
Luigi Scarso NAJAAR 2010 31

PDF/A-1a in ConTEXt MkIV

Abstract
I present some considerations on electronic document
archiving and how ConTEXt MkIV supports the ISO
Standard 19500-1 Level A Conformance (PDF/A-1a:2005),
an ISO standard for long-term document archiving.

Keywords
LuaTeX, ConTeXt MkIV, PDF/A, color, font.

Introduction
In this paper I will briefly talk about the ISO Standard
PDF/A-1 and how ConTEXt MkIV tries to adhere to its
requirements by showing some practical examples.
About the typographic style of this paper: I will follow
these simple rules: I will avoid footnotes and citations
on running text, and I will try to limit lists (e.g. only
itemize and enumerate) and figures; the last section
before the References one will collect all citations.

The PDF/A-1 ISO Standard
Probably one of the best known PDF versions is PDF 1.4
(around 2001, almost ten years ago) maybe because the
companion Acrobat 5.0 was a robust program and the
PDF Reader was freely available for several platforms
both as a program and as plug in for browsers. We keep
having a huge amount of electronic documents that are
in PDF 1.4, hence we should not be surprised if Adobe
pushed it as reference for document archiving. What
follows is a verbatim copy from http://www.digitalp-
reservation.gov/formats/fdd/fdd000125.shtml and it's a
good description:

PDF/A-1 is a constrained form of Adobe PDF
version 1.4 intended to be suitable for long-term
preservation of page-oriented documents for
which PDF is already being used in practice. The
ISO standard [ISO 19005-1:2005] was developed by
a working group with representatives from gov-
ernment, industry, and academia and active sup-
port from Adobe Systems Incorporated. Part 2 of
ISO 19005 (as of September 2010, an ISO Draft In-
ternational Standard) extends the capabilities of
Part 1. It is based on PDF version 1.7 (as defined in

ISO 32000-1) rather than PDF version 1.4 (which is
used as the basis of ISO 19005-1).

PDF/A attempts to maximize device indepen-
dence, self-containment, self-documentation. The
constraints include: audio and video content are
forbidden, JavaScript and executable file launches
are prohibited, All fonts must be embedded and
also must be legally embeddable for unlimited,
universal rendering, colorspaces specified in a
device-independent manner, encryption is disal-
lowed, use of standards-based metadata is man-
dated.

The PDF/A-1 standard defines two levels of con-
formance: conformance level A satisfies all re-
quirements in the specification; level B is a lower
level of conformance, ‘encompassing the require-
ments of this part of ISO 19005 regarding the vi-
sual appearance of electronic documents, but not
their structural or semantic properties’.

In essence the standard wants to ensure that every
typographic element, from the low level character to
the high level logical structure is unambiguously de-
fined and unchangeable — and it does, it achieves
its purpose: every character must be identified by a
Unicode id, which is an international standard, every
color must be device independent by means of a color
profile or output intent, theremust be precise meta data
informations for classifications and the document must
have a logical structure described by a (possible ad-hoc)
markup language.

Unfortunately the PDF version 1.4 is quite old: an-
imations and 3D pictures cannot be embedded, the
font format cannot be OpenType, JavaScript programs
are not permitted at all, even if they don't modify the
document in any way as, for example, a calculator. Ten
years ago it was very important to guarantee that the
document would always be printed as intended, nowa-
days screen is slowly replacing paper and animations
play a fundamental role: PDF/A-1 is good for paper but
less than optimal for ‘electronic paper’.

PDF/A-1a in ConTEXt MkIV
Given that it is still under heavy development, ConTEXt

32 MAPS 41 Luigi Scarso

MkIV has the opportunity to be developed on two
fronts: the ‘low level’ luaTEX (CWEB code and Lua
primitives) and the ‘high level’ macros that build the
format itself. One of this year's results is the implemen-
tation of ‘tagged PDF’, the Adobe document markup
language for PDF documents, and the development of
color macros for the PDF/X specifications. As a conse-
quence, it was possible to use these results to test some
real code for producing PDF/A-1a compliant documents.
Let's start with an example explained step-by-step.

