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Circle Inversions
fun with a serious undertone
Abstract
Circle inversions are exercised and drawn with PostScript operators which are also included
in this plain TEX document. Interesting pictures will be shown, resulting from inversion of
straight line pieces and other procedures. I demonstrate a way to calculate the circle of anti-
similitude, by which two circles are inverses of each other. Furthermore, I show how one can
transform two distinct circles into two concentric circles. How to draw a circle orthogonal to
a circle which passes through one or two points within the circle is done via the circle inver-
sion technique. The above is generalized into finding the circle which cuts the boundary at
an arbitrary angle, e.g. 80 degrees, and passes through a point within the circle. Orthogonal
circular arcs can form an Escher-like grid, as he used in his Circle Limits. Four variants of the
grid of Circle Limits III have been included. The first cuts the boundary at 80 degrees, the
second at 90 degrees, and the third with a mixture of both. The fourth is Coxeter’s solution.
A smiley pattern is inverted in (orthogonal) circular arcs within a circle with the aid of Post-
Script’s pathforall by (repeated use of) circle inversion. How to draw a circle orthogonal to
1, 2 or 3 other distinct circles is shown. Apollonius problem is solved by the use of the circle
inversion transformation and also by transforming the 3 quadratic equations into 1 non-linear
equation and a 2x2 system of linear equations, and solving these equations in PostScript and
MetaPost. A closer look yielded that we only have to solve one quadratic equation in r, the
radius of the wanted circle, in order to obtain the solution of Apollonius problem. Coding
problems in MetaPost will be mentioned and circumvented. I demonstrate the way one can
create and use a PostScript library. A plea is made for creating and maintaining a PostScript
library of operators, graphics and utilities. A snapshot of this growing library is included. A
few tiny but handy PostScript operators are given next to a (numerical) PostScript oper-
ator to solve a 3x3 linear system of equations, where partial pivoting is implemented and
the calculations are done with the accuracy of the underlying computer arithmetic, which is
much better than MetaPost’s accuracy for the moment. How to overload a PostScript oper-
ator, e.g. length, is given. The question whether the PostScript library can be used in Meta-
Post will be answered. The pearl of the paper is twofold: first the rediscovery that Apollonius
problem is solved by the solution of a quadratic equation, and second the operator Apollo-
nius, which reflects this rediscovery and can be used to obtain all 8 solutions of Apollonius
problem. Another gem is Apollonius2, which is suited for the case that one circle contains
the other two. The culmination of it all is the operator radical for drawing the radical circle
of three given distinct circles.
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Apollonius, Cabri, circle inversion, circle covered by touching circles, circle limit, circle of
anti-similitude, Coxeter, Descartes circle theorem, Escher, Java, Mathematica, Metafont,
MetaPost, minimal markup, mixed-language programming, orthogonal circles, overloading
polymorphic operator, Peaucellier-Lipkin linkage, (partial) pivoting, plain TEX, PostScript
library, radical circle, reflection, Rerich, Sandaku, Soddy, solving 3X3 linear equations

Introduction
While familiarizing myself with hyperbolic geometry I needed to draw a circle or-
thogonal to a given circle such that the orthogonal circle also passes through one or
two prescribed points within or on the given circle. This led me to the circle inversion
technique, which was invented by L.I. Magnus in 1841. Circle inversion is considered
as an inroad to higher mathematics. In this note plane and analytic geometry at the
level I learned at high school is used.
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Circle inversions are about inverting points, lines, circles and, in general, patterns
in a circle.

In the following the various inversions are programmed as PostScript operators,
because PostScript has the arc operator for circular arcs, which is much more pow-
erful than Hobby’s fullcircle deVnition in MetaPost, and because PostScript is a
widespread, time-proven graphical language, which abstracts from the printing de-
vice. Another useful feature of PostScript is that one can transform the user space
independently from the device space. Nice is also that one can transform fonts. More-
over, PostScript enjoys the accuracy of the underlying computer arithmetic, which is
better than the accuracy obtained by MetaPost for the moment. PostScript is handy
in a workWow and the resulting graphics can be included in AnyTEX or troU docu-
ments.1 For interactive, animated graphics Java might be the tool to use, but I have no
hands-on experience with this as yet.

For inclusion of the PostScript graphics in pdf(La)TEX, the pictures must be con-
verted to a pdfTEX friendly format, for example to (trimmed) .pdf, alas.2

A few operators use the stack only. Most of the operators use ‘local’ variables cre-
ated in dictionaries associated with the names of the operators. As a consequence there
are no name conWicts and therefore the operators can be collected in a library for reuse.

Don Lancaster provides his so-called Gonzo PostScript utilities on the internet. Don
likes PostScript even more than I do, so it seems. The operators in Adobe’s PostScript
Tutorial and Cookbook, the blue book, have been used as a starting point for my Post-
Script library. The PostScript operators in my notes from more than a decade ago:
Tiling in PostScript and MetaFont, MAPS97.2, and Paradigms: Just a little bit of Post-
Script, MAPS96.2 (rev 1997), already formed a library in status nascendi, as I mentioned
when I launced my BLUe collection, but . . . at the time I was not aware of the way to
fruitfully use PostScript’s run operator for inclusion of the library.

Undoubtedly there is a wealth of PostScript operators out there scattered over the
WWW. Why not collect, test and put them together into a library for reuse?

To those who shrug their shoulders and pass by programming in PostScript with
the argument that it is too low-level:

“YES, but ...”

we have abstraction as our powerful mental tool, and we can build higher-level op-
erators on top of the basic ones.3 Moreover, we can use PostScript in MetaPost, to a
certain extent.
For example: what is wrong with determining the intersection point of two lines or
(sets of geometric loci) by an operator intersect, which assumes on the stack the data
which characterizes the two lines, i.e. two points for each line, and leaves on the stack
the point of intersection? With respect to the parameter passing in other languages the
variation by communicating via the stack and storing the values in local variables, I
consider this syntactic sugar, not to be confused with the use of the stack only.

This 3-in-1 paper touches on math, graphics, computation, numerical analysis, pro-
gramming, and it consists of the parts: Circle Inversions, Apollonius problem, Orthog-
onal Circles, and the use and creation of a PostScript library.

Notation
Capital letters are used to denote points, lines and circles, with the circles in italics.
A capital superscripted by i denotes the inversion. Subscript r denotes the radius of
the circle, parenthesized subscripts (x, y) denote the coordinates of the circle centre:
Ir,(x,y) denotes the inversion circle with radius r and centre (x, y); Ir,(x,y) denotes the
centre of the circle I. In the operator code what should be supplied on the stack is
documented after %-signs and separated by ==> from what is delivered on the stack,
in the PostScript documentation tradition. An angle is denoted by ∠. A triangle by 4.
For similarity the symbol ∼ is used.
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The inversion circle is dashed [1 2] ([n m] means à la PostScript: n on (black) m
oU (white), cyclically) with linethickness .25 (invcir), the inversions are dashed [1 1]
with linethickness 1 (invlin), auxiliary lines are dashed [1 3] with linethickness .25
(auxlin), the wanted circles are bold, i.e. have linethickness 1.5.4 Inversion circles as
auxiliaries are dashed [1 3] with linethickness .75 (Auxlin). The dashing conventions
are imposed by printing in black and white.

Requirements for a PostScript library
It would be nice if a PostScript library would consist of well-documented, mean-and-
lean, legible, and robust5 PostScript operators. Next to operators the library might
contain PostScript pictures, utilities (as mentioned by M. Gelderman MAPS19, 1997, to
be found on the CTAN in the directory /support/psutils) . . .

The TEX-world uses MetaPost, so one can ask oneself: can the PostScript library be
used in MetaPost? Yes . . . see Appendix II.

Use of the PostScript library on a Windows system can be done by inclusion in
your PostScript code

(C:\\PSlib\\PSlib.eps) run

provided that the Vle PSlib.eps is stored on the C disk in the directory PSlib. The
documentation of the run operator in Adobes’ reference manual, the red book, is not
explicit on this feature.6

The above is analogous to TEX’s \input and MetaFont’s and MetaPost’s input for
(library) macro deVnitions.

Outdated Math books
While working on this note, I realized that Math books which contain construction
methods based on ruler and compass are outdated, because everybody owns a PC
nowadays with their graphical user interfaces and powerful (graphical) software.

Cabri software
Nice is the (commercial) Cabri software which provides you with an interactive exper-
imenting environment. Interesting is Wilson’s Inverse Geometry WWW, which uses
Cabri Java: http://www.maths.gla.ac.uk/~wws/cabripages/inversive/inversive0.html
The diUerence with this work is that below operators are provided in batch oriented
PostScript, while the Java applets from e.g. Cabri, as used by Wilson, are interactive
and facilitate animation.

Mathematica
Professional software for graphics (and animation as well) is the commercial Mathe-
matica. A free Mathematica reader can be downloaded, however, which ensures that
one can view and animate work of others, the so-called mathematica notebooks, to
start with Mathematica’s own demos: a mer à boire.
See http://mathworld.wolfram.com/Inversion.html for a Mathematica Inversion note-
book.

Point inversion
Inversion of a point P in a circle Ir,(x,y) is that point Pi on the line IP deVned by |IPi

|·|IP| =
r2. Explicitly

⇀
Pi =

⇀
Ir +

⇀
P −

⇀
Ir

|
⇀
P −

⇀
Ir |2

r2.

Geometrical ruler and compass constructions are shown below. However, for practical
purposes they are no longer necessary, because of the PostScript operators, based on
plane and analytic geometry.
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Proof of the construction left: 4IrPiS ∼ 4IrSP.
Proof of the construction in the middle: r2 = IT2 = IPi

· IP.
Proof of the construction right:7 since 4IPS ∼ 4ISPi, IP : r = r : IPi.

Remark In the right picture we need to determine the intersection point S of the
2 circles. We could solve 2 quadratic equations in 2 unknowns for this; simpler is to
exercise plane geometry8 within the isosceles 4SPI, with base r and sides d, the distance
between I and P.

Properties
@ Points on the inversion circle are invariant.
@ Points outside the inversion circle are mapped onto points inside the circle and

vice versa.
@ The point at inVnity is the inversion of the centre of the inversion circle.
@ The inversion point is geometrically given by the intersection of the line IP with

the chord which connects the tangent points T.9 (See above middle picture.)
@ Distances are not preserved.
@ The mapping is anti-conformal, i.e. angles are preserved but the orientation is re-

versed.

PS code The order in which to put the parameters on the stack must be chosen. I chose
to put Vrst the object which has to be inverted and second the inversion circle. This
can be handy for the case that the inverted object has to be inverted again, for example
inversion and back, or repeatedly as in the section inversion of a smiley pattern for the
2nd level inversions.

/pointinversion

% Px, Py: point to be inverted

% Ix, Iy, r: centre and radius of the inversion circle

%==>

% px, py: inverted point

{0 begin %open the local dictionary

/r exch def /Iy exch def /Ix exch def %collect values from the stack

/Py exch def /Px exch def %LIFO in the (local) dictionary

/Px Px Ix sub def /Py Py Iy sub def %shift origin to centre of circle I

/factor r Px Py size div dup mul def

/px Ix factor Px mul add def /py Iy factor Py mul add def

px py %put solution on the stack

end %close pointinversion dictionary

} def

/pointinversion load 0 10 dict put

Line inversion
Properties
@ The inversion of a line through the inversion centre is the line itself.
@ The inversion of a line, not through the centre of the inversion circle, is a circle

through the centre of the inversion circle, and vica versa.

Proof (Courtesy Courant&Robbins: What is mathematics?)
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Drop a perpendicular from the centre Ir to the straight line L, see the picture below.

Let A be the point where the perpendicular meets L, and let Ai be the inverse point of
A. Mark any point P on L, and let Pi be its inverse point. Since |IAi

| · |IA| = |IPi
| · IP| = r2,

it follows that

|IAi
|

|IPi
|
=
|IP|
|IA|

Hence 4IPiAi
∼ 4IAP, ∠IPiAi is a right angle. Pi lies on the circle with IrAi as diameter.

Back to the line inversion problem.

The picture is rotation invariant. So the picture can be rotated around Ir, the centre,
such that the line P1P2 will be perpendicular to the x-axis. The angle of rotation for P1
in the Vrst quadrant is

φ = arctan
P1y − P2y

P1x − P2x

which is adjusted in the implementation successively by10

φ := φ − 180 if 180◦ < φ < 360◦

φ := 90 − φ

such that P1 in all 4 quadrants is accounted for.

Calculation of the inverted circle
Drop the perpendicular from the centre of the inversion circle on the line through
P1 and P2.11 Let l be the point where the perpendicular meets P1P2 and let us denote
the inversion of l by li. The centre Ir and the point li form 2 diametrical points of the
inverted circle. The centre of the inverted circle is therefore .5li, with |.5li| the radius of
the inverted circle.
The inversion of a line is programmed by the following steps

@ shift the centre of the inversion circle to (0,0), meaning shift P1 and P2
@ rotate the shifted P1 (and P2) such that the line P1P2 is vertical
@ invert the x coordinate of the rotated P1, and call this point li
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@ |.5li| is the radius of the inverted circle
@ rotate (.5li,0 ) back, in order to obtain the centre of the inverted circle
@ shift the centre of the inverted circle back.

In my earlier MetaFont version I used the equation solving possibilities of MetaFont
by specifying equations for the footpoint of the perpendicular from I on the line P1P2.
The use of rotation is simpler and elegant.

