Haltiwanger

Toward Subtext

NAJAAR 2010 45

A Mutable Translation Layer for Multi-Format Output

Abstract

The demands of typesetting have shifted significantly since
the original inception of TEX. Donald Knuth strove to de-
velop a platform that would prove stable enough to produce
the same output for the same input over time (assuming
the absence of bugs). Pure TEX is a purely formal language,
with no practical notion of the semantic characteristics of
the text it is typesetting. The popularity of IATEX is largely
related to its attempt to solve this problem. The flexibility
of ConTEXt lends it to a great diversity of workflows. How-
ever, document creation is not straight-forward enough to
lend itself to widespread adoption by a layman audience, nor
is it particularly flexible in relation to its translatability into
other important output formats such as HTML. Subtext is a
proposed system of generative typesetting designed for pro-
viding an easy to use abstraction for interfacing with TgX,
HTML, and other significant markup languages and output
formats. By providing a mutable translation layer in which
both syntax and the actual effects of translation are defined
within simple configuration files, the infinitely large set of
typographic workflows can be accomodated without being
known in advance. At the same time, once a workflow has
been designed within the Subtext system, it should enjoy
the same long-term stability found in the TEX system itself.
This article briefly explains the conditions, motivations, and
initial design of the emerging system.

Keywords
generative typesetting, multi-output, translation layer,
pre-format

Conditions for Subtext

Subtext arose as a practical conclusion during the writ-
ing of my masters thesis in New Media at the Uni-
versiteit van Amsterdam.'The initial impulse for the
thesis itself was to investigate what available media
theories existed that could articulate the dynamics of a
generative workflow pre-occupied with outputting itself
in multiple formats. In the case of the thesis, this meant
PDF and HTML. Having heard about the translation
software Pandoc,’l chose to utilize this software in my
quest to produce a thesis whose materiality spanned
not a single document but multiple files, programs, and
‘glue’ scripts. In other words, the thesis would not be a
product, set in proprietary software like MS Word, but a
process that could self-correct later in the future should

a new format come into existence.

The raw fact of text on the computer screen is that,
overall, the situation is awful. Screenic text can be
divided into three categories: semantic, formal, and
WYSIWYG. The semantic formats, for example HTML
and XML, are notoriously machine-readable. Text can
easily be highlighted, copied, pasted, processed, con-
verted, etc. Yet the largest “reading” software for se-
mantic formats is the web browser. Not a single web
browser seems to have bothered to address line-break-
ing with any sort of seriousness.’The ubiquity of
HTML, tied with its semantic processibility, means that
its importance cannot be ignored as an output format.
At this point, not producing an HTML version of a doc-
ument that one wishes to see widely read is tantamount
to removing such widespread reading as an achievable
goal. To top off the complexity of the situation, the
machine-readability of a semantic document is offset
by a distinct reduction of human readability. Asking
anyone to write a thesis directly in XML. for instance,
is going to be a non-starter.

The second class of text are those defined by their
formal nature. This is not referring to some but-
toned-down attitude, but rather to an opposite direc-
tionality in terms of how the text is presented. In
semantic markup, the format is not itself responsible
for how a display program arranges the text---rather,
the display program digests the text in light of its
semantic qualities and then lays that text out according
to algorithms that can and do vary between programs.
The easiest way to describe this approach is that it is
top-down.

Formal markup, on the other hand, is bottom-up. The
final display of text is defined by discrete instructions
to a program that assembles that text in a highly spe-
cific way. TgX is one obvious example of this. Like-
wise, PostScript and PDF are formal specifications for
typesetting text. The immediate drawbacks of formal
markups include an often byzantine syntax and a lack
of processibility into anything other than the output
formats that the formal system knows how to handle.
To this day, copy-pasting from a PDF document often
leads to awkward extra characters such as linebreaks in
the pasted text.

46 MAPS 41

The third class of screenic text system is WYSIWYG.
While WYSIWYG is first and foremost a user interface
design pattern (and thus can be used to output files in
both formal and semantic formats), it is also defines
the extremely pervasive Microsoft Word file formats.
By positioning the comfort of the user above all other
considerations, WYSIWYG finds its strengths in its ease
of use and its inherent predictability: whatever you se
on the screen should appear exactly that way on paper.
By privileging the human to such an extent, however,
both translatability and the typographic quality of the
text suffer. Since text is intended to always appear
exactly as it was input, MS Word can do no calculations
for line breaks other than on a per-line basis.“Worst of
all, WYSIWYG formats (especially those derived from
Microsoft products) are difficult to integrate into a
generative typesetting workflow which targets many
output formats.