%% Debug
\enabletrackers[backend.format,

backend.variables]
%% For PDF/A
\setupbackend[
format={pdf/a-1a:2005},
profile={default_cmyk.icc,

default_rgb.icc,default_gray.icc},
intent={%
ISO coated v2 300\letterpercent\space (ECI)}
]
%% Tagged PDF
%% method=auto ==> default tags by Adobe
\setupstructure[state=start,method=auto]

\definecolor[Cyan][c=1.0,m=0.0,y=0.0,k=0.0]
\starttext
\startchapter[title={Test}]
\startparagraph
\input tufte
%% Some ConTeXt env. are already mapped:
%% colors
\color[red]{OK}
\color[Cyan]{OK}
%% figures
\externalfigure[rgb-icc-srgb.jpg]

[width=0.4\textwidth]
\stopparagraph
%% Natural tables
\bTABLE
\bTR\bTD 1 \eTD \bTD 2 \eTD \eTR
\bTR \bTD[nx=2] 3 \eTD\eTR
\eTABLE
\stopchapter
\stoptext

As usual the file is processed with

#>context test.tex

and it doesn't hurt to enable some debug information
with

\enabletrackers[backend.format,

backend.variables]

Enable the PDF/A-1a
To enable PDF/A-1a wemust setup the backendwith the
appropriate variant of PDF/A. From the very beginning
ConTEXt has had a backend system that permits to
use almost the samemacro-format for different outputs
(i.e. DVI and PDF), and with luaTEX this system is
increasingly enhanced, as we'll see later on.
With

format={pdf/a-1a:2005}

we select the 1a variant of PDF/A standard and the label
is mandatory because it also puts some default meta
data into the output (see lpdf-pda.xml; a complete list
of formats is currently in lpdf-fmt.lua and also as a
Lua table lpdf.formats).

Next comes the colors part, and we must pay atten-
tion here. The key concept is:

every color must be independent of any device.
Usually in a PDF we have two sources for colors:
the colors specified by the author, e.g. something
like \definecolor[orange][r=1.0,g=0.5,b=0.0], and
the images. The most used color spaces DeviceGray,
DeviceRGB, DeviceCMYK are device dependent because
the reproduction of a color from these color spaces
depends on the particular output device, and the real
output devices are all different due both to the different
nature (screen vs. printer, for example) and different
technologies (CRT vs. LCD screen, or inkjet vs laser
printer, for example). Every device can be classified
by means of a color profile which maps an input color
(rgb, cmyk or gray) to an independent color space: such
maps ensure that each device will correctly reproduce
the color, and also the independent color space permits
to compare colors from different color spaces.

With

profile={default_cmyk.icc,
default_rgb.icc,default_gray.icc},

we associate all the document colors with the corre-
sponding color profile by mean of a filename (the file
colorprofiles.xml has a list of predefined profiles).
Be careful here: it's wrong to associate a rgb color
space with a cmyk profile, and not all profiles are
good, especially those for printing. Moreover PDF/A-1a
allows only profiles having version 3 or below.

There is a second way to specify colors, and it's a
bit complicated. We must specify that all the colors
without profile are intended to be used with a common
output profile, i.e. we must impose an output intent:
this is the meaning of

PDF/A-1a in ConTEXt MkIV NAJAAR 2010 33

intent={%
ISO coated v2 300\letterpercent\space (ECI)}

which is a cmyk profile for coated paper. Note that we
are using a name and not a filename to avoid clashing
with the values of the profile key.
By doing so we accept these implicit limitations and
color space conversions:

if the output intent is a cmyk profile then the docu-
ment can have only cmyk and gray colors;
if the output intent is a rgb profile then the docu-
ment can have only rgb and gray colors;
if the output intent is a gray profile then the docu-
ment can have only gray colors.