/lineinversion

% x1 y1 x2 y2: the points which determine the line

% mx my r: the centre and radius of the inversion circle

%==>

% mix miy ri: centre and radius of the inverted line

{0 begin

/eps .0001 def /r exch def

/my exch def /mx exch def

/y2 exch def /x2 exch def

/y1 exch def /x1 exch def

/angle y1 y2 sub x1 x2 sub atan def

angle abs 90 sub abs eps lt

angle abs 270 sub abs eps lt or

{ % special case: vertical line

x1 my mx my r pointinversion mx my mean

/myi exch def /mxi exch def

/ri mxi mx sub myi my sub size def

}{angle abs 180 sub abs eps lt

angle abs 360 sub abs eps lt or

angle abs eps lt or

{ % special case: horizontal line

mx y1 mx my r pointinversion mx my mean

/myi exch def /mxi exch def

/ri mxi mx sub myi my sub size def

}{ % general case

angle 180 gt {/angle angle 180 sub def} if % reduce to range 0-180

/angle 90 angle sub def

/y1 y1 my sub def /x1 x1 mx sub def % shift point 1

x1 y1 angle rot pop /lx exch def

lx abs eps lt{(Line through origin?) print} if % warning

/mix r dup mul lx div 2 div def /miy 0 def % center circle

/ri miy my sub mix mx sub size def % radius circle

% rotate back and shift

mix miy angle neg rot

/miy exch my add def

/mix exch mx add def

}ifelse

}ifelse

mix miy ri

end} def

/lineinversion load 0 25 dict put

The special cases, lines parallel to x-axis and y-axis, have been treated separately, no
rotation needed. A warning is given when the line passes through the origin, because
the line itself is the result and not a circle.
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Inversion of line pieces
As example three squares with sides r, 2r , 4r centred around the origin are inverted
in the (dashed) circle Ir,(0,0). The inversions are drawn in the same picture non-dashed
and bold. The right Vgure is the complement: the inversions of the lines with the sides
of the squares left out.

We could extend the above to concentric pentagons, hexagons, but . . . I don’t expect
new beautiful results: instead of 4 circular arcs we will obtain 5, 6. . . .

The example is a test for linepieceinversion, though it does not exercise the shift
of origin.

/linepieceinversion

% x1 y1 x2 y2: the points which determine the line

% mx my r: the centre and radius of the inversion circle

%==>

% path of inverted cirle arc

{0 begin

/r exch def /my exch def /mx exch def

/y2 exch def /x2 exch def /y1 exch def /x1 exch def

x1 y1 x2 y2 mx my r lineinversion /ri exch def /miy exch def /mix exch def

x1 y1 mx my r pointinversion /y1 exch def /x1 exch def

x2 y2 mx my r pointinversion /y2 exch def /x2 exch def

/phi1 y1 miy sub x1 mix sub atan def

/phi2 y2 miy sub x2 mix sub atan def

%(x1, y1)--(0, 0) right from (xm, ym)--(0, 0)?

/psi1 y1 x1 atan def

/psim miy mix atan def

psi1 180 gt {/psi1 psi1 360 sub def} if

%correction if xm in 1st and x1 in 4th quadrant

psi1 psim lt

{x1 y1 moveto mix miy ri phi1 phi2 arc}

{x2 y2 moveto mix miy ri phi2 phi1 arc} ifelse

end} def

/linepieceinversion load 0 16 dict put

It was troublesome to draw the correct part of the circle without clipping.

A beautiful illustration of the inversion of line pieces is the inversion of a chessboard
centred at (0, 0) in a small circle also centred at (0, 0) (M. Gardner 1984, pp. 244-
245; R. Dixon 1991). In the picture below the chessboard and its inversion are shown,
borrowed from http://mathworld.wolfram.com/Inversion.html.
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Variation of the inversion of a chessboard is a stainless glass impression of the
‘inverse’ of a grid of 64 squares, as displayed below. In the inversions the dashed sur-
rounding square indicates ∞, the inverse of the centre.

Explanation The Vrst picture from the left shows the grid and the inversion circle.
The second picture shows the inversion of the grid. In the third and fourth picture
only the nodes of the grid have been inverted and connected by straight lines. The
third picture has been coloured in Photoshop by my wife Svetlana Morozova —the
picture is included elsewhere in this MAPS— and is planned to become a stainless glass
window, size 60x60cm, to decorate our house. The right picture has a small inversion
circle; all the nodes of the grid except the central node are transformed to Vt within
the inversion circle.

Peaucellier-Lipkin Linkage is an intriguing mechanical device where to and fro
motion along a straight line is transformed into a to and fro motion along a circular
arc, or vice versa.

A disadvantage of this apparatus is that only a to and fro movement along a circular
arc is obtained. Transformation of to and fro motion into rotation is realized in a car
(think of pistons) via a crank-shaft or a totter system.

Each point of the circle is related to a point on the (right) line by inversion.12

In the device the point O and the centre of the circle are Vxed. When the centre is
connected to B, as in the animation, then the vertical movement of D results in move-
ment of B along the circle. In the picture above (an arc of) the inversion circle, which
transforms the circle into the straight line, is drawn. In a math animation we can just
move D and calculate Di and show these dynamically, no ‘diamond’ needed.

Circle inversion
The inversion of a circle not through the origin of an inversion circle is a circle. The
inversion of a circle through the origin of an inversion circle is a straight line not
through the origin, and vice versa. With the term generalized circle, to denote a line
or circle, the above reads

. . . generalized circles invert into generalized circles. . .
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The line from the centre I to the centre N intersects the circle N.75r,(2r,r) in two dia-
metrical points. Inversion of these diametrical points yields diametrical points of the
inverted circle.13

Properties
@ Circle centres are collinear.
@ Touching and intersection of generalized circles remain invariant.
@ Circles orthogonal to the inversion circle remain invariant.
@ Circles concentric with the inversion circle remain concentric with centres

invariant.
@ Two non-intersecting circles can be transformed into concentric circles.

The inverse of a circle Cr,(x,y) with respect to the inversion circle Ik,(x0 ,y0), is given by the
circle Ci

ri ,(xi ,yi) with

xi = x0 + s(x − x0)
yi = y0 + s(y − y0)
ri = |s|r

and s = k2

(x − x0)2 + (y − y0)2 − r2

Special cases: the invariance of the inversion circle, and the invariance of the centres
of the circles concentric with the inversion circle.

Calculation of the inverted circle
One can’t simply invert the (centre of the) circle and the radius, because inversion
does not preserve distances. Therefore use is made of two point inversions: inversion
of diametrical points on the line through the centre of inversion and the circle centre.

PS code

/circleinversion

% Nx, Ny, R: centre and radius of the to be inverted circle

% Ix, Iy, r: centre and radius of the inversion circle

%==>

% xi,yi, ri: centre and radius of the inverted circle

{0 begin

/r exch def /y exch def /x exch def

/R exch def /Y exch def /X exch def

/Xmx X x sub def

/Ymy Y y sub def

%diametrical boundary points: intersections of the line I--N with the to be

% inverted circle

/phi Ymy Xmx atan def

/bp1{/x1 phi cos R mul Xmx add def

/y1 phi sin R mul Ymy add def

x1 y1}def
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/bp2{/x2 Xmx phi cos R mul sub def

/y2 Ymy phi sin R mul sub def

x2 y2}def

bp1 0 0 r pointinversion

/yi exch def /xi exch def

bp2 0 0 r pointinversion

/py exch def /px exch def

/yi py yi add .5 mul def

/xi px xi add .5 mul def

/ri px xi sub py yi sub size def

/xi xi x add def /yi yi y add def % translate back

xi yi ri

end

} def

/circleinversion load 0 30 dict put

Applications
The property that inversion transforms generalized circles into generalized circles (and
that inversion is conformal) makes it an extremely important tool of plane analytic
geometry. By picking a suitable inversion circle, it is often possible to transform one
geometric conVguration into another, simpler one, in which a proof or calculation is
more easily eUected. http://mathworld.wolfram.com/Inversion.html.
Interesting! We’ll see examples of this: in adding circles to Rerich’s symbol, and in the
solution of Apollonius problem by Circle Inversion.

The circle of anti-similitude also known as mid-circle, of two circles C and Ci is a
circle for which C and Ci are inverses of each other. Suppose that the two circles are
Cr,(0,0) and Ci

R,(d,0), then the centre of the inversion circle is (−Ix, 0), with Ix = d · r/(R− r).
The radius is ri =

√
(Ix + r) · (Ix + d − R).

Any two circles can be made concentric by inversion by picking the inver-
sion centre as one of the so-called limiting points. See http://mathworld.wolfram.com
/LimitingPoint.html.

The dashed circle is the inversion circle I with abscissa of the centre IrR =
l±
√

l2−4d2R2

2d
with l = d2

− r2 +R2. The main circle is CR,(0,0) and the small circle Cr,(d,0). The radius of
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the inversion circle determines the size of the concentric circles. See http://mathworld
.wolfram.com/ConcentricCircles.html.

PS code The library operators can be found elsewhere in this note.

%!PS-Adobe-3.0 Two circles into concentric circles. CGL March 2010

%%BoundingBox: 0 0 620 790

(C:\\PSlib\\PSlib.eps) run %PS library

200 200 translate

/r 25 def /hr r 2 div def /2r r dup add def %radius of small circle

/R 50 def %radius of big circle

/d 100 def /2d d d add def %distance between circle centres

/O {0 0} def

/Ix d d mul r r mul sub R R mul add

d d mul r r mul sub R R mul add

dup mul 2 d mul R mul dup mul sub sqrt

sub

2d div def % function of r and R

gsave

O moveto -6 -12 rmoveto (C)

H12pt setfont show 0 -3 rmoveto (R) H7pt setfont show

Ix 0 moveto 0 -12 rmoveto (I)

H12pt setfont show 0 -3 rmoveto (rR) H7pt setfont show

d 0 moveto -6 -12 rmoveto (C)

H12pt setfont show 0 -3 rmoveto (r) H7pt setfont show

grestore

/R1 R .75 mul def

gsave Ix 0 R1 0 360 invlin stroke grestore %Inversion circle

gsave d 0 r 0 360 arc stroke grestore %Cr

gsave 0 0 R 0 360 arc stroke grestore %CR

135 0 translate

gsave newpath 0 0 30 0 2 5 15 arrow stroke grestore

30 0 translate

d 0 r %small circle at (d,0)

Ix 0 R1 %inversion circle

circleinversion

/rinv exch def /yinv exch def /xinv exch def

xinv yinv rinv 0 360 arc stroke

0 0 R %big circle at (0,0)

Ix 0 R1 %inversion circle

circleinversion

/rinv exch def /yinv exch def /xinv exch def

xinv yinv rinv 0 360 arc stroke

showpage

%%EOF

The article at http://www.partnership.mmu.ac.uk/cme/Geometry/CoaxalInvers/
InversionCoaxalCircles.html treats the problem of converting two circles into con-
centric circles by circle inversion in Java. The concept of radical axis of two circles
is used. Another reference is http://www.cut-the-knot.org/ctk/Circle.shtml, also with
animation.
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Circle covered by touching circles
Let us consider three circles and two verticals as given in the picture below at the left.

If we invert the stacked circles and bordering verticals in Ir, see the left picture, then
we arrive at the picture at the right. Well . . .not quite: two small circles have been
added. In the right picture the left vertical is converted into ‘the main’ circle which is
covered by the other inverted circles.

Remark In the mid-nineties I drew the above picture after having solved in PostScript
the equations for the (inverted) touching circles, without the use of Circle Inversion.14

Rerich Trinity symbol
N K Rerih15 painted the Trinity symbol, well . . . sort of.

r = 〈parameter〉 x = 0 y = ri + r (upper inner circle)

ri =
2 −
√

3
√

3
r x = 0 y = 0 (inscribed circle, not shown)

R = 2 +
√

3
√

3
r x = 0 y = 0 (circumscribed circle)

What is the inversion of this symbol? How can we cover the (circumscribed) circle
with smaller circles, fractal-like?

Figure 1. Rerich’s Pax Cultura

By inversion Invert the picture in a circle with as radius the diameter of the circum-
scribing circle and a point on the circumference of the main circumscribing circle as
inversion point.



Circle Inversions VOORJAAR 2010 21

The picture is rotated 90 degrees counterclockwise for convenience. The right stacked
circles are the inversions of two of Rerich’s inner circles Cr. The inversion circle is
dashed. The verticals are the inversion of the main circumscribing circle and the Rerich
inner circle which passes through the inversion centre.

In the transformed Vgure the radius (and centre) of the small circle can be obtained as
.25ri, where ri is the radius of the inverted circles Ci

r. The middle circle is added in the
Trinity symbol, and the second level Rerih is obtained via backtransformation and a
rotation or two in the original picture, as can be read from the code below. The library
operators can be found elsewhere in this note.

%!PS Rerich 2nd level Circles. CGL March 2010

%%BoundingBox: 0 0 620 790

(C:\\PSlib\\PSlib.eps) run % the library

200 300 translate

90 rotate

/r 25 def /yr r 3 sqrt div dup add def /xr 0 def /2r r r add def

/R yr r add def /mR R neg def /2R R R add def /m2R 2R neg def

/3R 2R R add def /m3R 3R neg def

/lw .1 def lw setlinewidth

0 0 R 0 360 arc stroke % Circumscribing circle

3{newpath xr yr r 0 360 arc stroke % Rerich circles

120 rotate}repeat

gsave

0 R 2R 0 360 arc % inversion circle

invcir stroke

grestore

Auxlin

m3R mR moveto 3R mR lineto stroke % ‘Inverted’ circle is vertical

0 R 2r sub % point to be inverted. Actually

% the inversion of the circle
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0 R 2R pointinversion /yi exch def /xi exch def

m3R yi moveto 3R yi lineto stroke % ‘Inverted’ circle is vertical

xr yr -120 rot /yrrot exch def /xrrot exch def

xrrot yrrot r % to be inverted Rerich circle

0 R 2R circleinversion /rinv exch def /yinv exch def /xinv exch def

xinv yinv rinv 0 360 arc stroke % Inverted Rerich circle

%

xrrot neg yrrot r % to be inverted Rerich circle

0 R 2R circleinversion /rinv exch def /yinv exch def /xinv exch def

xinv yinv rinv 0 360 arc stroke % Inverted Rerich circle

/smallcircle {0 mR rinv -4 div add rinv 4 div} def

% mnemonic for centre and radius

smallcircle 0 360 arc stroke

smallcircle 0 R 2R circleinversion

/rsmall exch def /ysmall exch def /xsmall exch def

xsmall ysmall rsmall 0 360 arc stroke % Snd level Rerich circle

xsmall ysmall 120 rot /ysmall exch def /xsmall exch def

xsmall ysmall rsmall 0 360 arc stroke % Snd level Rerich circle

xsmall neg ysmall rsmall 0 360 arc stroke % Snd level Rerich circle

% middle circle

/rmid R 2r sub def /xmid 0 def /ymid 0 def

xmid ymid rmid 0 360 arc stroke

xmid ymid rmid 0 R 2R circleinversion

/rmidinv exch def /ymidinv exch def /xmidinv exch def

xmidinv ymidinv rmidinv 0 360 arc Auxlin stroke

%

showpage

Continuation to the third level, where touching circles in the transformed picture can
be calculated by solving a quadratic equation in one unknown, yields

By Soddy’s formula which gives a relation between the radii of touching circles,
and goes back to Descartes’ circle theorem

2
4∑

i=1

1
r2
i
=

( 4∑
i=1

1
ri

)2

which is of use in the so-called four coins problem. For continuation to the limit
Soddy’s formulas might be used. The formula will be given later.
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In general a numerical analysis approach, where one has to solve 1 quadratic equa-
tion with nested a system of 2 linear equations in 2 unknowns, is less cumbersome
than the Circle Inversion method.

