
NUMMER 42 • VOORJAAR 2011

R E D A C T I E
Taco Hoekwater, hoofdredacteur
Wybo Dekker
Frans Goddijn

N E D E R L A N D S T A L I G E TEX G E B R U I K E R S G R O E P

N E D E R L A N D S T A L I G E TEX G E B R U I K E R S G R O E P

Voorzitter
Taco Hoekwater

ntg-president@ntg.nl

Secretaris
Willi Egger

ntg-secretary@ntg.nl

Penningmeester
Ferdy Hanssen

ntg-treasurer@ntg.nl

Bestuursleden
Frans Absil

fgj.absil@nlda.nl

Frans Goddijn
frans@goddijn.com

Hans Hagen
pragma@wxs.nl

Postadres
Nederlandstalige TEX Gebruikersgroep

Maasstraat 2
5836 BB Sambeek
ING bankrekening

1306238
t.n.v. NTG, Arnhem

BIC-code: INGBNL2A
IBAN-code: NL53INGB0001306238

E-mail bestuur
ntg@ntg.nl

E-mail MAPS redactie
maps@ntg.nl

WWW
www.ntg.nl

Copyright c© 2011 NTG

De Nederlandstalige TEX Gebruikersgroep (NTG) is een vereniging die tot doel heeft
de kennis en het gebruik van TEX te bevorderen. De NTG fungeert als een forum voor
nieuwe ontwikkelingen met betrekking tot computergebaseerde document-opmaak in
het algemeen en de ontwikkeling van ‘TEX and friends’ in het bijzonder. De doelstel-
lingen probeert de NTG te realiseren door onder meer het uitwisselen van informatie,
het organiseren van conferenties en symposia met betrekking tot TEX en daarmee
verwante programmatuur.
De NTG biedt haar leden ondermeer:

@ Tweemaal per jaar een NTG-bijeenkomst.
@ Het NTG-tijdschrift MAPS.
@ De ‘TEX Live’-distributie op DVD/CDROM inclusief de complete CTAN

software-archieven.
@ Verschillende discussielijsten (mailing lists) over TEX-gerelateerde onderwerpen,

zowel voor beginners als gevorderden, algemeen en specialistisch.
@ De FTP server ftp.ntg.nl waarop vele honderden megabytes aan algemeen te

gebruiken ‘TEX-producten’ staan.
@ De WWW server www.ntg.nl waarop algemene informatie staat over de NTG,

bijeenkomsten, publicaties en links naar andere TEX sites.
@ Korting op (buitenlandse) TEX-conferenties en -cursussen en op het lidmaatschap

van andere TEX-gebruikersgroepen.

Lid worden kan door overmaking van de verschuldigde contributie naar de NTG-
giro (zie links); vermeld IBAN- zowel als SWIFT/BIC-code en selecteer shared cost.
Daarnaast dient via www.ntg.nl een informatieformulier te worden ingevuld. Zonodig
kan ook een papieren formulier bij het secretariaat worden opgevraagd.
De contributie bedraagt ¤ 40; voor studenten geldt een tarief van ¤ 20. Dit geeft
alle lidmaatschapsvoordelen maar geen stemrecht. Een bewijs van inschrijving is
vereist. Een gecombineerd NTG/TUG-lidmaatschap levert een korting van 10% op
beide contributies op. De prijs in euro’s wordt bepaald door de dollarkoers aan het
begin van het jaar. De ongekorte TUG-contributie is momenteel $85.

Afmelding kan met ingang van het volgende kalenderjaar door opzegging per e-mail
aan de penningmeester.

MAPS bijdragen kunt u opsturen naar maps@ntg.nl, bij voorkeur in LATEX- of ConTEXt
formaat. Bijdragen op alle niveaus van expertise zijn welkom.

Productie. De Maps wordt gezet met behulp van een LATEX class Vle en een ConTEXt
module. Het pdf bestand voor de drukker wordt aangemaakt met behulp van pdf-
tex 1.40.11 en luatex 0.70.1 draaiend onder Linux 2.6. De gebruikte fonts zijn Linux
Libertine, het niet-proportionele font Inconsolata, schreeWoze fonts uit de Latin Modern
collectie, en de Euler wiskunde fonts, alle vrij beschikbaar.