They are reasonable: in general we cannot use a rgb
color with a cmyk profile because there are rgb col-
ors without equivalent cmyk ones (that is to say that
screens display more colors than printers). We can
convert a gray color to rgb or cmyk because usually
gray color spaces are a subset of the former (otherwise
we have a really poor device). It's not an error if we
specify both profiles and output intent: at least if all
color spaces have their own profiles, as in the example,
then the output intent is simply ignored by a PDF/A
compliant PDF reader.

Finally the images: wemust be sure that every image
has its color profile — and this can be a bit complicated.

In the following example, rgb-noprofile.jpg is a
jpeg image with a RGB color space and without a color
profile:

\setupbackend[
format={pdf/a-1a:2005},%level=0,
profile={default_cmyk.icc,

default_rgb.icc,default_gray.icc},
]
\setupstructure[state=start]
\starttext
\startchapter[title={Test}]
\startparagraph
\externalfigure[rgb-noprofile.jpg]

[width=0.4\textwidth]
\stopchapter
\stoptext

The luatex program loads the image, it wraps it in a
/XObject, and sets its ColorSpace to DeviceRGB:

<<
/Type /XObject
/Subtype /Image
/Width 640
/Height 400
/BitsPerComponent 8

/Length 13238
/ColorSpace /DeviceRGB
/Filter /DCTDecode
>>
stream...endstream

This is a valid PDF/A-1a document, but if we delete the
default_rgb.icc profile

profile={default_cmyk.icc,default_gray.icc},

then the resulting PDF is an invalid PDF/A. We should
not be surprised: there is color space which is device
dependent and hence we cannot guarantee the correct
reproduction of the colors.

In the next example we use a rgb image with a valid
color profile:

\setupbackend[
format={pdf/a-1a:2005},%level=0,
rofile={default_cmyk.icc,default_gray.icc}]

\setupstructure[state=start]
\starttext
\startchapter[title={Test}]
\startparagraph
\externalfigure[rgb-icc-srgb.jpg]

[width=0.4\textwidth]
\stopchapter
\stoptext

For the same reason seen before, this PDF is still an
invalid PDF/A: the image is againwrapped in a /XObject
with a /DeviceRGB color space — but this time it's not
correct: the image has its own profile and hence its
colors are device independent. If we add a rgb profile
we have again a valid PDF/A:

profile={default_cmyk.icc,
default_rgb.icc,default_gray.icc},

but this is dangerous because we don't know if it's
correct for the image and also in this way all the rgb
color spaces of others images are associated to this
specific profile.

To remedy this situation, I present here a practical
solution that relies on the MagickWand suite which is
available for free for Windows, Linux and Mac plat-
forms. The first step is to verify if the image has a
profile:

#>gm identify -verbose rgb-icc-srgb.jpg
:
Profile-color: 3144 bytes
:

34 MAPS 41 Luigi Scarso

The second step is to save the profile:

#>gm convert rgb-icc-sRGB_v4_ICC.jpg sRGB.icc

and the last step is to build a /XObject with the appro-
priate color space. This is a bit tricky, but fundamen-
tally we mimic the behavior of luatex with ConTEXt
MkIV. I will show only an example for a jpeg image
with a /DeviceRGB color space:

%% rgb-icc-srgb.pdf
\pdfminorversion4
\starttext\startTEXpage%
\startluacode
local a=img.scan{filename="rgb-icc-srgb.jpg"}

tex.sprint(tex.ctxcatcodes,
string.format(
"\\startfoundexternalfigure{\%ssp}{\%ssp}",
a.width,a.height))
local icc_ref = pdf.immediateobj("streamfile",
"srgb.icc",
" /Alternate /DeviceRGB\n" ..
"/Filter /FlateDecode\n/N 3")

local icc_dict_ref = pdf.immediateobj(
string.format("[/ICCBased \%d 0 R]\n",

icc_ref))

a=img.new{filename="rgb-icc-srgb.jpg",
colorspace=icc_dict_ref}

a=img.immediatewrite(a)

node.write(img.node(a))

tex.sprint(tex.ctxcatcodes,
"\\stopfoundexternalfigure")