Sangaku In Pythagoras,16 april 2010, Bernard Asselbergs mentions the Japanese
sangaku, which are diagrams to illustrate mathematical properties. He also derives
Soddy’s formula, the relation between the radii of mutual tangent circles, from the
equations of the Heron formula —

√
s(s − a)(s − b)(s − c), with a, b, c the sides and s half

the sum of the sides— for the surface of triangles, which are obtained by connecting
the centres of the mutual tangent circles.

Interesting visual result of some relations between the radii of mutual tangent circles.

Apollonius problem
The problem how to draw touching circles to three arbitrary circles is named after
Apollonius and can be solved analytically by the inversion technique.17

There are 8 possible solutions:

1. the unknown circle inscribes the three circles (left Vgure below (1 way))
2. the unknown circle circumscribes the three circles (fourth Vgure below (1 way))
3. the unknown circle surrounds one circle (second Vgure below (3 ways))
4. the unknown circle surrounds two circles (third Vgure below (3 ways))

Let us denote the three given circles by A, B, C, and the sought after, unknown tangent
circle by Uρ.

Solutions to Apollonius’ problem are generally considered in pairs; for each solution
circle, there is a conjugate solution circle. One solution circle excludes the given circles
that are enclosed by its conjugate solution, and vice versa. The conjugate solution
circles are related by inversion, with the so-called radical circle, which is perpendicular
to the three given circles, as inversion circle. The inscribed and circumscribed circles
form such a pair. The solution circles as given in the 2nd and 3rd picture above also
form a conjugate pair.

Calculation 1st and 2nd case: unknown circle is surrounded by the three circles:
the inscribed circle, and the unknown circle surrounds all, the circumscribed cir-
cle See the Vrst phase in Figure 2 for the three given circles A, B, and C.
First step. Let us increase the radii of the three given circles by d (as a consequence the
radius of the unknown circle U is decreased with the same amount in the transformed
situation) such that 2 circles out of A, B, and C will touch each other.18 Let us choose
this tangent point as the centre of the inversion circle, and call it I. See the second
phase in Figure 2.
Second step. Invert the circles A, B, and C in the circle with centre I and radius the
diameter of the (enlarged) C. The (enlarged) circles B and C become the parallel lines
Bi and Ci, while the (enlarged) circle A becomes the circle Ai, drawn dashed. See the
right part in Figure 2. Construct the circle which touches (the circle) Ai, (and the lines)
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Figure 2. Inscribed circle

Bi, Ci, this is Ui, drawn dotted.19 Its radius r is half the distance between Bi and Ci. Its
centre is the intersection point of the line midway between Bi and Ci and the circle
about the centre Ai with radius rAi + r.
Finally, by drawing the inverse of Ui we have found the centre of the required (inside)
Apollonius circle U. See low middle part of Figure 2. Correct for the radius and the
solution is given left below in Figure 2, bold.

The circumscribed circle: 2nd case In the above description of the algorithm we
have neglected the other intersection point of the line midway between Bi and Ci and
the circle about the centre Ai with radius rAi + r. This intersection point is the centre
of the circumscribing circle, Ui

cir, the 2nd case.
Without further ado, I have drawn this circle in the lower part of Figure 3.

The unknown circle envelopes one circle and touches the other two circles on
the outside: 4th case The algorithm is similar to the above, but varies in details. Let
us assume that circle A will be enveloped by the unknown circle. If we increase the
radii of B and C such that they touch, the radius of the circle A has to be decreased.
Moreover, the circle Ui has to touch the circle Ai on the other side, compare Figure 2
and Figure 4. Details!

The unknown circle envelopes two circles and touches the third circle on the out-
side: 3rd case Let us concentrate on the case when A will be touched on the outside
and B and C will be contained in the enveloping (unknown) circle. The algorithm must
be adjusted when we increase the radii of B and C (and therefore also the radius of the
unknown circle U) by decreasing the radius of A, and then perform the algorithm.

For more illustrations see http://mathforum.org/mathimages/index.php/Problem
_of_Apollonius for example.
See http://en.wikipedia.org/wiki/Circles_of_Apollonius for a coloured version of the
all-in-one picture.

Once we have written the PostScript program we can abstract into an operator,
where the three circles are provided on the stack, and we’ll Vnd the touching circles,
inner and outer, after completion on the stack.
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Figure 3. In- and circumscribed circle

Figure 4. Two circles inside and one outside and vice versa

The previous requires work to get all the details right. I did not pursue this route via
the Circle Inversion technique. However . . . the numerical method, to be discussed
later in this note, is less cumbersome, and will yield the operator Apollonius for this
purpose.

What if one circle contains the two other circles? Then the solutions touch the
enveloping circle on the inside and the other circles on the outside.
See http://mathworld.wolfram.com/ApolloniusProblem.html for a thorough discus-
sion of Apollonius problem and its solutions.

The numerical method to be introduced later in this note will yield the operator
Apollonius2 suited for this case.
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Solution of Apollonius problem by numerical analysis techniques
The conditions for the inscribed circle, Cr,(x,y), of three (distinct) circles, Ck, k = 1, 2, 3,
read

||Ck
− Cr,(x,y)|| = rk + r, k = 1, 2, 3

three quadratic equations in three unknowns, rather complex.
But ... we can simplify.
If we square the conditions and subtract 2 from 1 and 3 from 2, we arrive at( x21 y21

x32 y32

) ( x
y

)
=

( fr(21)
fr(32)

)
⇒

( x
y

)
=

( a1
a2

)
r +

( b1
b2

)
meaning x and y are linear in r. Together with one of the squared conditions

Hxy(r) = 0

we have transformed the problem into 2 linear equations and one quadratic in r.
Bounds for r are20

r ≥ min
m,n

(||Cm
− Cn
|| − rm − rn)

r ≤ max
m,n

(rm + rn)
m,n = 1, 2, 3

Hxy(r) = 0, I solved ≈15years ago by bisection programmed in PostScript. I’ll rehearse
on it later in this note with programs in PostScript and MetaPost. Moreover . . . I looked
closer at the quadratic equation H(r) = 0 and arrived at the simplest problem variant,
which I did not realize ≈15 years ago. We’ll come back on it in this note.

Throughout linear system? If we subtract the squared conditions from each other
then we arrive at the linear equations x21 y21 r21

x32 y32 r32
x31 y31 r31


 x

y
r

 =
g21

g32
g31


with

zi j = zi − z j

z̄i j =
zi + z j

2
z = x, y, r

gi j = xi jx̄i j + yi j ȳi j − ri jr̄i j

But . . . too nice to be true?21 Let us pursue it nevertheless and see what we’ll stumble
upon.

Throughout linear system: in MetaPost

beginfig(0);

r1=50; x1=0; y1=-2r1;

r2= 1.5r1; x2=-(r1+r2)/sqrt2; y2=-x2;

r3= 2r1; x3= (r1+r3)/sqrt2; y3=x3;

path p; p:=fullcircle scaled 2;

draw p scaled(r1) shifted(x1,y1);%...

%data

x21=x2-x1; ... mx21=(x2+x1)/2; ...

%equations

x21 * x + y21 * y + r21 * r = x21*mx21+y21*my21-r21*mr21;

x32 * x + y32 * y + r32 * r = x32*mx32+y32*my32-r32*mr32;

x31 * x + y31 * y + r31 * r = x31*mx31+y31*my31-r31*mr31;
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...

endfig

Which yields ...

... inconsistent equation (off by 0.00356)

l28... x31 ∗x+ y31 ∗ y+ r31 ∗ r = x31 ∗mx31+ y31 ∗my31− r31 ∗mr31; Meaning . . . singular
system! Neat of MetaPost to warn in this way.

Throughout linear system: in PostScript

%!PS Solve 33 linear system. cgl March 2010

%data

/x21 x2 x1 sub def ...

/y21 y2 y1 sub def ...

/r21 r2 r1 sub def ...

/mx21 x2 x1 add 2 div def ...

/my21 y2 y1 add 2 div def ...

/mr21 r2 r1 add 2 div def ...

/rh1 x21 mx21 mul y21 my21 mul add

r21 mr21 mul sub def ...

%solve equations

rh1 x21 y21 r21

rh2 x32 y32 r32

rh3 x31 y31 r31

solve33

/rxy exch def /y exch def /x exch def

250 300 translate

x1 y1 r1 0 360 arc blue stroke...

x y rxy 0 360 arc blue [1] 0 setdash stroke

showpage

I was surprised by the result: the picture showed up?!?
Note that I warn the user by giving the value of the determinant of the matrix,

0.0625 for this case. A singular system! For the occasion I wrote the PS operator
solve33, which uses partial pivoting and invokes solve22. See Appendix I.

Inscribed circle in PostScript Like ≈15 years ago, I solved

Hx,y(r) = 0

and ( x21 y21
x32 y32

) ( x
y

)
=

( fr(21)
fr(32)

)
where

Hx,y(r) = r + r3 − ||C3
− Cr,(x,y)||

The computation scheme reads
@ start with estimate of r
@ calculate (x, y) by solving the 2x2 linear system of equations
@ calculate Hx,y(r) and compare this value with the value of H at the interval ends
@ adjust the interval by increasing the lower value or decreasing the upper value of

the interval for r
@ take the mean of the interval ends as new estimate of r
@ repeat the above process, until either the size of the interval is small enough or H

is close enough to zero.

The result can be seen in the next included picture.
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As extra I have included the number of iterations, 22 for this case. A more sophisticated
zero-Vnding operator, with super-linear convergence, could have been programmed;
the simple bisection algorithm, with linear convergence, is good enough for the occa-
sion.22

%!PS Inscribed circle to three circles BachoTeX2010 cgl March 2010

%%BoundingBox: 0 0 620 790

(C:\\PSlib\\PSlib.eps) run %PS library

/nstr 15 string def

% circles

/r 50 def

/r1 r def /x1 0 def /y1 r r1 add neg def

/r2 r 1.5 mul def /x2 r r2 add sqrt2 div neg def /y2 x2 neg def

/r3 r 2 mul def /x3 r r3 add sqrt2 div def /y3 x3 def

% auxiliaries

/x21 x2 x1 sub def /x31 x3 x1 sub def /x32 x3 x2 sub def

/y21 y2 y1 sub def /y31 y3 y1 sub def /y32 y3 y2 sub def

/r21 r2 r1 sub def /r31 r3 r1 sub def /r32 r3 r2 sub def

/mx21 x2 x1 add 2 div def /mx31 x3 x1 add 2 div def /mx32 x3 x2 add 2 div def

/my21 y2 y1 add 2 div def /my31 y3 y1 add 2 div def /my32 y3 y2 add 2 div def

/mr21 r2 r1 add 2 div def /mr31 r3 r1 add 2 div def /mr32 r3 r2 add 2 div def

% right-hand side as function of r for inscribed circle

/rh1 {x21 mx21 mul y21 my21 mul add r21 mr21 mul sub r21 r mul sub} def

/rh2 {x32 mx32 mul y32 my32 mul add r32 mr32 mul sub r32 r mul sub} def

% bounds for r

/d21 x21 y21 size def

/d32 x32 y32 size def

/d31 x31 y31 size def

/dr21 d21 r2 sub r1 sub def% function for inscribed circle

/dr32 d21 r3 sub r2 sub def% function for inscribed circle

/dr31 d31 r3 sub r1 sub def% function for inscribed circle

dr21 0 lt {(Circle s 1 2 intersect) print} if

dr32 0 lt {(Circle s 3 2 intersect) print} if

dr31 0 lt {(Circle s 3 1 intersect) print} if

/rmin dr21 def

dr32 rmin lt {/rmin dr32 def}if

dr31 rmin lt {/rmin dr31 def}if

/rmax d21 def
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d32 rmax gt {/rmax d32 def}if

d31 rmax gt {/rmax d31 def}if

/cnt 0 def

/eps 0.01 def % required accuracy

/nmax 50 def% maximum number of iterations

/d3xy {x3 x sub y3 y sub size} def% distance circle 3 to estimated circle

/H {d3xy r3 sub r sub} def % function for inscribed circle

% Calculation values of H(r) in endpoints for r. Interval is [rmin, rmax]

