Hans Hagen

VOORJAAR 2010

Grouping in hybrid environments

Keywords
ConTeXt mkiv, luatex, grouping, underbar, overbar, over-
strike, text backgrounds

Variants

After using TgX for a while you get accustomed to
one of its interesting concepts: grouping. Programming
languages like Pascal and Modula have keywords begin
and end. So, one can say:

if test then begin
print_bold("test 1")
print_bold("test 2")
end

Other languages provide a syntax like:

if test {
print_bold("test 1")
print_bold("test 2")

So, in those languages the begin and end and/or the
curly braces define a ‘group’ of statements. In TgX on the
other hand we have:

test \begingroup \bf test \endgroup test

Here the second test comes out in a bold font and
the switch to bold (basically a different font is selected)
is reverted after the group is closed. So, in TgX grouping
deals with scope and not with grouping things together.

It depends on the language whether locally defined
variables are visible afterwards. In languages like Lua we
have constructs like:

for i=1,100 do
local j =1+ 20
end

Here j is visible after the loop ends unless prefixed by
local. Yet another example is MetaPost:

begingroup ;

save n ; numeric n ; n := 10 ;

endgroup ;

Here all variables are global unless they are explicitly
saved inside a group. This makes perfect sense as the re-
sulting graphic also has a global (accumulated) property.
In practice one will rarely need grouping, contrary to TgX
where one really wants to keep changes local, if only
because document content is so unpredictable that one
never knows when some change in state happens.

But in TEX variables are local unless a \global prefix
(or one of the shortcuts) is used.

In principle it is possible to carry over information
across a group boundary. Consider this somewhat un-
realistic example:

\begingroup
\leftskip 10pt
\begingroup

\advance\leftskip 10pt
\endgroup
\endgroup
How to carry the increased \leftskip over the group

boundary without using a global assignment which could
have more drastic side effects? Here is the trick:

\begingroup
\leftskip 10pt
\begingroup

\advance\leftskip 10pt
\expandafter
\endgroup

\expandafter \leftskip \the\leftskip
\endgroup

This is a typical example of the kind of code that gives
new users the creeps but normally they never have to do
that kind of coding. Also, this kind of trick assumes that
one knows how many groups are involved.

67



68 MAPS 40

Implication

What does this all have to do with LuaTgX and MKIV?
The user interface of ConTgXt provide lots of commands
like:

\setupthis[style=bold]
\setupthat[color=green]

Most of them obey grouping. However, consider a
situation where we use Lua code to deal with some aspect
of typesetting, for instance numbering lines or adding
ornamental elements to the text. In ConTgXt we flag such
actions with attributes and often the real action takes
place a bit later, for instance when a paragraph or page
becomes available.

A comparable pure TgX example is the following:

{test test \bf test \leftskiplopt test}

Here the switch to bold happens as expected but no
\leftskip of 10pt is applied. This is because the set
value is already forgotten when the paragraph is actually
typeset. So in fact we would need:

{test test \bf test \leftskipl0pt test \par}
Now, say that we have:

{test test test \setupflag[option=1]
\flagnexttext test}

We flag some text (using an attribute) and expect it
to get a treatment where option 1 is used. However, the
real action might take place when TgX deals with the
paragraph or page and by that time the specific option
is already forgotten or it might have received another
value. So, the rather natural TgX grouping does not work
out that well in a hybrid situation.

As the user interface assumes a consistent behaviour
we cannot simply make these settings global even if
this makes much sense in practice. One solution is to
carry the information with the flagged text i.e. associate
it somehow with the attribute's value. Of course, as
we never know in advance when this information is
used, this might result in quite some states being stored
persistently.

A side effect of this ‘problem’ is that new commands
might get suboptimal user interfaces (especially inheri-
tance or cloning of constructs) that are somewhat driven
by these ‘limitations’. Of course we may wonder if the
end user will notice this.

To summarize this far, we have three sorts of grouping
to deal with:

Hans Hagen

o TgX's normal grouping model limits its scope to the
local situation and normally has only direct and local
consequences. We cannot carry information over
groups.

o Some of TgX's properties are applied later, for in-
stance when a paragraph or page is typeset and in or-
der to make ‘local’ changes effective, the user needs
to add explicit paragraph ending commands (like
\par or \page).

o Features dealt with asynchronously by Lua are at
that time unaware of grouping and variables set that
were active at the time the feature was triggered so
there we need to make sure that our settings travel
with the feature. There is not much that a user can
do about it as this kind of management has to be
done by the feature itself.

It is the third case that I will give an example of in the
next section. I will leave it up to the user whether it gets
noticed in the user interface.

