsnormal lmmonocaps10oblique lmmonocaps10-oblique.otf

latinmodernmonolight lmmonolt10regular lmmonolt10-regular.otf

latinmodernmonolightbold lmmonolt10boldoblique lmmonolt10-boldoblique.otf

latinmodernmonolightbolditalic lmmonolt10boldoblique lmmonolt10-boldoblique.otf

latinmodernmonolightcond lmmonoltcond10oblique lmmonoltcond10-oblique.otf

latinmodernmonolightconditalic lmmonoltcond10oblique lmmonoltcond10-oblique.otf

latinmodernmonolightcondlight lmmonoltcond10oblique lmmonoltcond10-oblique.otf

latinmodernmonolightitalic lmmonolt10oblique lmmonolt10-oblique.otf

latinmodernmonolightlight lmmonolt10regular lmmonolt10-regular.otf

latinmodernmononormal lmmono9regular lmmono9-regular.otf

latinmodernmonoprop lmmonoprop10oblique lmmonoprop10-oblique.otf

latinmodernmonopropitalic lmmonoprop10oblique lmmonoprop10-oblique.otf

latinmodernmonoproplight lmmonoproplt10oblique lmmonoproplt10-oblique.otf

latinmodernmonoproplightbold lmmonoproplt10boldoblique lmmonoproplt10-boldoblique.otf

latinmodernmonoproplightbolditalic lmmonoproplt10boldoblique lmmonoproplt10-boldoblique.otf

latinmodernmonoproplightitalic lmmonoproplt10oblique lmmonoproplt10-oblique.otf

latinmodernmonoproplightlight lmmonoproplt10oblique lmmonoproplt10-oblique.otf

latinmodernmonopropnormal lmmonoprop10oblique lmmonoprop10-oblique.otf

latinmodernmonoslanted lmmonoslant10regular lmmonoslant10-regular.otf

latinmodernmonoslantednormal lmmonoslant10regular lmmonoslant10-regular.otf

Watch the 9 point version in this list. It happens that there are 9, 10 and 12 point
regular variants but all those extras come in 10 point only. So we get a mix and if you
want a specific design size you really have to be more specific. Because one font can
be registered with its font name, full name etc. it can show up more than once in the
list. You get what you ask for.

With this obscurity you might wonder why names make sense as lookups. One ad-
vantage is that you can forget about special characters. Also, Latin Modern with its
design sizes is probably the worst case. So, although for most fonts a name like the
following will work, for Latin Modern it gives one of the design sizes:

\definefont[SomeFont][name:latinmodernmonolightbolditalic]

But this is quite okay:

\definefont[SomeFont][name:lmmonolt10boldoblique]



5 MAPS 40 Hans Hagen

So, in practice this method will work out as well as the file method but you can best
check if you get what you want.

Method 3: spec
We have now arrived at the third method, selecting by means of a specification. This
time we take the family name as starting point (although we have some fall-back mech-
anisms):

\definefont[SomeSerif] [spec:times]

\definefont[SomeSerifBold] [spec:times-bold]

\definefont[SomeSerifItalic] [spec:times-italic]

\definefont[SomeSerifBoldItalic][spec:times-bold-italic]

The patterns are of the form:

spec:name-weight-style-width

spec:name-weight-style

spec:name-style

When only the name is used, it actually boils down to:

spec:name-normal-normal-normal

So, this is also valid:

spec:name-normal-italic-normal

spec:name-normal-normal-condensed

Again we can consult the database:

mtxrun --script font --list --method=spec lmmono-normal-italic --all

This prints the following list. The first column is the family name, the fifth column
the font name:

latinmodernmono normal italic normal lmmono10italic lmmono10-italic.otf

latinmodernmonoprop normal italic normal lmmonoprop10oblique lmmonoprop10-oblique.otf

lmmono10 normal italic normal lmmono10italic lmtti10.afm

lmmonoprop10 normal italic normal lmmonoprop10oblique lmvtto10.afm

lmmonocaps10 normal italic normal lmmonocaps10oblique lmtcso10.afm

latinmodernmonocaps normal italic normal lmmonocaps10oblique lmmonocaps10-oblique.otf

Watch the OpenType and Type1 mix. As we're just investigating here, the lookup
looks at the font name and not at the family name. At the TEX end you use the family
name:

\definefont[SomeFont][spec:latinmodernmono-normal-italic-normal]

So, we have the following ways to access this font:

\definefont[SomeFont][file:lmmono10-italic]

\definefont[SomeFont][file:lmmono10-italic.otf]

\definefont[SomeFont][name:lmmono10italic]

\definefont[SomeFont][spec:latinmodernmono-normal-italic-normal]



The font name mess VOORJAAR 2010 6

As OpenType fonts are preferred over Type1 there is not much chance of a mix-up.
As mentioned in the introduction, qualifications are somewhat inconsistent. Among

the weight we find: black, bol, bold, demi, demibold, extrabold, heavy, light, medium,
mediumbold, regular, semi, semibold, ultra, ultrabold and ultralight. Styles are: ita, ital,
italic, roman, regular, reverseoblique, oblique and slanted. Examples of width are: book,
cond, condensed, expanded, normal and thin. Finally we have alternatives which can
be anything.