TEX is een door professor Donald E. Knuth ontwikkelde ‘opmaaktaal’ voor het
letterzetten van documenten, een documentopmaaksysteem. Met TEX is het mogelijk
om kwalitatief hoogstaand drukwerk te vervaardigen. Het is eveneens zeer geschikt
voor formules in mathematische teksten.
Er is een aantal op TEX gebaseerde producten, waarmee ook de logische structuur van
een document beschreven kan worden, met behoud van de letterzet-mogelijkheden
van TEX. Voorbeelden zijn LATEX van Leslie Lamport, AMS-TEX van Michael Spivak,
en ConTEXt van Hans Hagen.

Inhoudsopgave

Redactioneel, Taco Hoekwater 1

Announcement: TUG 2011 2

Review of Typesetting tables with LaTEX by Herbert Voss, Koen Wybo 3

Review of Typesetting mathematics with LaTEX by Herbert Voss, Nicolaas J.I. Mars 5

A Personal Organizer: PocketDiary, Willi Egger 7

Tagged PDF, Hans Hagen 15

Inter-character spacing and ligatures, Hans Hagen 24

8th March – an OTF exercise of Cyrillic by PostScript –, Kees van der Laan 27

Extending ConTEXt with PARI/GP, Luigi Scarso 34

Customised LaTEX page layout with LuaTEX, Graham Douglas 43

LuaTEX Lua modules on Linux, Taco Hoekwater 55

Using ConTEXt with Databases, Thomas A. Schmitz 57

Gabo’s torsion, Kees van der Laan 69

Taco Hoekwater VOORJAAR 2010 1

Redactioneel
Vanochtend terwijl ik wakker werd regende het voor
het eerst in twee maanden. En dat werd hoog tijd ook,
want mijn tuinplanten begonnen er uit te zien als de
achterkant van een droogboekettenwinkel met gebrek
aan opslagruimte. Toch is het voorjaar voormij altijd de
beste periode van het jaar: als het weer net weer warm
genoeg is om zonder jas even naar de winkel te rennen,
je overal bloesems ruikt en ziet als je met een witbiertje
's middags nog even in de tuin zit, een moedereend met
een grote verzameling kroost trots langs de parkvijver
paradeert, de honden hun neus zo diep in de struikjes
hebben dat een korte uitlaatsprint net zo lang duurt als
eenmarathon in dewinter, en de eerste Duitse toeristen
met helmpjes op de stoep fietsend je bijna omver rijden
voor je eigen voordeur, dan voel ik de nieuwe energie
op me overspringen.

Dat is maar goed ook, want al die extra energie is
hard nodig. Het voorjaar is een periode van deadline
op deadline. Alles wat in de winter is blijven liggen
moet dan toch nog even af, en daarbij komen dan nog
de traditionele eens-per-jaar activiteiten: voorbereidin-
gen voor BachoTEX en de voorjaarsbijeenkomst van de
NTG, LuaTEX en MetaPost klaarmaken voor de TEXLive
release, en natuurlijk ook de voorjaarsmaps. De Maps
komt zeker niet in de laatste plaats, maar wel in de
laatste tijd (wat de reden is dat wanneer je dit leest, de
NTG bijeenkomst alweer voorbij is).

Dit is de eerste Maps die geproduceerd is bij de
nieuwe printer, en een onverwacht voordeel daarvan
is dat een proefexemplaar al naast me ligt terwijl ik dit
redactioneel in zit te typen. Dat is mooi omdat ik nu al
meteen zeker weet dat de figuren er goed in staan. In
het oude proces had ik die luxe niet: de vorige drukker
leverde geen proef maar een zogenaamde ‚uithouder’.
Die werd dan weliswaar opgestuurd als losse vellen
voordat het inlijmen en snijdenwerd gedaan, maar toch
was de hele Maps dan al wel gedrukt. En vanwege
de tijdsdruk betekende dat dat een foutje soms doel-
bewust niet gecorrigeerd werd. Een niet onbelangrijk
voordeel, want aan de hand van de proef heb ik eerder
vanochtend nog op anderhalf dozijn pagina's correcties
doorgevoerd.