Problematics Within Generative Typesetting
Generative typesetting itself emerges from a very spe-
cific set of problematics. A primary concern is a re-
duction in syntax complexity. This is solved by the
introduction of a pre-format that provides sight-level
semantics for specifying desired outcomes in the output
formats. For example, the Markdown pre-format was
designed such that "a Markdown-formatted document
should be publishable as-is, as plain text, without look-
ing like it’s been marked up with tags or formatting
instructions."?

To demonstrate, while a top-level header in Mark-
down reads as

My Header
Once converted into HTML the above turns into
<h1>My Header</h1>

Sight-level semantics rely on visually distinct identi-
fiers. This stands in sharp contrast to both HTML/XML
and TgX, which rely on distinct tags combined with
reserved characters. In short, this approach to se-
mantic formatting relies on utilizing more reserved
characters than these other systems. Which charac-
ters are chosen and the nature of their organization
is an attempt to strike a balance between both read-
ability and processibility. Like WYSIWYG, sight-level
semantics represent a redistribution of agency be-
tween the human and the machine. Unlike WYSIWYG,
the utilization of Markdown implies an intention for
translating it into other formats.

The second problematic is an inevitable result of
the first: there is always an edge case. Take as an
example a variation on the code I've already shown. Say

Haltiwanger

that instead of converting to HTML, one would rather
generate a PDF using ConTgXt. Seems straight-forward
right?

My Header

The above should simply convert into the top-level
equivalent in ConTgXt. But wait.. That would be a
matter of what one was trying to accomplish, wouldn't
it?

After all, the above Markdown snippet could easily
refer to

\subject{My Header}
or

\section{My Header}
or

\chapter{My Header}
or even

\title{My Header}

What is the solution here? Should a reserved character
be adopted for each of these cases? Questions of how
to deal with such edge cases are intrinsically tied to the
translation layer itself: because all format translation
occurs within the translation layer, it is the decisions
which that layer makes that determine how edge cases
are handled.

Pandoc provides command-line switches for turning
on numbered sections and for determining the top-level
“section.” However, were one to desire that a custom
command or macro be used in place of any of the above,
a knowledge of Haskell is required to write scripts
or otherwise modify the way that Pandoc converts
its inputs. Other tricks can be employed, such as the
introduction of a ‘glue’ layer based in a script which
solves certain edge cases with regular expressions and
if statements. From the standpoint of a generative
typesetting workflow that does not require program-
ming expertise, these solutions for edge cases are far
from optimal.

One Mutable Interface to Produce Them All

Today the largest demands of digital publishing re-
volve around flexibility. The vast array of existing
and on-coming e-readers is but one example of this.
More general concerns include the necessity of both
machine-readable formats and typographically sound
documents. Currently this means HTML/XML and PDF.

Toward Subtext

Yet once e-readers are brought into the mix, the ePub
format becomes imperative.

Yet while ePub is the most accepted format for
e-reader publishing today, there is always the chance
(one might even say inevitability) that a new format
will become standard in the future. Future-proofing is a
significant advantage of a generative typesetting work-
flow, but the programming-required nature of edge
cases--and, indeed, any modification to the translation
layer--decreases the adoptability of generative typeset-
ting for non-technical fields such as the humanities.

The solution that Subtext proposes is to disengage
both the interface to the translation layer as well as the
effects of that layer. In this way Subtext can be seen as a
very thin layer, one that takes interface primitives from
a configuration file and translates them into an AST.
The effects of this AST are then interpreted according
to rules defined in a seperate configuration file. This file
explains what should literally appear in the output file
for any given AST element.

One immediately obvious benefit of this approach
is the capacity to internationalize the pre-format with
ease. For standard Markdown, Subtext would de-
fine the effect of American quotation marks (“x”) as
\quotation{x}. The interface file could be quickly mod-
ified to intepret double angle quotation marks (« x ») in
the same way (\quotation{x}).

The effects configuration can also incorporate
‘setup’ requirements. If a generative typesetting
workflow involved dealing with documents of either
English or French, then it would be known that
when double-angle quotation marks are used in the
pre-format that the resulting document should have
French style punctuation and spacing. The Subtext
interpreter would then add

\mainlanguage[french]
\setcharacterspacing[frenchpunctuation]

to the pre-amble of a ConTEXt document. Likewise,
specific character spacing settings could be added to the
CSS of an HTML or ePub output file.

The mutability of this system is its primary charac-
teristics. Specific text elements need not fit a pre-exist-
ing notion, as new rules can be invented and interpreted
within configuration files. This capacity to ‘unlock’
the translation layer into an instrinsically customizable
tool not only guarantees future-proofing: it also allows
for highly specific workflows to be developed, as the
interface and effects can be custom-crafted according
to the requirements of the task.