\stopluacode%
\stopTEXpage\stoptext

As we can see the XObject has now an ICCBased color
space:

15 0 obj
<<
/Alternate /DeviceRGB
/Filter /FlateDecode
/N 3
/Length 3144
>>
stream...endstream
16 0 obj
[/ICCBased 15 0 R]
endobj
17 0 obj
<<
/Type /XObject

/Subtype /Image
/Width 640
/Height 400
/BitsPerComponent 8
/Length 9948
/ColorSpace 16 0 R
/Filter /DCTDecode
>>
stream...endstream

Once the image with the correct color space is wrapped
in a PDF file (rgb-icc-srgb.pdf in this case), we can use
it in our documents:

\setupbackend[
format=[{pdf/a-1a:2005},%level=0,

profile={default_cmyk.icc,default_gray.icc},
]

\setupstructure[state=start]
\starttext
\startchapter[title={Test}]
\startparagraph
\externalfigure[rgb-icc-srgb.pdf]

[width=0.4\textwidth]
\stopchapter
\stoptext

which is again a valid PDF/A.

Tagged PDF
Next we must enable the tagging system with
\setupstructure[state=start,method=auto].
ConTEXt MkIV permits the author to define his own
document markup language (the tags used inside the
PDF document) but of course we also need the associ-
ated TEX macros. This naturally needs to start with a
sort of XML document:

\setupstructure[state=start,method=none]
\starttext
\startelement[document]
\startelement[chapter]
opes
\startelement[p]\input ward\stopelement \par
\stopelement
\stopelement
\stoptext

The internal tag names are <document>, <chapter> and
<p> as we see in fig. 1 from Acrobat 9.0, but we still
need to put the appropriate typographic elements into
the PDF.

In the context of PDF/A, a validation program ex-
pected the tags as defined by Adobe and this leads to
some ‘syntactic sugar’ macros, i.e instead of

PDF/A-1a in ConTEXt MkIV NAJAAR 2010 35

Figure 1 The tags structure of a simple document

\startelement[chapter]...\stopelement

it's better to use

\startchapter[title={Test}]...\stopchapter

which puts the correct tags and also typesets the chap-
ter title Test as expected.

Figure 2 The tag structure of complex document

The complete list of tags can be found in strc-tag.mkiv
and of course ConTEXt MkIV permits to redefine the
default mapping. In fig. 2 our document shows that
ConTEXt MkIV had already mapped some predefined
typographic objects like figures and tables to the ap-
propriate tags.

We can use this mechanism to embed an XML doc-
ument into a tagged PDF document, which opens quite
interesting perspectives, but we can also start from a
‘structured TEX’ document and end into an XML one,

and this is more interesting because it's a matter of
backend only — and because it's already implemented:

\setupbackend[export=yes]
\setupstructure[state=start,method=none]
\starttext
\startelement[document]
\startelement[chapter][title=Test]
opes
\startelement[p]\input ward\stopelement \par
\stopelement
\stopelement
\stoptext

produces a <tex-file>.export like this (original XML
spaces are not preserved in this listing)

<?xml version='1.0' standalone='yes' ?>
<!-- input filename : test-2 -->
<!-- processing date : 10/09/10 15:28:48 -->
<!-- context version : 2010.09.24 11:40 -->
<!-- exporter version : 0.10 -->
<document language='en'

file='test-2' date='10/09/10 15:29:04'
context='2010.09.24 11:40'
version='0.10'>

<chapter title="Test">opes
<p>
The Earth, as a habitat for animal life, is
in old age and has a fatal illness. Several,
in fact. It would be happening whether humans
had ever evolved or not. But our presence is
like the effect of an old-age patient who
smokes many packs of cigarettes per day
------ and we humans are the cigarettes.
</p>
</chapter>
</document>

Fonts and encoding
In the previous subsection we have seen that with
simple macros we can have a valid (i.e validated by
Acrobat 9.0) PDF/A-1a PDF document. We still didn't
talk about fonts.