/r rmin def

rh1 x21 y21

rh2 x32 y32 solve22

/y exch def /x exch def %/d exch def % not yet in solve22

/Hrmin H def

/r rmax def

rh1 x21 y21

rh2 x32 y32 solve22

/y exch def /x exch def %/d exch def % not yet in solve22

/Hrmax H def

Hrmax Hrmin mul

0 gt {(error no opposite signs: Hrmin X Hrmax > 0) print} if

% bisection zerofinding

nmax{/cnt cnt 1 add def

rmax rmin sub abs eps gt

Hrmax abs eps 100 div gt or

Hrmin abs eps 100 div gt or

{/r rmin rmax add 2 div def % bisection

rh1 x21 y21

rh2 x32 y32 solve22

/y exch def /x exch def %/d exch def

/Hr H def

Hr Hrmax mul 0 gt {/Hrmax Hr def /rmax r def}

{/Hrmin Hr def /rmin r def} ifelse

}{exit}ifelse

}repeat % or say loop for infinite case, but to limit it is safer

/rxy rmin rmax add 2 div def

250 300 translate

gsave

x y rxy 0 360 arc stroke % the looked for inscribed circle

0 0 moveto (r=) H10pt setfont show r nstr cvs show

0 -12 moveto (x=) show x nstr cvs show

0 -24 moveto (y=) show y nstr cvs show

0 -36 moveto (number iterations=) show cnt nstr cvs show

0 -48 moveto (determinant=) show d nstr cvs show

grestore

newpath x1 y1 r1 0 360 arc stroke % first original circle

x1 y1 moveto (r=) H10pt setfont show r1 nstr cvs show

x1 y1 12 sub moveto (x=) show x1 nstr cvs show

x1 y1 24 sub moveto (y=) show y1 nstr cvs show

newpath x2 y2 r2 0 360 arc stroke % second original circle

x2 y2 moveto (r=) H10pt setfont show r2 nstr cvs show



30 MAPS 40 Kees van der Laan

x2 y2 12 sub moveto (x=) show x2 nstr cvs show

x2 y2 24 sub moveto (y=) show y2 nstr cvs show

newpath x3 y3 r3 0 360 arc stroke 5third original

x3 y3 moveto (r=) H10pt setfont show r3 nstr cvs show

x3 y3 12 sub moveto (x=) show x3 nstr cvs show

x3 y3 24 sub moveto (y=) show y3 nstr cvs show

Inscribed circle in MetaPost When coding along the same lines as in PostScript,
but with using MetaPost’s equation solving possibilities, one has to be aware that
equations within a loop must be speciVed with arrays for the unknowns.

if scantokens(mpversion) > 1.005:

outputtemplate :=

else:

filenametemplate

fi

"%j.eps";

beginfig(0);

numeric x[],y[]; %showdependencies; tracingequations:=1 ;

r1=50; x1=0; y1=-2r1;

r2= 1.5r1; x2=-(r1+r2)/sqrt2; y2=-x2;

r3= 2r1; x3= (r1+r3)/sqrt2; y3=x3;

path p; p:=fullcircle scaled 2;%more convenient, because the diameter is the unit

drawoptions(withcolor blue);

draw p scaled(r1) shifted(x1,y1);

draw p scaled(r2) shifted(x2,y2);

draw p scaled(r3) shifted(x3,y3);

x21=x2-x1; x32=x3-x2; x31=x3-x1;

y21=y2-y1; y32=y3-y2; y31=y3-y1;

r21=r2-r1; r32=r3-r2; r31=r3-r1;

mx21=(x2+x1)/2; mx32=(x3+x2)/2; mx31=(x3+x1)/2;

my21=(y2+y1)/2;my32=(y3+y2)/2; my31=(y3+y1)/2;

mr21=(r2+r1)/2; mr32 =(r3+r2)/2; mr31=(r3+r1)/2;

rmin=25; rmax=100;

%r:= rmin;

rh1:= x21*mx21+ y21*my21-r21*mr21-r21*rmin;

rh2:= x32*mx32+y32*my32-r32*mr32-r32*rmin;

%solve 22 with rmin in rh1 rh2; MP’s way

x21 * xmin + y21 * ymin = rh1;

x32 * xmin + y32 * ymin = rh2;

Hrmin := abs(x3 -xmin, y3-ymin)-r3 -rmin;

%r:= rmax;

rh1:= x21*mx21+y21*my21-r21*mr21-r21*rmax;

rh2:= x32*mx32+y32*my32-r32*mr32-r32*rmax;

%solve 22 with rmax in rh1 rh2; MP’s way

x21 * xmax + y21 * ymax = rh1;

x32 * xmax + y32 * ymax = rh2;

Hrmax := abs(x3 -xmax, y3-ymax)-r3 -rmax;

nmax:=50; eps:=0.01;

for i:=1 upto nmax: cnt:=i;

exitif (rmax -rmin)< eps ;

r := (rmin + rmax)/2;

rh1:= x21*mx21+ y21*my21-r21*mr21-r21*r;

rh2:= x32*mx32+y32*my32-r32*mr32-r32*r;
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x21 * x.i + y21 * y.i = rh1;

x32 * x.i + y32 * y.i = rh2;

Hr:= abs(x3 -x.i, y3-y.i)-r3 -r;

if Hr*Hrmax > 0:

Hrmax:=Hr; rmax:=r;

else:

Hrmin:=Hr;rmin:=r;

fi;

endfor

%showvariable rmin, Hrmin, rmax, Hrmax;

draw p scaled(r) shifted(x.i, y.i) withcolor red;

currentpicture:=currentpicture shifted(200,300);

endfig;

end

Correct results were obtained.

Circumscribed circle in PostScript The conditions for the circumscribed circle are

{r, (x, y)
∣∣∣ ||Ck

− Cr,(x,y)|| = r - rk, k = 1, 2, 3}

Squaring the conditions and subtracting 2 from 1 and 3 from 2, yields the linear sys-
tem23 ( x21 y21

x32 y32

) ( x
y

)
=

( fr(21)
fr(32)

)
.

Together with e.g. the 3rd original condition

Hx,y(r) = r − r3 − ||C3
− Cr,(x,y)|| = 0

we arrive at three equations of which one is quadratic and two are linear.
Auxiliaries

fr(i j) = xi jx̄i j + yi j ȳi j − ri jr̄i j + ri jr

bounds for r

r ≥ min
m,n

(||Cm
− Cn
|| − rm − rn)

r ≤ max
m,n

(||Cm
− Cn
||

m,n = 1, 2, 3.

Modifying the program towards the circumscribing circle case,24 yields as results
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The number of iterations is 20.

Circumscribed circle in MetaPost I stumbled upon the limitations of the number
system of the current MetaPost: overWow occurred. I had to scale the problem, after
which the correct results were obtained.

Mutual tangent circles: Soddy’s formula In the mid-nineties J.H. van de Stadt
communicated Soddy’s formula to me, which is an explicit solution of H(r) = 0.
The radius, r, of the inscribed circle is given by

1
r
=

1
ra
+

1
rb
+

1
rc
+ 2

√
1

rarb
+

1
rbrc
+

1
rcra

Similarly, the radius, R, of the circumscribed circle is given by25

1
R
= −

1
ra
−

1
rb
−

1
rc
+ 2

√
1

rarb
+

1
rbrc
+

1
rcra

These formulas can also be used for the case when the outside (or inside) circle is
known and one of the other circles has to be determined.

Soddy’s formula goes back to Descartes circle theorem, which for the 4 circles reads

2
4∑

i=1

1
r2
i
=

( 4∑
i=1

1
ri

)2

I did not make use of these beautiful results, because there is more to it then just the
radius. Moreover, in Apollonius problem the given circles don’t have to touch each
other.

The Solution of Apollonius problem: operator Apollonius
As earlier, squaring the conditions and subtracting 2 from 1 and 3 from 2, gives 2 linear
equations with three unkowns. We’ll pursue this for the inscribed circle, and we’ll see
that all cases are solved by the resulting operator Apollonius.

If we express in the linear subsystem x and y in r, we arrive at( x
y

)
=

( a1
a2

)
r +

( b1
b2

)
Substitution of the above in the squared 3rd condition

(x − x3)2 + (y − y3)2 = (r + r3)2

yields one quadratic equation in one unknown

A · r2
− 2B · r + C = 0

with the explicit solutions

r1,2 =
B
A
±

√
( B
A

)2 −
C
A

The various constants can be read from the PostScript snippet below, were x32 denote
the diUerence between x3 and x2, and mx32 denote the mean of x3 and x2 etc.

Only one solution is real for the case of distinct circles, that with the + sign, the
other, the spurious solution, has sneaked in while squaring the third condition.

%solve (in the real code I exchange rows if necessary)

% / x21 y21 \ / x \ / g21 \ / a1 \ / b1 \

% | | | | = | | = | | r + | |

% \ x32 y32 / \ y / \ g32 / \ a2 / \ b2 /

/p x32 x21 div def% pivot

/a22 y32 p y21 mul sub def
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/a2 r32 neg p r21 mul add a22 div def

/b2 g32 p g21 mul sub a22 div def

/a1 a2 y21 mul r21 add neg x21 div def

/b1 g21 y21 b2 mul sub x21 div def

%express x and y as function of r

/x {a1 r mul b1 add} def%linear in r

/y {a2 r mul b2 add} def%linear in r

%Coefficients of quadratic equation A*r^2 - 2B*r + C = 0

/A a1 dup mul a2 dup mul add 1 sub def

/B r3 a1 b1 x3 sub mul sub

a2 b2 y3 sub mul sub def

/C b1 x3 sub dup mul b2 y3 sub dup mul add r3 dup mul sub def

%the radius of the inscribed circle (neglecting the A=0 case here)

/r B A div dup dup mul C A div sub sqrt add def

%draw inscribed circle, in red and dotted

x y r 0 360 arc [1] 0 setdash red stroke

Neat!

Although not really higher mathematics, I did not Vnd this last result in Courant &
Robbins, nor in the numerical Math books I own, nor did I come across it in my early
num math career. In the enormous useful wikipedia encyclopaedia http://en.wikipedia
.org/wiki/Problem_of_Apollonius the history of the problem and a kaleidoscopic sur-
vey of solution techniques are presented, included the one treated above.

Use of the inscribed operator, where xi yi ri denote the centre and radius of the
calculated inscribed circle, is done by the invoke

x1 y1 r1 x2 y2 r2 x3 y3 r3 inscribed /ri exch def /yi exch def /xi exch def

The operator circumscribed is highly similar. For the invoke change inscribed by
circumscribed in the example line given above.

The pearl of this paper is the unifying operator Apollonius, which can give all 8
solutions

@ the inscribed circle, with an invoke similar to the above with inscribed changed
by Apollonius

@ the circumscribed circle, with the invoke with the negative radii
x1 y1 r1 neg
x2 y2 r2 neg
x3 y3 r3 neg Apollonius

/rcircum exch def /ycircum exch def /xcircum exch def
@ the other cases, obtained by the invoke with appropriate positive and negative

radii.

Not so clear in B&W, later in this note I’ll disentangle the picture.
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Two circles inside one circle
So far I qualiVed the second root as a spurious solution of the quadratic equation in r.
In the case of this section we do have two solutions, so the second value for r, together
with its centre, are also delivered by Apollonius2.

The invoke is similar and for the Rerich case, when we like to draw the second order
circles, the invoke reads

newpath 0 0 R 0 360 arc stroke

newpath x1 y1 r1 0 360 arc stroke

newpath x2 y2 r2 0 360 arc stroke

x1 y1 r

x2 y2 r

0 0 R neg Apollonius2 /rsnd1 exch def /ysnd1 exch def /xsnd1 exch def

/rsnd2 exch def /ysnd2 exch def /xsnd2 exch def

green %or a setdash when in b&w

newpath xsnd1 ysnd1 rsnd1 0 360 arc stroke

newpath xsnd2 ysnd2 rsnd2 0 360 arc stroke

Beautiful Apollonius gaskets I borrowed from the WWW If we start with one
circle and within this circle a series of circles which touch each other, then one may
obtain

Interesting theorems exist, for example Steiner’s alternative, about circles covered by
touching circles. http://www.cgl.ucsf.edu/home/bic/steiner/asilomar_2005_steiner_5a
.ppt. I’m not aware of the usefulness of Steiner’s l’art pour l’art alternative.
The left Vgure was already known in Japan as a sangaku in 1788.

Applications 26

The principal application of Apollonius’ problem, as formulated by Isaac Newton, is
hyperbolic trilateration, which seeks to determine a position from the diUerences in
distances to at least three points. For example, a ship may seek to determine its position
from the diUerences in arrival times of signals from three synchronized transmitters.
Solutions to Apollonius’ problem were used in World War I to determine the location
of an artillery piece from the time a gunshot was heard at three diUerent positions.
Hyperbolic trilateration is the principle used by the Decca Navigator System and LO-
RAN. Similarly, the location of an aircraft maybe determined from the diUerence in
arrival times of its transponder signal at four receiving stations. This multilateration
problem is equivalent to the three dimensional generalization of Apollonius’ problem
and applies to global positioning systems such as GPS. It is also used to determine
the position of calling animals (such as birds and whales), although Apollonius’ prob-
lem does not pertain if the speed of sound varies with direction (i.e., the transmission
medium is not isotropic).
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Apollonius’ problem has other applications. In Book 1, Proposition 21 in his Prin-
cipia, Isaac Newton used his solution of Apollonius’ problem to construct an orbit in
celestial mechanics from the centre of attraction and observations of tangent lines to
the orbit corresponding to instantaneous velocity. The special case of the problem of
Apollonius when all three circles are tangent, Rerich’s symbol, is used in the Hardy-
Littlewood circle method of analytic number theory to construct Hans Rademacher’s
contour for complex integration, given by the boundaries of an inVnite set of Ford
circles each of which touches several others. Finally, Apollonius’ problem has been
applied to some types of packing problems, which arise in disparate Velds such as the
error-correcting codes used on DVDs and the design of pharmaceuticals that bind in a
particular enzyme of a pathogenic bacterium.

Orthogonal circles
Given a circle C and an orthogonal arc

^
RQ, then the two parts of the circle cut by the

orthogonal arc are related by inversion in the arc: the right part of the circle below
is the inverse of the left part, because of the property that circles orthogonal to the
inversion circle remain invariant, apart from mirroring. In particular P is inverted into
Pi on the other side of the circle circumference.

Escher’s grids
Escher in his Circle Limits used grids orthogonal to the circle, except in his Circle
Limit III, where the grid cuts the boundary at ≈ 80◦, as mentioned by Coxeter.

In fact Vnding a method to draw such grids was the incentive to this work on Circle
Inversions.

It looked like that I needed the functionality to draw an orthogonal circle to a circle,
which also passes through two prescribed points within the circle. It turned out that
the picture can be parametrized by the radius of the circumscribing circle and one
suitable chosen point within the circle, namely where the orthogonal arcs cross each
other. The rest is implicit by the symmetry of the Vgure, which does not surprise me
in Escher’s drawings.