Preliminary Thoughts on Implementation
There has yet to be a line of code committed to Sub-
text. At present it is a simple design impulse, with a

NAJAAR 2010 47

variety of expectations and desires tied into a proposed
means of accomplishing a more fluid and responsive
generative typesetting workflow. This does not mean,
however, that there has yet to be any thought put into
the platforms that will underpin Subtext.

The first choice is the programming language. Con-
sidering the importance of parsing, grammar, and
metaprogramming functionality to the implementa-
tion of a mutable translation layer, my first impulse
is to write Subtext in Perl 6. This might come as a
slight shock, but that shock should not last beyond
an exploration into the power of Perl 6 grammars.°’A
robust, rules-based grammar engine was one of the
top details for which Perl 6 was designed. Combined
with features such as multi-method dispatch and other
metaprogramming conveniences, Perl 6 is primed to
host Subtext. Barriers to entry include a lack of docu-
mentation, but at the same time the “scene” around the
programming language is small and extremely helpful.
Another downside is the current speed of the language,
though that is an aspect which is addressed with each
monthly release. In general, the idea of Perl 6 is that it
presents a mutable interface to its own programming
capacities. The sympatico between the two projects is
thus too significant to deny.

The configuration files themselves present a slight
complication, as they need to be highly parse-able
despite potentially containing every reserved charac-
ter known to any programming language or syntax
currently known. Thankfully, there have been many
attempts to achieve this robustness. One that fits par-
ticularly well into the generative typesetting mind-
set which Subtext exemplifies is YAML (Yet Another
Markup Language®). YAML is intended to facilitate
everything from configuration files to object persis-
tence through a human-friendly syntax. The flexibility
of such a system will no doubt provide a solid founda-
tion for implementing Subtext.

Additionally, there will be a standard syntax for
Subtext. That is, there will be a defined pre-format that
ships with the system. This standard syntax will include
bibliographic functionality that is currently limited or
non-existent in most multi-output workflows.

Longer-term goals include a web interface for deal-
ing with the input files. Such a system would likely
integrate the newly-open sourced Etherpad software
for online editing. This would be tied to a version
control interface based on git that would fill in the
functionality that MS Word's “Track Changes’ system
currently provides. Ideally, integrated into this system
would be a real-time parser such as exhibited in the
AJAX-ified interface of the WMD’editor, which renders
the HTML output of Markdown text in real-time within
the same browser window. This functionality is likely
constrained by the speed of the Rakudo Perl 6 imple-

48 MAPS 41

mentation. However, it is conceivable that the standard
Subtext syntax can be parsed in JavaScript. This means
that highly customized workflows would not be able to
enjoy a real-time feedback interface in the near-term
future. This seems to be a small trade-off for the kind of
flexibility this system can enable in generative typeset-
ting, and could easily find itself solved over the course
of the continuance of Moore's Law.

Request For Comments

Though Subtext aims to be useful for dealing with
n+1 different output formats, initial development will
concern itself with simply HTML and ConTgXt outputs.
Together these two encompass the primary formats of
concern. KTEX, ePub, and others can easily be added by
simply defining a new set of effects.

The standard syntax has yet to be designed. Any
comments or suggestions in this regard (or concerning
any of what has been discussed) will be very useful.
At this early conceptual stage where nothing is locked
down except for the core ideas, there is a great poten-
tial for shaping the eventual system without worrying
about any legacy functionality. Please do not hesitate
to send me your thoughts!

Notes
1. The thesis, titled Grammars of Process: Agency, Collective

Haltiwanger

Becoming, and the Organization of Software is available at
http://mastersofmedia.hum.uva.nl/2010/09/17/grammars-of
-process-agency-collective-becoming-and-the-organization
-of-software-2/.

2. Pandoc is the only text format translation tool that cur-
rently translates into CONTEXT. It is written by John MacFar-
lene and is available at http://johnmacfarlane.net/pandoc/.

3. For an easy example of this, just set text-align: justify;
in the CSS for <p> tags in an HTML document.

4. A clearly notable exception to this is Adobe InDesign
and other WYSIWYG Desktop Publishing tools, in which
line-breaking must be taken more seriously. In terms of
“end-user” level document creation, however, the statement
that linebreaking is lacking in WYSIWYG stands.

5. Markdown: http://daringfireball.net/projects/markdown/.
6. Perl 6: http://perl6.org. For an example of Perl 6 gram-
mars, see http://perl6advent.wordpress.com/2009/12/21/day
-21-grammars-and-actions/ from the ‘Perl 6 Advent Calen-
dar,” a great place to start learning about the potentials of this
language.

7. WMD - The WYSIYWM Markdown Editor: http://wmd
-editor.com/.

8. YAML: http://yaml.org.

John C. Haltiwanger
john.haltiwanger@gmail.com