De achterzijde van deze pagina heeft traditiege-
trouw een aankondiging. Deze keer voor de tug2011-
bijeenkomst, die vanwege de onrust afgelopen tijd niet
in Egypte plaatsvindt, maar in India. Ontbrekend is
een aankondiging voor de vijfde ConTEXt-bijeenkomst,
die dit jaar plaats vindt in Porquerolles, Frankrijk. De

early-bird registratie sloot officieel op 31 mei, maar
voor de lezers van deze Maps kunnen we nog wel een
kleine uitzondering maken, tot een week nadat hij in de
brievenbus is gevallen kun je je nog opgeven voor het
verlaagde tarief. Zet er dan wel even een opmerking
bij zodat we je niet later gaan lastigvallen. Zie http:/
/meeting.contextgarden.net/ voor meer informatie en
het opgaveformulier.

Terug naar de inhoud van de Maps. Twee besprekin-
gen van Engelse vertalingen van boeken van Herbert
Voß deze keer: één behoorlijk lovend, één behoorlijk
negatief. Ik ben nieuwsgierig naar wat er zou gebeuren
als de twee reviewers hun boeken zouden omruilen, dus
misschien komt er in de volgende Maps nog wel een
vervolg.

In deze tijd heeft misschien iedereen wel een
smartphone voor het bijhouden van afspraken, maar
het kan ook tegelijkertijd traditioneler en toch hipper:
met een ‚PocketMod’. Willi legt in een artikel met voor-
beelden uit hoe zijn ConTEXt module daarvoor werkt.

Tagged pdf is zo'n wonderwoord dat de laatste paar
jaar opgang maakt. Waar het goed voor is weet vrijwel
niemand, zelfs Hans niet, maar in ieder geval kun je het
maken met ConTEXt. Ook van de hand van Hans is een
kort stukje over letterspatiëring en ligaturen.

Twee artikelen van Kees vullen samen ongeveer
de helft van deze Maps. Natuurlijk schrijft hij over
PostScript, niet over TEX, maar dat maakt de artikelen
niet minder interessant. Wel langzaam lezen en je niet
laten afleiden door de mooie plaatjes, want er komt
behoorlijk wat (wiskundige) informatie op je af.

Graham Douglas is helemaal weg van LuaTEX, en
presenteert een setje Lua macros om de LaTEX pagina-
layout in te stellen aan de hand van een DTP-specifi-
catie. Daarnaast nog artikelen van mezelf, Luigi Scarso,
en Thomas Schmitz die ook allemaal over LuaTEX gaan,
en met name over hoe je met behulp van externe Lua-
modules ConTEXt-dingen kunt laten doen die met een
traditionelere TEX-engine volstrekt onmogelijk zouden
zijn.

En daarmee zijn zowel de Maps als deze pagina vol.
Rest mij nog te zeggen dat de deadline voor de volgende
Maps 1 oktober 2011 is. Tot die tijd:

Veel leesplezier toegewenst,

Taco Hoekwater

2 MAPS 42

TUG 2011: TEX in the eBook era

Presentations covering the TEX world
The 32nd Annual Meeting of the TEX Users Group

http://tug.org/tug2011 tug2011@tug.org

October 19–21, 2011

River Valley Technologies
Trivandrum, Kerala

India

July 15, 2011 — presentation proposal deadline

August 1, 2011 — early bird registration deadline

September 1, 2011 — preprints deadline

October 19–21, 2011 — conference and workshop

October 31, 2011 — deadline for final papers

Sponsored by the TEX Users Group, DANTE e.V.,

and River Valley Technologies.