Let the radius of the circle be r and the parameter P, the inside point, be speciVed
by P= (.6r, 0). Then the inverse of P is Pi

≈ (1.66r, 0) with mean Pm = [P,Pi] ≈ (1.13r, 0).
The symmetrical orthogonal circle through P has centre Pm and radius ≈0.53r. Rotation
over 90◦ yields its symmetrical counterpart. The orthogonal circle through P and P
rotated over 90◦ has centre (1.13r, 1.13r), approximately.
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In Circle Limit III the arcs intersect the boundary at ≈80◦. Coxeter calls these lines ‘
. . . one of the branches of an equidistant curve.’ The hyperbolic and Escher-like grid
depends on r and one data point P and is obtained by drawing arcs orthogonal to the
circumference which pass through this point.

Figure 5. Hyperbolic Escher-like grid

In the right Vgure arcs have been inverted into opposite arcs, as second step towards a
Circle Limit grid.

%!PS Orthogonal arcs through one point within a circle. CGL March 2010

%%BoundingBox: 0 0 620 790

(C:\\PSlib\\PSlib.eps) run %PS inversion library

200 300 translate

/r 100 def

0 0 r 0 360 arc

gsave stroke grestore

clip %later drawing shows only within the circle with radius r

/Px r 2.7 div def

/Py 0 def

/P {Px Py} def

P 0 0 r pointinversion

/Qy exch def /Qx exch def /Q {Qx Qy} def

P Q middleperpendicularvar

/mQy exch def /mQx exch def

/mPy exch def /mPx exch def

/mQ {mQx mQy}def /mP {mPx mPy}def

mP mQ mean

/y exch def /x exch def

/r1 Px x sub Py y sub size def

4{x y r1 0 360 arc stroke

90 rotate}repeat

/r2 Px x sub Py x sub size def

4{x x r2 0 360 arc stroke

90 rotate}repeat

showpage

Circle orthogonal to two (distinct) circles To make the problem unique add to the
conditions that the circle must pass through a point P. Find the inverses of this point in
both circles. The intersection point of the middle perpendiculars of P with its inverses
Pi

1 and Pi
2 is the centre of the orthogonal circle.
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Circle orthogonal to three (distinct) circles: the radical circle The centre of the
radical circle is called the radical centre of the three circles. On this conVguration we
can apply inversion geometry, to Vnd the radical centre. Once we have found this
centre we can draw the radical circle.

Inversion in the radical circle leaves the given circles unchanged,27 but transforms
the two conjugate solution circles into one another. Under the same inversion, the
corresponding points of tangency of the two solution circles are transformed into one
another.28 Hence, the lines connecting these conjugate tangent points are invariant
under the inversion; therefore, they must pass through the centre of inversion, which
is the radical centre.29

Remark The in- and circumscribed circles as conjugate pair could equally-well have
been used in the picture above.

Circle which intersects Cr,(0,0) at an arbitrary angle and passes through a point
P within Cr,(0,0) The angle of intersection between curves is the angle between the
tangents. For our case of intersecting circles we can use the equivalent of the angle
between the radii to the intersection point.30 This is handy, it keeps the explanatory
pictures clear.

For intersection of orthogonal circles we had the circle inversion technique. In my
trying, on the wrong tract as we we’ll see later, to emulate Escher’s Circle Limits III
grid, I needed a general method for Vnding the circle, which cuts the given circle Cr,(0,0)
at 80◦, and passes through P (on the x-axis) within the given circle.
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Conditions for the ∠α, i.e. ∠OSQ, as function of the radius r2 of the 2nd circle, parame-
trized by r and P, read

αr,p(r2) = 180 − φ − ψ

φ = arctan
Sy

Sx

ψ = arctan
Sy

d − Sx

where the intersection point S of the circles is the solution with positive ordinate of
the equations for the circles

x2 + y2 = r2

(x − d)2 + y2 = r2
2 with r2 = d − p

two quadratic equations in two unknowns x and y. Complex.
We can simplify, however, by subtracting equation 2 from 1, as done earlier in this

note, and obtain

2d · x = d2 + r2
− r2

2 → Sx =
d
2
+

r2
− r2

2
2d

Substitution of this value in the equation for Cr,(0,0), yields for the ordinate

Sy =

√
r2 − S2

x.

After Vnding iteratively the zero of the equation αr,P(r2)− 80 = 0, along similar lines as
treated earlier in this note and implemented in the operator circlesatalpha, as given
in Appendix I, we may draw the Vgures

arcs cut at 80◦ arcs cut at 80◦ and 90◦

For the left grid we rotated the arc through P over −45◦ 8 times. For the right grid
we rotated P over −90◦ and drew an orthogonal arc through P and the rotated P. The
latter arc was rotated 4 times over −90◦. The right grid consists of arcs which cut the
boundary at 90◦ and of arcs which the cut the boundary at 80◦.
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We have arrived at 3 grids
@ one where the arcs cut the boundary at 90◦, see Figure 5
@ one where the arcs cut the boundary at 80◦, left Vgure above, and
@ a grid where the arcs cut the boundary at 80◦ and at 90◦, right Vgure above.

Which of these is the real Escher Circle Limit III grid?
Maybe the right grid above, where the arcs cut the boundary at 80◦ and at 90◦. I

prefer the earlier highly symmetric one, as displayed in Figure 5, where all the arcs cut
the boundary orthogonally, and where the Vgure depends only on P (and r).

Did Escher miss something?
In the implementation the user is asked for an (estimate of the) upper bound of the

radius of the wanted circle. As lower bound I assumed that the centre of the wanted
circle is at the boundary of the main circle. This limits the use of circlesatalpha.

Remark1 The case with a circle Cr,(x,y) and P arbitrarily within the circle, can make
use of circlesatalpha by shifting the centre of the circle to the origin and rotating,
the latter such that P will lie on the x-axis.

Remark2 I was on the wrong track, too much Vxed at an angle of 80◦. Coxeter’s
results of 1996 are by far superior, but . . . the used math, especially The Biquadratic

field Q(
√

2 +
√

3), and in general the used hyperbolic geometry, I’m not yet familiar
with, alas. Nevertheless . . . it illustrates the power of math.

Coxeter’s solution
Coxeter, in What Escher left unstated, The Mathematical Intelligences, 18, 4, 1996,
analysed Escher’s Circle Limit III. He started from the rotational symmetry at P and
derived (the parameters for) the grid.

Circle Limit III Coxeter’s grid

Circle covered by triangles
Let us choose points P, Q and R equally distributed along the circumference of a circle.
Draw the orthogonal arcs

^
PQ,

^
QR and

^
RP. A hyperbolic regular 4PQR is obtained, of

which the sides are hyperbolic lines, often called d-lines of the so-called Poincaré disk
in hyperbolic geometry.

The triangle is also known under the name hypocycloid, which for the case of the
regular 4 is obtained after rolling a circle with radius 1

3 R along the inside of the main
circle with radius R. The triangle has sum 0 of the inner angles.

Interesting pictures are obtained when we invert the triangle repeatedly in its sides.
Inversion of P, Q and R in the opposing circular arcs yields the the points Pi, Qi, Ri,

which lie on the clipping circle C.
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Proof Let us look at P, Pi and the midpoint of the inversion circle Ir
√

3,(2r,0), of which
^

RQ is an arc. Then |
⇀
IP | · |

⇀
IP i
| = r2, because the circles intersect orthogonally, i.e.

⇀
IR is

tangent to the clipping circle C.

After inversion of P, Q and R, and drawing the (orthogonal) circular arcs, PQi, QiR
et cetera, the clipping circle C is covered by four hyperbolically congruent triangles:
PQR, and its three hyperbolically mirrored images PRQi, PQRi, and RQPi.

An interesting continuation is, see the above Vgure at the right, to invert P in RiQ
(and symmetrically Q in RiP), Q in PiR (and symmetrically R in PiQ), R in QiP (and
symmetrically P in QiR).31 As result the clipping circle C is covered by ten hyperboli-
cally congruent triangles.

Inversion of a smiley pattern can be done by use of the PostScript operator path-
forall. This operator appends to the current path. It is not straightforward how to
stroke the path created by pathforall, separately. I call the used technique32 partial
delayed execution, which can be useful as shown in this case. The pattern is inverted in
two parts: eyes, nose and mouth by pathforall and the circumference by circlein-
version.

In the right picture, with 2nd level inversions, the operators pointinversion and cir-
cleinversion are invoked repeatedly: the invoke for the 1st level inversion is imme-
diately followed by the invoke for the 2nd level inversion in the procedures for path-
forall.

PS code with 1st level inversions only. It demonstrates how to use fruitfully path-
forall.

%!PS-Adobe-EPSF-3.0 pathforall use, cgl jan 2010

%%BoundingBox: 150 250 250 350

(C:\\PSlib\\PSlib.eps) run %library inversion operators, constants

200 300 translate
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/rs 12.5 def % size smiley

r 0 moveto 0 0 r 0 360 arc % surrounding circle r=50

/smiley{% path of inner smiley

-5 5 moveto 3 0 rlineto

5 5 moveto -3 0 rlineto

0 2.5 moveto 0 -2.5 lineto

-5 -5 moveto 5 -1.25 rlineto 5 1.25 rlineto

}def

smiley % creates path of inner part of smiley

rs 0 moveto 0 0 rs 0 360 arc stroke % circumference of smiley

stroke % central smiley is drawn

%

/Ix 2r def /Iy 0 def /Ir rsqrt3 def % Inversion circle centre and radius

3{smiley % creates path of inner smiley

[{ Ix Iy Ir pointinversion /moveto cvx}

{ Ix Iy Ir pointinversion /lineto cvx}

{ }

{ }

pathforall

] cvx % make array executable

newpath % delete path of central smiley

exec % path of inverted smiley is created (only)

stroke

0 0 rs Ix Iy Ir circleinversion /ir exch def /iy exch def /ix exch def

newpath ix iy ir 0 360 arc stroke % circumference of inverted smiley

Ix Iy 120 rot /Iy exch def /Ix exch def % rotate centre of inversion circle

}repeat

%

/Mx r def /My rdsqrt3 def % centre of circles (sides triangle)

auxlin % from libray: dashed auxiliary lines

3{newpath Ix Iy Ir 150 210 arc stroke % arc of inversion circles

120 rotate}repeat

/R {hr hr sqrt3 mul}def

6{R moveto Mx My My 150 270 arc stroke % inverted sides

60 rotate}repeat

showpage

If you, kind reader, can’t resist the temptation to run the above (apparently complete)
PostScript program, as was the case with Nico Temme, when I asked his opinion about
this note, keep in mind that several predeVned constants and operators from my PSlib
library are used, some of which are discussed and given elsewhere in this note.

Continuation to the limit of the above processes will yield a clipping circle covered
by smaller and smaller triangles, which form a grid, casu quo smaller and smaller
smileys. The resulting pictures I call in the footsteps of M.C. Escher Circle Limits.
Continuation to the limit is cumbersome, maybe less cumbersome than for Escher
when he drew his artistic Circle Limits.

Inversion of hyperbolic arcs As pattern choose the lines which connect the corner
points of the hypocycloid by arcs with their two control points (of the Bézier arc) at
the centre of the circle. This looks like the Mercedes logo. Inversion of this logo in
the dashed orthogonal circles yields straight lines, because the inverse of the centre
of the circle is the mean of the corners of the hypocycloid. The curve procedure of
pathforall is exercised.
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I wanted to invert a ‘Vsh’ pattern in the hypocycloid (dashed) in the picture above.
This result conVrmed experimentally that Escher did not use circle inversion. He used
hyperbolic rotations to ‘copy’ his patterns.

Circle through three points
A circle is usually deVned by the set of points which lie at a constant distance from
the circle centre, usually the origin.{

z = (x, y)
∣∣∣ x2 + y2 = r2

}
In the series http://www.pandd.demon.nl/complex1/hypm1.htm I came across another
deVnition of the circle named after Apollonius: the set of points of which the quotient
of the distance to two points is constant.{

z = (x, y)
∣∣∣ |z − P|
|z − Pi|

= c
}

where P and Pi are inverse points towards the circle, and c a constant.
A circle is usually speciVed by the coordinates of its centre and its radius (three data),
as is required for the PostScript operator arc.
Another description of a circle is by three points on the circumference.

Below an operator is given for drawing a circle given three points on the circumfer-
ence.33

/threepointscircle% P, Q, R on stack i.e. x1, y1, x2, y2, x3, y3

%==>

%x, y, r: centre and radius of circle

{0 begin

/Ry exch def /Rx exch def /Qy exch def /Qx exch def /Py exch def /Px exch def

Px Py Qx Qy middleperpendicular

/p1y exch def /p1x exch def /p2y exch def /p2x exch def

Qx Qy Rx Ry middleperpendicular

/q1y exch def /q1x exch def /q2y exch def /q2x exch def

p1x p1y p2x p2y q1x q1y q2x q2y intersect /y exch def /x exch def

/r Px x sub Py y sub size def

x y r

end

}def

/threepointscircle load 0 15 dict put

The operators middleperpendicular and intersect will be discussed in Appendix I.
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Orthogonal circle through 2 points on the inversion circle

The points P1 and P2 are speciVed by their polar coordinates: the radius r of the circle
Ir through these points and their angles α1 respectively α2. The radius ro and the centre
(Mx, My) of the orthogonal circle are given by

ro = r tan .5(α1 − α2)
Mx = IM cos .5(α1 + α2)
My = IM sin .5(α1 + α2)

IM = r
cos .5(α1 − α2)

.

The above is implemented in the operator orthogonal as given below, which is used
in the section ‘a circle covered by triangles.’ Of the orthogonal circles only the clipped
parts, which lie within the circle, are drawn. No explicit clipping. Assumed is that the
circle centre, Ir, is at the origin.

/orthogonal % r phi1 phi2 on stack

%Purpose draw inner arc of orthogonal circle through

%(r cos(phi1), r sin(phi1)) and (r cos(phi2), r sin(phi2))

%assumed is that the circle has its centre at the origin.