The default fonts used by ConTEXt MkIV are the
OpenType version of LatinModern, and, as of now, they
cannot be embedded into PDF/A documents because
OpenType isn't supported in version 1.4; this is not a
problem because, in essence, ConTEXt MkIV strips the
OpenType part and embeds a valid Type1 or TrueType
font. Given an OpenType font, ConTEXt MkIV is also
able to map each glyph to its Unicode id, so even this
side is not problematic.

Unfortunately, it's already known that typesetting
mathematics with the Computer Modern and Latin

36 MAPS 41 Luigi Scarso

Modern fonts easily leads to invalid PDF/A documents
due to misleading dimensional information of some
fonts. As widely noted by C. Beccari, just the simple
$a\not=b$ invalidates the whole document, due the
wrong dimension of the \not sign (it has Bounding-
Box=(139,139,-960,775) hence a width equal to zero).
What are the solutions? There are two of them, both
unsatisfactory:
1. choose another (valid) math family;
2. make a high resolution (more than 300dpi) bitmap

of each invalid formula.

Of course it's possible to edit the fonts, but it's not a
general solution: there are limitations due to copyright
and we should embed a modified copy of the font that
differs from the original version — an error prone situ-
ation because modifications of PDF/A-1a document are
permitted, and an editor can use the system fonts. The
problem remains even if ConTEXt MkIV can patch the
font on the fly. A way out is the complete embedding of
the patched fonts, so that the editor uses the document
fonts, but it's not a robust solution — some editors can
still use the original system fonts.

Conclusion
The PDF/A-1a is a good standard for document archiv-
ing: it's a complete Page Description Language, it relies
on Unicode which is also a good Character Language
and on Type1 and TrueType as digital typography for-
mal language; it has also a good Document Markup
Language. The binary electronic format and the digital
signature for detection and prevention of document
modifications complete the picture. The restrictions
(e.g. profiles for colors) together with a freely available
PDF/A-1a PDF reader lead to a concrete self-containment
format.

PDF/A-1a support in ConTEXt MkIV is still experi-
mental: it needsmore tests, but programming in luaTEX
is simpler than in pdfTEX, and the 1.4 is a well known
PDF version. The color management can probably be
improved by permitting to specify a color and its profile
for a specific object and not for the whole document, as

it currently is.
On the other hand, the model of PDF/A-1 is the

traditional paper. Omitting animations and 3D pictures
is questionable and perhaps also scripting languages
should be permitted if they don't modify the document.

The ISO standard is not freely available and the
PDF/A-1a validators are complex to implement and usu-
ally expensive commercial products; this is an obstacle
for the diffusion of PDF/A.

Notes on References
For the first section, some informations on PDF/A-1 are
atWikipedia [1], the techdoc at [2], and [4]. Very useful
are also the references of C. Beccari's paper at [9]. An
interesting use of JavaScript in PDF is [3].

For the second section, the ConTEXt wiki [6] has
some terse informations, because the code is the ulti-
mate reference. Tagged PDF is described in the version
of hybrid.pdf [7] that is part of ‘Proceedings of the 4th
ConTEXt meeting’ [8](to be published). For ICC profiles
a good starting point is [5]; the problems about fonts
are described by C. Beccari in [9] and [10].

References
All links were verified between 2010.10.19 and 2010.10.22.

[1] http://en.wikipedia.org/wiki/PDF/A.
[2] http://www.pdfa.org/doku.php?id=pdfa:en:techdoc
[3] www.tug.org/applications/pdftex/calculat.pdf.
[4] http://www.digitalpreservation.gov/formats/fdd/fdd000125

.shtml.
[5] http://en.wikipedia.org/wiki/ICC_profile.
[6] http://wiki.contextgarden.net/PDFX.
[7] http://www.pragma-ade.com/general/manuals/hybrid.pdf
[8] http://meeting.contextgarden.net/2010/talks/
[9] http://www.guit.sssup.it/downloads/Beccari_Pdf_archiviabile

.pdf
[10] http://dw.tug.org/pracjourn/2010-1/beccari

Luigi Scarso