Koen Wybo VOORJAAR 2011 3

Review of Typesetting tables with LaTEX by
Herbert Voss

LaTEX en tabellen: het is geen gemakkelijk duo.
Van de beginneling vraagt het wat opzoekwerk en
experimenteren, maar vooral heel wat concentratie bij
het aanbrengen van de code.
Misschien heb je ooit overwogen om bij de aanmaak
van tabellen je schaamteloos over te geven aan de
eenvoud van een wysiwyg oXcepakket met LaTEX
-exportVlter1. Wysiwyg lost echter niet alle problemen
op, esthetisch kan het vaak beter maar het zorgt er wel
voor dat de nodige ampersanden op de juiste plaats
komen te staan.
The LaTEX Companion2 besteedt welgeteld 41 blad-
zijden aan tabellen3. Dat is voldoende om op weg
gezet te worden maar gemakkelijk wordt het niet en
sommige topics komen gewoon niet aan bod in The
LaTEX Companion: bijv. data-import vanuit een extern
bestand.

‘Typesetting tables with LaTEX ’ door Herbert Voss
is als volgt opgebouwd: een eerste introductie met de
‘oude bekenden’: tabular en tabbing. Snel gevolgd door
een lijvig tweede hoofdstuk met de bespreking van maar
liefst 29 pakketten. Kleur krijgt de aandacht in hoofd-
stuk 3. Tabellen over meerdere pagina’s in hoofdstuk 4.
Hoofdstuk 5 brengt tips en tricks. Om af te sluiten met
een 36 bladzijden tellend hoofdstuk aan voorbeelden.

Hoofdstuk 1 moet je zeker gelezen hebben vooraleer
je verder gaat met de andere. Alle basisinformatie met
betrekking tot tabellen staat hierin vermeld. Er worden
onder andere enkele tips meegegeven over de opbouw
van tabellen en wat de oorzaak is van veel voorkomende
fouten. Zowel voor beginner als gevorderde is dit zeker
niet te missen.

Hoofdstuk 2 is geen pure opsomming van de 29 pak-
ketten. Ze worden per functionaliteit besproken: al-
gemeen gebruik, decimale nummers, kleur, tabulatie,
tabellen over meerdere pagina’s.
Toch is het moeilijk om door de bomen het bos te zien.
De kleine beschrijving van de pakketten die aan het
begin van het hoofdstuk wordt gegeven, dekt niet de
volledige inhoud. De auteur geeft aan dat je zelf moet
beslissen welke pakketten voor jezelf belangrijk of nood-
zakelijk zijn. En dat is nu net niet de reden waarom je
zo een boek koopt: ofwel wil je als beginner bij de hand
genomen worden en gewezen worden welke pakketten

eruit springen of wil je als gevorderde snel een oplossing
krijgen voor je probleem. De term ‘algemeen gebruik’ is
bovendien te vaag om de soms heel probleemspeciVeke
pakketten in onder te brengen.
De beschrijving van de pakketten is overigens uitste-
kend. De uitleg is to the point, de opties worden goed be-
schreven en geïllustreerd met een voorbeeld. Er wordt
geen woord verspeeld aan minder relevante info.
Herbert Voss weet uit omvangrijke pakketten de inte-
ressante gedeeltes met betrekking tot tabellen te halen.
Zo haalt hij het uitgebreide pakket datatool aan om via
een extern cvs-bestand data voor een tabel binnen te
halen. Niet iets wat je direct verwacht maar het bewijst
zijn oog voor detail en de kennis van de vele pakketten
op CTAN. Dit geldt ook voor ‘opeenvolgende’ pakket-
ten die vaak speciVeke problemen van hun voorgangers
weten op te lossen4. Het verschil wordt duidelijk in de
tekst vermeld en geïllustreerd.
Wat ontbreekt in hoofdstuk 2 is een overzicht van de
verschillende pakketten met hun eigenschappen en ka-
rakteristieken. Het is echter maar de vraag of dit met
een dergelijke complexiteit überhaupt mogelijk is en
een overzicht niet snel zou verzanden in details.