{0 begin

/phi2 exch def /phi1 exch def /r exch def

/IM r phi1 phi2 sub .5 mul cos div def % auxiliary

/xP {r phi1 cos mul r phi1 sin mul}def % shorthand

/mphi12 phi1 phi2 add .5 mul def % mean of angles

/xm12 IM mphi12 cos mul def % x coord circle centre

/ym12 IM mphi12 sin mul def % y coord circle centre

/rm12 phi1 phi2 sub .5 mul dup sin exch cos div r mul def

% r*tan.5(phi1-phi2) is radius

xP moveto %move to centre of orthogonal circle

newpath xm12 ym12 rm12 phi1 90 add dup 180 phi1 sub phi2 add add arc stroke

end}

def

/orthogonal load 0 9 dict put

I needed the above for drawing orthogonal circles through two points on the circum-
ference of a circle.

Remark It looked like that small grid arcs in Circle Limit III were drawn in this way.
Not true. Coxeter proved that the centre of the small circle is oU the circumference
by a few per mille: at distance .9981r from the centre of the main circle. Not visible, I
guess, so my assumption was not too bad.

Orthogonal circle through 2 points within a circle
Invert both points P and Q in the circle Ir. The intersection point of the middle perpen-
diculars of

⇀
PPi and

⇀
QQi is the centre of the required circle.
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Proof IQ.IQi = r2 by deVnition (of inversion). The equation also holds for two lines
through I, of which one intersects the circle and the other is tangent to the circle.
Therefore the line from I to the intersection points of the two circles is tangent to the
other circle, and hence the circles are orthogonal.

The picture has been obtained by the following operator with P=.25r(1, -1) and
Q=.25r(1, 1).

/twopointsincircle

%P1x P1y P2x P2y: points within the circle

%r : radius of inversion circle (at centre)

{0 begin

/r exch def

/Py exch def /Px exch def /Qy exch def /Qx exch def

/P {Px Py}def /Q {Qx Qy}def

gsave auxlin

0 0 r 0 360 arc stroke

0 0 moveto -5 -5 rmoveto (I) show

0 -2 rmoveto gsave H5pt setfont (r) show grestore

P moveto -9 -7 rmoveto (P) show

Q moveto -10 -0 rmoveto (Q) show

P 0 0 r pointinversion /py exch def /px exch def

px py moveto gsave -1 1 rmoveto H7pt setfont(P) show

0 3 rmoveto H5pt setfont (i) show

grestore

Q 0 0 r pointinversion /qy exch def /qx exch def

qx qy moveto gsave -1 -9 rmoveto H7pt setfont(Q) show

0 3 rmoveto H5pt setfont (i) show

grestore

0 0 moveto px py lineto stroke

0 0 moveto qx qy lineto stroke

P px py middleperpendicular /pmy exch def /pmx exch def /py exch def /px exch def

Q qx qy middleperpendicular /qmy exch def /qmx exch def /qy exch def /qx exch def

pmx pmy px py qmx qmy qx qy intersect /y exch def /x exch def

pmx pmy moveto x y lineto qmx qmy lineto stroke

/r Px x sub Py y sub size def

x y moveto 1 -2 rmoveto (N) H7pt setfont show

grestore

newpath x y r 0 360 arc stroke%orthogonal circle

end

}def

/twopointsincircle load 0 21 dict put
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I thought that I needed this operator for drawing Escher’s Circle Limit grids. Closer
inspection of Escher’s Circle Limit III grid yielded that only one point within the circle
is suXcient for drawing the grid. The same holds for Circle Limit I, although I’m
puzzled about which grid he used, and why.

Circle prescribed by a point and its inverse towards a circle with radius r
No general operator is provided, just the principle is illustrated. Assume that one in-
version point, Pi, is at the origin and the other, P, at (30, 0), and the radius r = 25. Let
us suppose that the midpoint m of the circle is x away from P: M= (30 + x, 0). The
equation for x reads

x(x + P) = r2 with P = 30, r = 25

The centre M follows from the solution x of the above quadratic equation

x = .5(
√

(900 + 2500 − 30) ≈ 14.15 → M ≈ 44.15

The Apollonius constant c = |z−P|
|z−Pi |

equals 39.15/69.15 ≈ .56 ≈ 10.85/19.15, where en
passant we veriVed the property that the inverse points are the points of Apollonius.

Reflection is not inversion
I asked myself the question whether a relation exist between circle inversion and re-
Wection in a convex circular mirror, as arc of the inversion circle. In order to illustrate
the diUerence I restricted myself to points on the real axis.

From the deVnition of inversion IO · IOi = r2, we derive
1

MOi −
1

MO
=

1
r

where MO is the distance from O to the mirror M, i.e. MO = OIr−r, MOi is the distance
from the mirror to the inverted point Oi, i.e. MOi = r − IOi, and r is the radius of the
inversion circle I. This resembles the optical formula for mirrors we learned at high
school: ‘the mirror formula’ 1

v +
1
b =

1
f .
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This note is a sidestep of familiarizing myself with hyperbolic geometry, towards un-
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This note is published in the TEX community, because it is an example of mini-
mal plain TEX markup and because it exercises PostScript for creating pictures to be
included in AnyTEX documents.

Thank you Jonathan Kew for providing the TEXworks environment for systems such
as Vista, of which I became aware at the EuroTEX2009, and which I received on the
TEX Live 2009 DVD.

Wim W. Wilhelm is kindly acknowledged for his remarks on this paper and for his
mentioning of Scite as a versatile editor for MetaPost.34 He also drew my attention to
the Mathematica reader for viewing Mathematica notebooks.

Henk Jansen traced that the algebraic solution for the problem of Apollonius as
developed in this paper, is mentioned in the superb survey http://en.wikipedia.org/wiki
/Problem_of_Apollonius.

Thank you Nico Temme for your suggestions and help. Nico communicated that he
uses Pascal to create pictures, exports them in .eps format, eventually post-processes
them in Adobe Illustrator, for inclusion in his LATEX documents. Apparently, there is no
need for him to use or program in PostScript. In the past he gave me a copy of Coxeter’s
What Escher left unstated, and recently he handed me the Pythagoras publication.

The TEX-world creates pictures in MetaPost, even Don Knuth . . . however, one can
make use of the PostScript library (see Appendix II) in MetaPost, conform to my phi-
losophy to create libraries at the lowest level for (re)use at higher levels.

Thank you Taco Hoekwater for your suggestion to discern between the denotation
of a point and a circle, and for your work to procrust this note into MAPS format.
Most of all thank you for prompting how to overload operators in PostScript. Your
suggestion to release PSlib on the WWW is well-taken. I’ll announce the release at
the BachoTeX2010, but for the moment I don’t know where to release it: maybe on
NTG’s site, maybe on CTAN.

The MAPS proofreader is kindly acknowledged for the improvements on the use of
English.

Thank you Bogusłav Jackowski for stressing the importance of legibility and quality
of the illustrations, and for your advice: do realize the consequences of B&W print,
when colour nuances are lost.

Conclusions
Note what a little math can do towards mean-and-lean PostScript code. Especially,
Apollonius problem has been reduced to solving one quadratic equation.

It is amazing how much math is available for free on the WWW via Wikipedia and
personal sites, and . . . not diXcult to spot with the use of the right keywords, thanks
to search engines.

For education in Math it seems that Cabri and animated Java are indispensable.
I’m still puzzled by why Escher did not use the highly symmetrical orthogonal grid,

as given in Figure 5, for his Circle Limit III.
The assembling, creation, testing and disseminating of PostScript operators in Post-

Script program libraries is strongly advocated, because it eases the use of PostScript,
and can be included in MetaPost.35

New, I think, is the operator solve33 for solving 3 linear equations in 3 unknowns.
The various operators for the inversion are new also, I presume.

The pearl of the paper is twofold:

@ the rediscovery that Apollonius problem is solved by the solution of a quadratic
equation, and

@ the operator Apollonius, which reWects this discovery and can be used to obtain
all 8 solutions of Apollonius problem. New probably, so is its cousin Apollonius2.

A beneVcial spin-oU of this work is the emerge of a PostScript library.
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I would welcome an extension of TEXworks with a PostScript IDE, meaning edit
PostScript in the left pane and view the .pdf in the right pane. This also holds for
MetaPost.

MetaPost2, especially the multi-length arithmetic, would facilitate the use of Meta-
Post. A MetaPost library would ease the use of MetaPost too, to start with Hobby’s
boxes and graphs. Maybe the use of the emerging PostScript library in MetaPost will
help as well.

With respect to TEX markup I had to kludge (just a tiny bit) for aligned harpoons in
⇀
P and

⇀
Pi. For the markup of WWW links the catcode of the underscore and the %-sign

had to be changed into 12. For colouring text with square-root signs and such, pdfTEX
requires to include \pdfliteral{1 0 0 0 k } as well as \pdfliteral{1 0 0 0 K }.

The jpgD macro for the markup of a displayed .jpg picture obtained its cousin:
the macro pdfD. In BLUe the code for verbatims was adapted in order to align the
comments in the PostScript code. For the slides I had to reinstate magniVcation, which
pdfTEX has switched oU, and initialize some settings appropriate for slides, and write
\nxt, next slide, the analogon of \newpage. No special slide package needed.

The extension of circle inversions into sphere inversions might be interesting, but
. . . to explore the matter more advanced tools are needed. Mathematica?

Isn’t it amazing, that the incentive to this work was that I did not know how to
draw a circle orthogonal to another circle and that it ended up with a PostScript library
operator which draws an orthogonal circle to three other distinct circles.

Appendix I: PostScript library
PostScript operators
I gathered my PostScript operators under Vista in the Vle PSlib.eps. An invoke of the
library can be done via inclusion of the following in your PostScript program

(C:\\PSlib\\PSlib.eps) run %Files are on C disk in directory PSlib

For the moment, PSlib consists36 of constants, names (and CMYK settings) for
colours,37 some of Adobe’s Bluebook operators, next to operators I developed myself.

I don’t know how MetaPost deVnitions can be translated into PostScript operators.
PostScript programs, which for example test the PostScript operators, as e.g. given

in Adobe’s Blue Book, I store in

C:\\PSlib\\PSprg.eps

A snapshot of the contents of my PostScript library
To start with I have included constants like sqrt2, sqrt3, sqrt5, pi, ... .

I borrowed from pdfcolor.tex the names and values of the CMYK colours, to en-
hance compatibility of colours in PostScript graphics and in pdfTEX, e.g.

/cmykBlue{1 1 0 0}def

/Blue{ cmykBlue setcmykcolor } def

use: Blue...

I also included some ‘predeVned’ fonts.38 For use of a predeVned font, make the font
current by the literal for the predeVned font name, e.g. H12pt for Helvetica 12 points,
followed by setfont.

From Adobe I took over the operators given in the Blue book.
Also included are fractals, such as binary tree, H-fractal, Pythagorean tree,

snowWake, fern, Julia fractal, Koch fractal, Levy fractal, in short rewrites of Hans
Lauwerier’s Basic programs in PostScript, if not from Peitgen c.s.

Some emulated art like Linear I and Linear II from Naum Gabo, and Escher’s im-
possible cubes, next to a few à la Mondrian are also candidate for the library. Some
work still has to be done to make them available as operators.

In the following I’ll discuss some operators developed by me.
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Length, or better called size in PostScript A too simple operator? Not so.
One must circumvent intermediate (numerical) overWow, and. . . use the stack only

because of the limited size of the dict stack.39 Moreover, the name length is already
in use as a so-called polymorphic operator—takes diUerent kinds of arguments—also
called an overloaded operator in ADA, for example. We can redeVne length, but . . .
then we have lost the existing meanings. For the moment, I don’t know how to extend
a polymorphic operator in PostScript with more meanings, so I had to choose another
name.

|(x, y)| =
√

x2 + y2

= |y|
√

1 + (x/y)2 numerically better if |y| ≥ |x|

= |x|
√

1 + (y/x)2 numerically better if |x| ≥ |y|

/size % x y ==> sqrt(x^2+y^2)

% not robust against 0 0 on the stack

{abs dup 3 -1 roll abs dup 3 1 roll % |y| |x| |y| |x|

le {size} % |y|<=|x|

{exch dup 3 1 roll % |y| |x| |y|

div % |y| |x|/|y|

dup mul 1 add sqrt mul

}ifelse

}def

The operator is related to the polar coordinates (r, φ) of a point (x, y). In PostScript the
angle φ can be obtained via the atan operator; for the size r one has to provide an
operator oneself.

Overloading length While procrusting my contribution for MAPS, Taco Hoekwater
came up with how to overload PostScript operators, which I incorporated in the PS
library with result that the polymorphic length as well as size can be used.

%!PS Overloading length. Taco Hoekwater April 2010

/PSlength {length} bind def % save old meaning

/lengthdict 5 dict def

lengthdict /arraytype {PSlength} put

lengthdict /dicttype {PSlength} put

lengthdict /stringtype {PSlength} put

lengthdict /integertype {size} put

lengthdict /realtype {size} put

/length {

lengthdict begin dup type exec end

} def

%Test

(whatever) length pstack pop

[1 2 3] length pstack pop

3 dict length pstack pop

3 4 length pstack pop
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Middle perpendicular The problem is: given 2 points, say P and Q, draw the middle
perpendicular.

When I was taught analytic geometry at high school, I don’t think I would have come
up with the nice mean-and-lean solution as implemented below in PostScript. There
are two versions: one which yields PQ 90◦ rotated around the mean [P, Q], called mid-
dleperpendicularvar, and the other which yields the mean and one rotated endpoint,
called middleperpendicular.

/middleperpendicularvar

% x1 y1 x2 y2 two points on stack

%==>

%the given points rotated 90 degrees around the mean.

{0 begin

/y2 exch def /x2 exch def /y1 exch def /x1 exch def

/xm x1 x2 add 2 div def /ym y1 y2 add 2 div def%middle

%translate (xm, ym) to Origin , rotate 90 degrees, translate back

/aux y1 ym sub neg xm add def

/y1 x1 xm sub ym add def

aux y1

/aux y2 ym sub neg xm add def

/y2 x2 xm sub ym add def

aux y2

end } def

/middleperpendicularvar load 0 10 dict put

Orthogonal marker The problem is to mark at the intersection point of two lines
that the lines cross each other orthogonally.