An example

A group of commands that has been reimplemented us-
ing a hybrid solution is underlining or more generically:
bars. Just take a look at the following examples and try to
get an idea of how to deal with grouping. Keep in mind
that:

o Colors are attributes and are resolved in the
back-end, so way after the paragraph has been type-
setting.

o Overstrike is also handled by an attribute and gets
applied in the back-end as well, before colours are
applied.

o Nested overstrikes might have different settings.

o An overstrike rule either inherits from the text or has
its own colour setting.

First an example where we inherit colour from the text:

\definecolor[myblue][b=.75]
\definebar[myoverstrike][overstrike][color=]

Test \myoverstrike{%
Test \myoverstrike{\myblue
Test \myoverstrike{Test}
Test}
Test}
Test

Test Test Fest Fest Fest Test Test

Because colour is also implemented using attributes
and processed later we can access that information when
we deal with the bar.



Grouping in hybrid environments

The following example has its own colour setting:

\definecolor[myblue][b=.75]
\definecolor[myred] [r=.75]
\definebar[myoverstrike][overstrike]l[color=myred]

Test \myoverstrike{%
Test \myoverstrike{\myblue
Test \myoverstrike{Test}
Test}
Test}
Test

Test Test Fest Fest Fest Test Test
See how can we colour the levels differently:

\definecolor[myblue] [b=.75]
\definecolor[myred] [r=.75]
\definecolor[mygreen][g=.75]

\definebar[myoverstrike:1]
[overstrike][color=myblue]

\definebar[myoverstrike:2]
[overstrike][color=myred]

\definebar[myoverstrike:3]
[overstrike][color=mygreen]

Test \myoverstrike{%
Test \myoverstrike{%
Test \myoverstrike{Test}
Test}
Test}
Test

Test Test Fest Fest Test Test Test
Watch this:

\definecolor[myblue] [b=.75]
\definecolor[myred] [r=.75]
\definecolor[mygreen][g=.75]

\definebar[myoverstrike]
[overstrike][max=1,dy=0,offset=.5]
\definebar[myoverstrike:1]
[myoverstrike][color=myblue]
\definebar[myoverstrike:2]
[myoverstrike][color=myred]
\definebar[myoverstrike:3]
[myoverstrike]l[color=mygreen]

Test \myoverstrike{%
Test \myoverstrike{%
Test \myoverstrike{Test}
Test}
Test}

VOORJAAR 2010

Test

Test Fest Test Test Test Test Test

Is this the perfect user interface? Probably not, but at
least it keeps the implementation quite simple.

The behaviour of the MkIV implementation is roughly
the same as in MKII, although now we specify the dimen-
sions and placement in terms of the ratio of the x-height
of the current font.

Test \overstrike{Test \overstrike{Test
\overstrike{Test} Test} Test} Test \blank
Test \underbar {Test \underbar {Test

\underbar {Test} Test} Test} Test \blank
Test \overbar {Test \overbar {Test
\overbar {Test} Test} Test} Test \blank

Test \underbar {Test \overbar {Test
\overstrike{Test} Test} Test} Test \blank

Test Test Fest Fest FTest Test Test

Test Test Test Test Test Test Test

Test Test Test Test Test Test Test
Test Test Test Test Test Test Test

As a bonus this mechanism can also provide simple
backgrounds. The normal background mechanism uses
MetaPost and the advantage is that we can use arbitrary
shapes but it also carries some limitations. When the
development of LuaTgX is a bit further along the road
I will add the possibility to use MetaPost shapes in this
mechanism.

Before we come to backgrounds, first take a look at
these examples:

\startbar[underbar] \input zapf \stopbar \blank
\startbar[underbars] \input zapf \stopbar \blank

Coming back to the use of typefaces in electronic
publishing: many of the new typographers receive their

knowledge and information about the rules of typog-
raphy from books, from computer magazines or the
instruction manuals which they get with the purchase of
a PC or software. There is not so much basic instruction,
as of now, as there was in the old days, showing the
differences between good and bad typographic design.
Many people are just fascinated by their PC's tricks, and

think that a widely—praised program, called up on the
screen, will make everything automatic from now on.

publishing: many of the new typographers receive their
knowledge and information about the rules of typog-




70 MAPS 40

raphy from books, from computer magazines or the
instruction manuals which they get with the purchase of

differences between good and bad typographic design.
Many people are just fascinated by their PC's tricks, and
think that a widely—praised program, called up on the
screen, will make everything automatic from now on.