When doing a lookup, some normalizations takes place, with the default always
being ‘normal’. But still the repertoire is large:

helveticaneue medium normal normal helveticaneuemedium HelveticaNeue.ttc index: 0

helveticaneue bold normal condensed helveticaneuecondensedbold HelveticaNeue.ttc index: 1

helveticaneue black normal condensed helveticaneuecondensedblack HelveticaNeue.ttc index: 2

helveticaneue ultralight italic thin helveticaneueultralightitalic HelveticaNeue.ttc index: 3

helveticaneue ultralight normal thin helveticaneueultralight HelveticaNeue.ttc index: 4

helveticaneue light italic normal helveticaneuelightitalic HelveticaNeue.ttc index: 5

helveticaneue light normal normal helveticaneuelight HelveticaNeue.ttc index: 6

helveticaneue bold italic normal helveticaneuebolditalic HelveticaNeue.ttc index: 7

helveticaneue normal italic normal helveticaneueitalic HelveticaNeue.ttc index: 8

helveticaneue bold normal normal helveticaneuebold HelveticaNeue.ttc index: 9

helveticaneue normal normal normal helveticaneue HelveticaNeue.ttc index: 10

helveticaneue normal normal condensed helveticaneuecondensed hlc_____.afm conflict: roman

helveticaneue bold normal condensed helveticaneueboldcond hlbc____.afm

helveticaneue black normal normal helveticaneueblackcond hlzc____.afm conflict: normal

helveticaneue black normal normal helveticaneueblack hlbl____.afm conflict: normal

helveticaneue normal normal normal helveticaneueroman lt_50259.afm conflict: regular

The font database
In MkIV we use a rather extensive font database which in addition to bare information
also contains a couple of hashes. When you use ConTEXt MkIV and install a new font,
you have to regenerate the file database. In a next TEX run this will trigger a reload of
the font database. Of course you can also force a reload with:

mtxrun --script font --reload

As a summary we mention a few of the discussed calls of this script:

mtxrun --script font --list somename (== --pattern=*somename*)

mtxrun --script font --list --method=name somename

mtxrun --script font --list --method=name --pattern=*somename*

mtxrun --script font --list --method=spec somename

mtxrun --script font --list --method=spec somename-bold-italic

mtxrun --script font --list --method=spec --pattern=*somename*

mtxrun --script font --list --method=spec --filter="fontname=somename"

mtxrun --script font --list --method=spec

--filter="familyname=somename,weight=bold,style=italic,width=condensed"

mtxrun --script font --list --method=file somename

mtxrun --script font --list --method=file --pattern=*somename*



7 MAPS 40 Hans Hagen

The lists shown in before depend on what fonts are installed and their version. They
might not reflect reality at the time you read this.

Interfacing
Regular users never deal with the font database directly. However, if you write font
loading macros yourself, you can access the database from the TEX end. First we show
an example of an entry in the database, in this case TeXGyreTermes Regular.

{

designsize = 100,

familyname = "texgyretermes",

filename = "texgyretermes-regular.otf",

fontname = "texgyretermesregular",

fontweight = "regular",

format = "otf",

fullname = "texgyretermesregular",

maxsize = 200,

minsize = 50,

rawname = "TeXGyreTermes-Regular",

style = "normal",

variant = "",

weight = "normal",

width = "normal",

}

Another example is Helvetica Neue Italic:

{

designsize = 0,

familyname = "helveticaneue",

filename = "HelveticaNeue.ttc",

fontname = "helveticaneueitalic",

fontweight = "book",

format = "ttc",

fullname = "helveticaneueitalic",

maxsize = 0,

minsize = 0,

rawname = "Helvetica Neue Italic",

style = "italic",

subfont = 8,

variant = "",

weight = "normal",

width = "normal",

}

As you can see, some fields can be meaningless, like the sizes. As using the low level
TEX interface assumes some knowledge, we stick here to an example:

\def\TestLookup#1%

{\dolookupfontbyspec{#1}

pattern: #1, found: \dolookupnoffound

\blank

\dorecurse {\dolookupnoffound} {%

\recurselevel:~\dolookupgetkeyofindex{fontname}{\recurselevel}%



The font name mess VOORJAAR 2010 8

\quad

}%

\blank}

\TestLookup{familyname=helveticaneue}

\TestLookup{familyname=helveticaneue,weight=bold}

\TestLookup{familyname=helveticaneue,weight=bold,style=italic}

You can use the following commands:

\dolookupfontbyspec {key=value list}

\dolookupnoffound

\dolookupgetkeyofindex {key}{index}

\dolookupgetkey {key}

First you do a lookup. After that there can be one or more matches and you can
access the fields of each match. What you do with the information is up to yourself.

A few remarks
The fact that modern TEX engines can access system fonts is promoted as a virtue. The
previous sections demonstrated that in practice this does not really free us from a name
mess. Of course, when we use a really small TEX tree, and system fonts only, there is
not much that can go wrong, but when you have extra fonts installed there can be
clashes.

We're better off with file names than we were in former times when operating sys-
tems and media forced distributors to stick to 8 characters in file names. But that does
not guarantee that today's shipments are more consistent. And as there are still some
limitations in the length of font names, obscure names will be with us for a long time
to come.

Hans Hagen