/ortho

%lx ly point on left leg

%x y cornerpoint

%s size s of marker

%==>

%ortho symbol drawn of size s

{0 begin

/s exch def

/y exch def /x exch def

/ly exch def /lx exch def

gsave x y translate

lx x sub ly y sub atan neg rotate

0 s moveto s s lineto s 0 lineto stroke

grestore

end } def

/ortho load 0 5 dict put

See above in the diagram of the middle perpendicular how it looks. This code can
also be used as a post-processing addition when you have converted MetaPost into
PostScript.

Related to the orthogonal marker is the marking of angles by circular arcs.
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Angle marker The problem is to mark an angle by circular arcs.

/anglemark

%l r cx cy radius: point left leg, point right leg, coordinates corner, radius

%==>

% angle marker in drawing

{0 begin /r exch def

/cy exch def

/cx exch def

/ry exch def

/rx exch def

/ly exch def

/lx exch def

gsave

cx cy translate

newpath 0 0 r ry cy sub rx cx sub atan

ly cy sub lx cx sub atan arc stroke

grestore

end} def

/anglemark load 0 7 dict put

The preceding triangle is obtained by the following PostScript code

%!PS angle markers jan 2010, cgl

(C:\\PSlib\\PSlib.eps) run %PS library

50 50 translate

H14pt setfont

/A {0 0 } def

/B {50 0} def

/C {0 50} def

A moveto B lineto C lineto closepath stroke

A moveto -10 -10 rmoveto (A) show

B moveto 2 -10 rmoveto (B) show

C moveto -10 0 rmoveto (C) show

A C B 5 anglemark

B A C 5 anglemark B A C 7 anglemark

C A 4 ortho

showpage

%EOF

The PostScript operator can also be used as a post-processing addition when you have
converted MetaPost into PostScript. Note that in MetaPost the marking of an angle is
not so straightforward, because MetaPost lacks the arc operator and the shifting of the
device space functionality. Confer the above with the example in Hobby’s report.

Mean of two points The problem is to calculate .5[p1, p2].
Too trivial?

I found my code from more than a decade ago and considered it worthwhile to com-
municate, because the operator makes use of the stack only. Stack-oriented PostScript,
diUerent from the PostScript I used in my Just a little bit of PostScript, of old.
No PostScript dictionary needed.
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/mean

%p0 p1 on stack

%==>

%.5[p0, p1] i.e.\ x and y the coordinates of the mean

{exch

4 -1 roll add .5 mul

3 1 roll add .5 mul}def

Neat, isn’t it?

Rotation of a point Despite PostScript’s functionality to rotate user space, I needed
an operator to rotate just points. I chose conform the PostScript tradition that a positive
angle rotates counterclockwise.( x′

y′
)
=

( cosθ − sinθ
sinθ cosθ

) ( x
y

)
/rot

%x y phi: point and angle of rotation (counterclockwise)

%==>

%x y coordinates of point after rotation

{ 0 begin /phi exch def /y exch def /x exch def

/xaux x phi cos mul y phi sin mul sub def

/y x phi sin mul y phi cos mul add def

/x xaux def

x y

end } def

Binary tree The diUerence with the code in the EuroTEX2009 proceedings is the
careful use of currentpoint, which resulted in a concise code.

/Bintree{% order -> balanced path of (2^order -1) leaves

%Revised Jan 2010

E /order exch 1 sub def /y y 2 div def

order 1 ge {currentpoint

N order Bintree

moveto

S order Bintree}if

/order order 1 add def

/y y 2 mul def }def %end Bintree

H-fractal The operator is explained in the EuroTEX2009 proceedings.

/Hfractal{/k exch def

gsave draw

/k k 2 mul 3 div def

k 1 gt { 90 rotate k Hfractal

-180 rotate k Hfractal}if

/k k 3 mul 2 div def

grestore}def

/draw{0 k rlineto

currentpoint stroke translate

0 0 moveto}def

Circle Limit III grid Coxeter, 1996, analysed Escher’s Circle Limit III. He started
from the rotational symmetry and derived (the parameters for) the grid.
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Projection: ptp (point to pair) For projections I specify the graphics in 3D and
project the data onto the plane by the operator ptp with viewing angles as parameters.
The projection I also coded in MetaPost. The projection formula, with φ and θ viewing
angles, reads ( x′

y′
)
=

(
− cosφ sinφ

− sinφ sinθ − cosφ sinθ cosθ

)  x
y
z


Z

X

Y

P

θ

φ

/ptp{% point x y z ==> x’ y’

% use: /pair { x y z ptp } def

% parameters: a, b viewing angles

0 begin

/z exch def/y exch def/x exch def

x neg a cos mul y a sin mul add

x neg a sin mul b sin mul y neg a cos mul b sin mul add

z b cos mul add

end}def

/ptp load 0 3 dict put

Indispensable. A practical variant with fixed viewing angles, ptpf, is part of the library
too.

Intersection of line and circle A circle is given by a quadratic equation and a line by
a linear equation. However, the intersection points of a line and a circle can be found
elegantly after rotation. When there is no intersection a warning is supplied.

/lineintersectscircle%

% x1 y1 x2 y2: points which specify the line

% mx my r: centre and radius of circle

%==>

% x1, y1, x2 y2: coordinates of the intersection points if any.

{0 begin

/r exch def /my exch def /mx exch def

/y2 exch def /x2 exch def /y1 exch def /x1 exch def

/angle y1 y2 sub x1 x2 sub atan 90 sub def

% shift upper point, i.e. centre of circle becomes 0 0

/y1 y1 my sub def /x1 x1 mx sub def

/lx x1 angle cos mul y1 angle sin mul add def % abcis rotated point
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lx abs r lt { % cuts the circle

/yi r r mul lx dup mul sub sqrt def

/x1 lx def /y1 yi def /x2 x1 def /y2 y1 neg def

x1 y1 angle rot /y1 exch my add def /x1 exch mx add def

x2 y2 angle rot /y2 exch my add def /x2 exch mx add def

x1 y1 x2 y2

}{

(No intersection point) print

}ifelse

end

} def

/lineintersectscircle load 0 20 dict put

Julia-fractal (due to Hans Lauwerier & Peitgen c.s.) A application of PostScript’s
srand, the random generator.

%!PS-Adobe- Julia sets, cgl May 97

%%Author: Peitgen e.a. (1992): Chaos and fractals. Springer-Verlag

%%BoundingBox: [-100 0 100 50]

300 300 translate

/Courier findfont 7 scalefont setfont

/s 50 def % scaling

/cr -1 def /ci 0 def %c as complex number

/cr 0 def /ci 1 def %c as complex number

/cr -.83 def /ci .16 def %c as complex number

/x .25 def /y 0 def /dofirst true def

/hrange 2 31 exp 1 sub .5 mul def

10 srand

8192{/a x cr sub def /b y ci sub def

a 0 gt{/x a a mul b b mul add sqrt a add .5 mul sqrt def

/y b 2 x mul div def

}

{a 0 eq{b 0 eq{/x 0 def /y 0 def}

{/x b abs .5 mul sqrt def

/y b 2 x mul div def

}ifelse

}

{/y a a mul b b mul add sqrt a sub .5 mul sqrt def

b 0 lt{/y y neg def}if

/x b 2 y mul div def

}ifelse

}ifelse

%dofirst{/x x .5 add def /dofirst false def}if

x s mul y s mul neg moveto (.) show
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x s mul neg y s mul moveto (.) show

rand hrange gt{/x x neg def /y y neg def}if

}repeat

stroke

Uniform deviate delivers a pseudo-random number within the interval (0, argument).

Mondrian Operator for generating personalized Mondrian-esque birthday presents,
with a Square, Oval or Lozenge cadre at choice.

Escher’s impossible cube The code is too lengthy and boring to be included here.

Intersection of two lines I wrote these operators, intersect, makecoeff, solveit
more than a decade ago. Only the stack is used. The lines are characterized by two
points on each line, and these points have to be supplied on the stack for the invoke of
intersect.

The points are transformed into an equation of the line

ax + by = e

by makecoeff. solveit solves the equations in the form delivered by makecoeff.

/makecoef

%z1 z2 -> e a b

{4 copy %x1 y1 x2 y2 x1 y1 x2 y2

4 -1 roll mul %x1 y1 x2 y2 y1 x2 (y2x1)

3 1 roll mul sub %x1 y1 x2 y2 (y2x1-y1x2)

5 1 roll 3 -1 roll sub

%(y2x1-y1x2) x1 x2 y2-y1

3 1 roll sub %(y2x1-y1x2) y2-y1 x1-x2

}def

/solve22{%e a b f c d -> x y,

%intermediate p is pivot

%Equations: ax + by = e

% cx + dy = f

%pivot handling %e a b f c d

1 index abs %e a b f c d |c|

5 index abs %e a b f c d |c| |a|

gt {6 3 roll} if %exchange ‘equations’

%stack: e a b f c d or f c d e a b,

%first is in comments below

exch 4 index %e a b f d c a

div %e a b f d p

6 -1 roll dup 6 1 roll 3 1 roll

%a e b f e d p

4 index exch %a e b f e d b p

dup 4 1 roll %a e b f e p d b p

mul sub %a e b f e p (d-b.p)

4 1 roll mul sub exch div
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%a e b (f-e.p)/(d-b.p) = a e b y

dup 5 1 roll mul sub exch div exch

%stack: x y

}def

/intersect {%p1 p2 p3 p4 -> x y

makecoef 7 3 roll

makecoef

solve22

}def

/mean{%p0 p1 on stack -> .5[p0, p1]

exch 4 -1 roll add .5 mul

3 1 roll add .5 mul}def

Intersection of planes solve33 can be used to calculate the intersection point of the
planes speciVed in matrix notation, for example as 0 0 1

1 −1 0
1 1 1


 x

y
z

 =
 0

0
1


The invoke

0 0 0 1

0 1 -1 0

1 1 1 1 solve33 /z exch def /y exch def /x exch def /determinant exch def

yields (x, y, z) = (0.5, 0.5, 0) with determinant 2.40

The following operator solve33 was used. In general solve33 solves a linear 3x3-
system, i.e. 3 equations.

/solve33{0 begin

%Purpose: Solve x y r from

% / x11 x12 x13 \ /x\ /rh1\

% | x21 x22 x23 | | y | = | rh2 |

% \ x31 x32 x33 / \r/ \rh3/

%Input stack

%rh1 x11 x12 x13

%rh2 x21 x22 x23

%rh3 x31 x32 x33

%==>

%solution: determinant x y r

/x33 exch def /x32 exch def /x31 exch def /rh3 exch def

/x23 exch def /x22 exch def /x21 exch def /rh2 exch def
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/x13 exch def /x12 exch def /x11 exch def /rh1 exch def

%calculation determinant

/determinant x11 x22 x33 mul x23 x32 mul sub mul

x12 x21 x33 mul x23 x31 mul sub mul sub

x13 x21 x32 mul x22 x31 mul sub mul add def

%elimination last column, bottom up, to keep x,y as unknowns of

% 2X2-system

%make x33 biggest element, the pivot by exchanging rows

/max x33 abs def

x13 abs max gt {/max x13 abs def} if

x23 abs max gt {/max x23 abs def} if

x13 abs max eq {%exchange row 1 and 3

%10 -40 moveto (row 13 exchanged) show

/aux x11 def /x11 x31 def /x31 aux def

/aux x12 def /x12 x32 def /x32 aux def

/aux x13 def /x13 x33 def /x33 aux def

/aux rh1 def /rh1 rh3 def /rh3 aux def} if

x23 abs max eq {%exchange row 2 and 3

%10 -52 moveto (row 23 exchanged) show

/aux x21 def /x21 x31 def /x31 aux def

/aux x22 def /x22 x32 def /x32 aux def

/aux x23 def /x23 x33 def /x33 aux def

/aux rh2 def /rh2 rh3 def /rh3 aux def} if

%subtract row 3 times f from row 1

/f x13 x33 div def % x13/x33

/x11 x11 f x31 mul sub def % x11:=x11 - f*x31

/x12 x12 f x32 mul sub def % x12:=x12 - f*x32

/rh1 rh1 f rh3 mul sub def % rh1:=rh1 - f*rh3

%subtract row 3 times f from row 2

/f x23 x33 div def % x23/x33

/x21 x21 f x31 mul sub def % x21:=x21 - f*x31

/x22 x22 f x32 mul sub def % x22:=x22 - f*x32

/rh2 rh2 f rh3 mul sub def % rh2:=rh2 - f*rh3

%solve 2X2 subsystem

%gsave

%40 100 translate

%10 0 moveto (x11=) show x11 nstr cvs show

% ( x12=) show x12 nstr cvs show

% ( rh1=) show rh1 nstr cvs show

%10 -12 moveto (x21=) show x21 nstr cvs show

% ( x22=) show x22 nstr cvs show

% ( rh2=) show rh2 nstr cvs show

%10 -24 moveto (x31=) show x31 nstr cvs show

% ( x32=) show x32 nstr cvs show

% ( x33=) show x33 nstr cvs show

% ( rh3=) show rh3 nstr cvs show

%grestore

% / x11 x12 \ /x\ /rh1\

% | | | | = | |

% \ x21 x22 / \y/ \rh2/

rh1 x11 x12

rh2 x21 x22 solve22 /y exch def /x exch def

/rxy rh3

x31 x mul x32 y mul add sub
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x33 div def

%

determinant x y rxy

end} def

/solve33 load 0 53 dict put

A handy and necessary feature is that the value of the determinant is delivered.

Intersection of two circles with equal radii The mean of the circle centres is
translated to the origin. Rotate around the mean such that the line between the circle
centres becomes the x-axis. The origin is the abscissa of the intersection point, calculate
the ordinate and transform (rotate and translate) back.

I needed this operator to determine the intersection of two grid lines in Escher’s
Circle Limit I.