First notice that it is no problem to span multiple lines
and that hyphenation is not influenced at all. Second you
can see that continuous rules are also possible. From such
a continuous rule to a background is a small step:

\definebar
[backbar]
[offset=1.5,rulethickness=2.8,color=blue,
continue=yes,order=background]

\definebar
[forebar]
[offset=1.5,rulethickness=2.8,color=blue,
continue=yes,order=foreground]

The following example code looks messy but this has
to do with the fact that we want properly spaced sample
injection.

from here
\startcolor[whitel%
\startbar[backbar]%
\input zapf
\removeunwantedspaces
\stopbar
\stopcolor
\space till here
\blank
from here
\startbar[forebarl%
\input zapf
\removeunwantedspaces
\stopbar
\space till here

JinSlComing back to the use of typefaces i
electronic publishing: many of the new typographers re-
ceive their knowledge and information about the rules o
typography from books, from computer magazines or the
instruction manuals which they get with the purchase o
a PC or software. There is not so much basic instruction,
as of now, as there was in the old days, showing the
differences between good and bad typographic design.
Many people are just fascinated by their PC's tricks, and
think that a widely—praised program, called up on thel
screen, will make everything automatic from now on jsill

Hans Hagen

here

from here

till
here
Watch how we can use the order to hide content. By
default rules are drawn on top of the text.
Nice effects can be accomplished with transparencies:

\definecolor [tblue] [b=.5,t=.25,a=1]
\setupbars [backbar] [color=tblue]
\setupbars [forebar] [color=tblue]

We use as example:

from here {\white \backbar{test test}
\backbar {nested nested} \backbar{also also}}

till here

from here {\white \backbar{test test
\backbar {nested nested}

till here

from here {\white \backbar{test test
\backbar {nested nested}

also also}?}

also also}?}

till here
from here till here from
here till here from here

till here
The darker nested variant is just the result of two
transparent bars on top of each other. We can limit
stacking, for instance:

\setupbars[backbar][max=1]
\setupbars[forebar][max=1]

This gives
from here till here from
here till here from here

till here
There are currently some limitations, mostly due to
the fact that MKIV uses only one attribute for this feature
and a change in the value therefore triggers different
handling. So, there is no real nesting here.
The default commands are defined as follows:

\definebar[overstrike]



Grouping in hybrid environments

[method=0,dy= 0.4,o0ffset= 0.5]
\definebar[underbar]

[method=1,dy=-0.4,0ffset=-0.3]
\definebar[overbar]

[method=1,dy= 0.4,o0ffset= 1.8]

\definebar[overstrikes]
[overstrike] [continue=yes]
\definebar[underbars]

Lunderbar] [continue=yes]
\definebar[overbars]
[overbar] [continue=yes]

As the implementation is rather non-intrusive you can
use bars almost everywhere. You can underbar a whole
document but you can stick to fooling around with for
instance formulas equally well.

\definecolor [tred] [r=.5,t=.25,a=1]
\definecolor [tgreen] [g=.5,t=.25,a=1]
\definecolor [tblue] [b=.5,t=.25,a=1]

\definebar [mathred] [backbar] [color=tred]
\definebar [mathgreen] [backbar] [color=tgreen]
\definebar [mathblue] [backbar] [color=tblue]

\startformula
\mathred{e} =

\mathgreen{\white mc} * {\mathblue{\white e}}
\stopformula

We get:

e =

We started this chapter with some words on grouping. In
the examples you see no difference between adding bars
and for instance applying colour. However you need to
keep in mind that this is only because behind the screens
we keep the current settings along with the attribute. In
practice this is only noticeable when you do lots of (local)
changes to the settings. Take:

{test test test
\setupbars[color=red] \underbar{test} test}

This results in a local change in settings, which in turn
will associate a new attribute to \underbar. So, in fact the
following underbar becomes a different one from the pre-
vious underbars. When the page is prepared, the unique

VOORJAAR 2010

attribute value will relate to those settings. Of course
there are more mechanisms where such associations take
place.

More to come

Is this all there is? No, as usual the underlying mecha-
nisms can be used for other purposes as well. Take for
instance in-line notes:

According to Wikipedia this is the longest
English word:
pneumonoultramicroscopicsilicovolcanoconiosis~%
\shiftup {other long

words are pseudopseudohypoparathyroidism and
flocci-nauci-nihili-pili-fication}. Of course
in languages like Dutch and German we can make
arbitrary long words by pasting words together.

This will produce:

According to Wikipedia this is the longest Eng-
lish word: pneumonoultramicroscopicsilicovolcanoco-
niosis other long words are pseudopseudohypoparathyroidism and floccinaucinihilipili-
fication - Of course in languages like Dutch and German
we can make arbitrary long words by pasting words
together.

I wonder when users really start using such features.

Summary

Although under the hood the MKIV bar commands
are quite different from their MKII counterparts users
probably won't notice much difference at first sight.
However, the new implementation does not interfere
with the par builder and other mechanisms. Plus, it is
configurable and it offers more functionality. However,
as it is processed in delayed fashion, side effects might
occur that are not foreseen.

So, if you ever notice such unexpected side effects, you
know where it might result from: what you asked for
is processed much later and by then the circumstances
might have changed. If you suspect that it relates to
grouping there is a simple remedy: define a new bar
command in the document preamble instead of changing
properties mid-document. After all, you are supposed to
separate rendering and content in the first place.

Hans Hagen

71