/equalcirclesintersection % Purpose

% Intersection points of two circles with equal radii

% x1 y2 x2 y2 r: centres of circles and radius

%==>

% s1x s1y s2x s2y: two intersection points

{0 begin

/r exch def /y2 exch def /x2 exch def /y1 exch def /x1 exch def

x1 y1 x2 y2 mean /ym exch def /xm exch def

gsave

%translate mean to origin

/x1 x1 xm sub def /y1 y1 ym sub def

/x2 x2 xm sub def /y2 y2 ym sub def

%rotate such that line between centres coincides with the x-axis

/angle y2 x2 atan def

x1 y1 angle neg rot /y1 exch def /x1 exch def

/s1x 0 def /s1y r dup mul x1 dup mul sub sqrt def

/s2x 0 def /s2y s1y neg def

s1x s1y angle rot /s1y exch ym add def /s1x exch xm add def

s2x s2y angle rot /s2y exch ym add def /s2x exch xm add def

s1x s1y s2x s2y

end}def

/equalcirclesintersection load 0 22 dict put

Intersection of two circles The basic situation of two circles along the x-axis is
solved. The sides of the triangle are known: r1, r2 and d, the distance. For the ordinate
of the intersection point we can use from planimetry the formula for the perpendicular
from the top on the basis (x-axis)

h = 2
d
√

s(s − d)(s − r1)(s − r2) with s = r1 + r2 + d
2

.
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No need for solving quadratic equations. I thought that I needed this operator for
Vnding the radical circle of three circles, not so because in that way it is an ill-posed
problem. The operator maybe useful, nonetheless.

Intersection of two circles, general case The calculation is reduced to the special
case by transformation and rotation. The situation of tangency has been addressed

|d − (r1 + r2)| <= eps with d = ||C1 − C2|| eps = 0.00001.

Circle orthogonal to two circles and passes through P The centre of the circle, m,
is the intersection of the middle perpendiculars of P and the inverse points towards C1
and C2.

Inversion circle to conjugate circles, special case The problem is: given two distinct
circles Vnd the inversion circle which transforms the circles in each other.

/twoconjugatecircles2inversioncircle

% r: first circle Cr(0, 0)

% d R: second cirlce CR(d, 0)

%==>

% x r: inversion circle Cr(x, 0)

{0 begin

/R exch def /d exch def /r exch def

/Ix d r mul R r sub div def

/ri Ix r add Ix d add R sub mul sqrt def %radius of inversion circle

Ix neg ri

end} def

/twoconjugatecircles2inversioncircle load 0 5 dict put
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Circle orthogonal to three circles: radical circle A culmination of drawing or-
thogonal circles and the use of circle inversion. Quite a few operators are used such as
Apollonius.

Interesting is that tangent point of two touching circles have to be determined as an
intermediate step, which is an ill-posed problem if done by calculating the intersec-
tion of the two circles. I don’t know of a situation where an ill-posed problem can so
gracefully be circumvented. In this case it is better to determine the intersection of the
line which connects the centre of a circle A, say, and the centre of the corresponding
Apollonius circle with the circle A.

Not only is the determination of the intersection points of a line with a circle simpler
than the determination of the intersection points of two circles, but in this case it is
also much better conditioned. An educational pearl.

An ill-posed problem is not to be confused with an ill-conditioned solution tech-
nique. For example in solving a system of linear equations the complete or partial
pivoting strategy is a much better conditioned numerical method that just Gaussian
elimination, for the same problem.

Circle through P which intersects the given circle Cr,(0,0) at the angle alpha The
problem is to Vnd the circle which intersects the circle Cr,(0,0) at the given angle alpha
and passes through a point within Cr,(0,0).
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/circlesatalpha %Purpose: construct circle which

%cuts circle C{r(0,0)} at angle and passes through P

%Looked for centre > r

%r px alpha rmax: radius main circle, coordinate P at x axis , angle, maximum r

%==>

% coordinate of centre along x-axis, radius, iteration cnt, angle:

% mx r cnt angle

{0 begin

/rmax exch def /alpha exch def

/px exch def /r exch def

%bounds for (abscis of) centre of circle

/mxr rmax def /mxl r def

%iteration prerequisites

/nmax 25 def % maximum number of iterations (safety)

/eps 0.001 def % required absolute precision

/cnt 0 def % maintains number of iterations

%iteration

1 1 nmax{/cnt cnt 1 add def

/mx mxr mxl add 2 div def % bisection

/ri mx px sub def % radius of circle through (px, 0), centre (mx,0)

%intersection point as function of ri

/r21 {ri r sub } def

/mr21 {ri r add 2 div } def

/xs {mx 2 div r21 mr21 mul mx div sub} def

/ys {r xs sub r xs add mul sqrt } def

/phi ys xs atan def

/psi ys mx xs sub atan def

/angle 180 phi sub psi sub def

angle alpha gt

{/mxr mx def}

{/mxl mx def} ifelse

mxr mxl sub abs eps lt {exit} if

}repeat

mx ri cnt angle

end}def

/circlesatalpha load 0 20 dict put

In- and circumscribed circle The problem is: given three distinct circles Vnd the
inscribed and circumscribed circle.

/circumscribed

%Purpose: Calculate circumscribed circle given three disjunct circles

% x1 y1 r1, x2 y2 r2, x3 y3 r3: centres and radii of three (disjunt) circles

%==>

% x y r: midpoint and radius of the inscribed circle

{0 begin

/r3 exch def /y3 exch def /x3 exch def
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/r2 exch def /y2 exch def /x2 exch def

/r1 exch def /y1 exch def /x1 exch def

%auxiliary data

/x21 x2 x1 sub def /x31 x3 x1 sub def /x32 x3 x2 sub def

/y21 y2 y1 sub def /y31 y3 y1 sub def /y32 y3 y2 sub def

/r21 r2 r1 sub def /r31 r3 r1 sub def /r32 r3 r2 sub def

/mx21 x2 x1 add 2 div def /mx31 x3 x1 add 2 div def /mx32 x3 x2 add 2 div def

/my21 y2 y1 add 2 div def /my31 y3 y1 add 2 div def /my32 y3 y2 add 2 div def

/mr21 r2 r1 add 2 div def /mr31 r3 r1 add 2 div def /mr32 r3 r2 add 2 div def

/g21 x21 mx21 mul y21 my21 mul add r21 mr21 mul sub def

/g32 x32 mx32 mul y32 my32 mul add r32 mr32 mul sub def

%exchange rows if |a21|> |a11| i.e. |x32| > |x21|

x32 abs x21 abs gt

{/aux x32 def /x32 x21 def /x21 aux def

/aux y32 def /y32 y21 def /y21 aux def

/aux r32 def /r32 r21 def /r21 aux def

/aux g32 def /g32 g21 def /g21 aux def

%gsave 0 30 moveto (rows exchanged) H12pt setfont show grestore

} if

%express equations for x and y as function of r

/p x32 x21 div def

/a22 y32 p y21 mul sub def

/a2 r32 p r21 neg mul add a22 div def

/b2 g32 p g21 mul sub a22 div def

/a1 a2 y21 mul r21 sub neg x21 div def

/b1 g21 y21 b2 mul sub x21 div def

/x {a1 r mul b1 add} def

/y {a2 r mul b2 add} def

%coefficients of quadratic equatio A*r^2 -2B*r + C = 0

/A a1 dup mul a2 dup mul add 1 sub def

/B r3 neg a1 b1 x3 sub mul sub

a2 b2 y3 sub mul sub def

/C b1 x3 sub dup mul b2 y3 sub dup mul add r3 neg dup mul sub def

/eps 0.000001 def

A abs eps lt

{/r C B div 2 div def

gsave 0 30 moveto (A < .000001) show grestore}%warning

{/r B A div dup dup mul C A div sub sqrt add def}

ifelse

x y r

}def

/circumscribed load 0 65 dict put

The operator inscribed is highly similar, only opposite signs for the rk, k = 1, 2, 3 have
to be accounted for.

The operator Apollonius is a general, unifying alias for the operator inscribed
or circumscribed. The operator can be used to give each of the 8 solutions of the
Apollonius circles for three distinct circles.
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The operator Apollonius2 is suited for a circle, with inside two other circles, the
non-distinct case, and one wants the circles which touch the big circle from the inside
and the smaller, inside circles from the outside.

With Apollonius and Apollonius2 the beautiful pictures I borrowed from the WWW
can be reproduced.

Appendix II: use of the PostScript library in MetaPost
MetaPost provides special〈string expression〉 for inclusion of PostScript.

MetaPost with included PostScript and library use

if scantokens(mpversion) > 1.005:

outputtemplate :=

else:

filenametemplate

fi

"%j.eps";

special "(C:\\PSlib\\PSlib.eps) run ";

special "250 250 translate blue";

special "20 10 10 10 10 20 9 anglemark 10 10 10 20 20 10 9 anglemark ";

special "10 20 10 10 9 ortho ";

beginfig(0)

draw (10, 10)--(20, 10)--(10, 20)--cycle;

endfig;

end

The left Vgure below is obtained by the MetaPost program with use of PostScript as
given above and the right Vgure is obtained by PostScript straight away, of which the
code is given below. The diUerence in the pictures is the use of the colour blue (picture
left) in the MetaPost program for the angle markers.
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PostScript included in MetaPost PostScript straightaway

Encouraging, for the use of the PostScript library operators in MetaPost.

Straightaway PostScript, with the use of symbolic names, for the example given
above reads

%!PS angle markers March 2010, cgl

%%BoundingBox: 0 0 620 790

(C:\\PSlib\\PSlib.eps) run

250 250 translate

/r 100 def /2r 2 r mul def

/A { r r} def /B {2r r} def /C { r 2r} def

A moveto B lineto C lineto closepath stroke

C A 10 ortho B A C 10 anglemark A C B 10 anglemark

showpage

Remark: I can’t make use in MetaPost of symbolic names introduced by PostScript,
though they are introduced by the inserted PostScript at the beginning of the deliv-
ered PostScript program. It looks like MetaPost does not take notice of the included
PostScript and just passes it on. A pity.

My case rests, have fun and all the best.
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Notes
1. I usually compose illustrations separately, Vne-tune them, and then include them in a plain
TEX document.
2. For direct use in LATEX there is the package PSTricks where PostScript graphics is encap-
sulated in LATEX commands. PStool provides a command to include .eps in pdfLaTEX. It fa-
cilitates to interface with a generic PostScript workWow, used to great eUect in PSTricks and
psfrag. This note is about creating pictures in PostScript and including them in the document
after transforming to a format suitable for pdfTEX. Direct inclusion of a .eps picture is possible
via DVIPS in the workWow .tex→ .dvi→ .ps→ .pdf.
3. See http://www.acumentraining.com/acumenjournal.html for advanced worked out exam-
ples of PS and PDF programming.
4. To avoid the ‘notch’ 2 setlinecap is used.
5. Some more work has to be done to make the operators given in this note robust.
6. I don’t know how to achieve selective loading of library parts, so it seems that the library
should be split up into parts in order that the appropriate part can be loaded. But ...maybe
selective loading is no longer relevant with the huge size of today’s internal memory.
7. Courtesy http://en.wikipedia.org/wiki/Inversive_geometry
8. For example use the formula for the perpendicular hd =

r
d

√
s(s − r), s = 2d+r

2 , for the ordinate
of S.
9. T is the point of the inversion circle where the tangent from P to the inversion circle touches
the circle.
10. := denotes assignation.
11. After rotation the endpoint of the perpendicular is the abscissa of the rotated P1 (or P2).
12. See http://en.wikipedia.org/wiki/Peaucellier-Lipkin_linkage for the proof and an animation
of the movements.
13. Note: the inversion of the centre of the circle to be inverted is not the centre of the inverted
circle.
14. See my Tiling in PostScript and MetaFont—Escher’s wink. MAPS97.2. Explicit solutions ex-
ist.
15. N K Rerih: Russian painter (1874-1947).
16. Pythagoras: Dutch Math journal for young people, especially high school students.
17. See for example Courant&Robbins p161. For other approaches consult the Wikipedia with
keywords Apollonius problem.
18. Note that the centres are not altered and that the unknown circle is not used. We only have
to keep track of what happens to the unknown circle during the transformations. Perhaps it is
easier to start from the problem when two circles touch and ask oneself: what is the relation
between the two problems? In terms of Polya’s How to solve it: simplify the problem, and once
solved, go from there to the original problem.
19. Note where Ui touches Ai.
20. Sharper bounds can be obtained via Descartes circle theorem.
21. A singular system because the third row of the matrix is the diUerence of the second row
and the Vrst row.
22. The Newton approach is by far superior, but in view of the simplest approach, see later, I
did not pursue this further.
23. Note that in squaring we include the solution with distance rk − r, meaning Cr touches Ck

from the inside.
24. Unnecessary as we’ll see later.
25. Note the negative radii.
26. Borrowed from http://en.wikipedia.org/wiki/Problem_of_Apollonius.
27. Orthogonal property.
28. As can be seen in the picture below, where conjugate circles cross at the boundary of the
radical circle.
29. The determination of the tangent points is an ill-posed problem, i.e. numerical ill-
conditioned, if done by Vnding the intersection of the Apollonius circle with the original circle
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B, say. Better is to intersect the Apollonius circle by the line which connects the centre of the
Apollonius circle and centre of the original circle B, say.
30. Rotate the tangents over 90 degrees and you have the radii.
31. The symmetrical arcs, Q in RiP et cetera, have been omitted.
32. See http://www.acumentraining.com/acumenjournal.html.
33. The PostScript programming of this operator is not that trivial. We have to determine the
intersection point of two lines, the middle perpendiculars of the chords, by solving 2 linear
equations in 2 unknowns, in PostScript. This is susceptible to ill-conditioning when the points
are close.
34. On the TEX Live DVD 2009, I found MPedit for editing MetaPost sources, but I could not
view the resulting PostScript elegantly, not better than with Scite, so I stay with Scite.
35. I’m soliciting for help for extending the library, for making the library robust, and for thor-
ough testing.
36. I’m looking for volunteers to help me in extending and maintaining the PostScript library.
37. Is there a standard for mnemotechnic names for colours and their CMYK values? Is the
list given in the pdfTEX manual, of which the source is available in pdfcolor.tex, generally
accepted, c.q. a de facto standard?
38. When the library is invoked the fonts are looked up in the FontDirectory, scaled to the
given point size, and stored in the user directory associated with the names speciVed in the
library.
39. The maximum size of the dict stack is 20.
40. Note that the rhs is given as Vrst column, consistent with my already existing solve22.

Figure 6. The stained glass window design.
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