4 MAPS 42 Koen Wybo

Werken met kleur en multi-pagina tabellen worden
respectievelijk in hoofdstukken 3 en 4 aangepakt. In
deze hoofdstukken word je bij de hand genomen om je
doorheen de mogelijkheden en moeilijkheden van de
diverse pakketten te leiden.

Waar hoofdstukken 1 tot 4 je ‘zakelijke’ informatie
over de diverse pakketten aanbiedt, verandert de opzet
in hoofdstukken 5 en 6. Hier komen ‘tips and tricks’ en
concrete demo’s die op mogelijkheden wijzen, aan bod.
Dit tweeluik toont bovendien aan dat Voss voldoende
op de hoogte is om LaTEX aan de man te brengen: ken-
nis en praktijk smelten mooi samen en maken dit boek
uitmuntend.
Sommige voorbeelden zijn niet alledaags: het ge-
bruik van multicols in een tabel, Excel en OpenoXce-
bestanden gebruiken om tabellen aan te maken, het
gebruik van PS-tricks om de layout te vervolmaken,
tabellen roteren, automatische optellende nummers in
elke nieuwe rij, enzovoort. Deze voorbeelden vind je
weliswaar op diverse nieuwsgroepen en mailinglijsten
terug maar ze zijn door de auteur geperfectioneerd en
tot hun essentie teruggebracht zodat je snel tot een beter
begrip en toepassing komt.

Eindconclusie is over het algemeen heel positief. Het
boek zet je goed op weg om heel eUectief met tabellen
te werken op voorwaarde dat je het boek helemaal door-
neemt. Bij een al te selectieve lezing kun je handige
aanwijzingen en inzichten missen. De auteur slaagt er
in om heel wat problemen te tackelen bij de werking
‘binnen’ in een tabel. Hij voorziet geen plaats om het
principe van Woats uit te leggen / te verklaren terwijl ta-
bellen Woating environments bij uitstek zijn. Misschien
gaat hij er van uit dat zijn lezerspubliek dit reeds onder
de knie heeft.
Kun je makkelijk overweg met de stijl van The LaTEX
Companion dan ben je even goede vrienden met dit
boek.

Typesetting tables with LaTEX , Herbert Voss, UIT Cam-
bridge Ltd., 2011, 230 pagina’s, ISBN 978-1-906860-25-7.

Hoofdstukken:

1. Introduction (pag. 3 - 17)
2. Packages (pag. 19 - 109)
3. Colour in tables (pag. 110 - 124)
4. Multi-page tables (pag. 125 - 166)
5. Tips and Tricks (pag. 167 - 176)
6. Examples (pag. 177 - 212)
7. Question and answers (pag. 213 - 216)

Noten
1. OpenOXce.org (http://nl.openoffice.org) of LibreOXce
(http://www.libreoffice.org) zijn twee voorbeelden als ook
Abiword (http://www.abisource.com).
2. The LaTeX Companion (Tools and Techniques for Com-
puter Typesetting) door Frank Mittelbach, Michel Goossens,
e.a. is een aanrader als naslagwerk voor elke beginnende en
gevorderde LaTEX-gebruiker
3. Typesetting tables with LaTEX maar telt maar liefst 212
pagina’s, index en inleiding niet meegerekend
4. Bijv. tabulary als aanvulling op tabularx om tabelbreedte
aan te pakken.

Koen Wybo

N.J.I. Mars VOORJAAR 2011 5

Review of Typesetting mathematics with
LaTEX by Herbert Voss

Introduction
In the Preface to the TEXBook [Knuth, 1986], Don Knuth
wrote: “TEX [is] intended for the creation of beautiful
books—and especially for books that contain a lot of
mathematics.” Some features of TEX have been adopted
outside mathematics, for instance the hyphenation al-
gorithm, but mathematical typesetting remains TEX’s
primary niche.

TEX is reputed to have a steep learning curve. It is
quite diUerent from other (alleged) typesetting systems,
most of which have adopted the what-you-see-is-what-
you-get model. The error messages confronting the
beginner are often bewildering. As a guide for begin-
ners, the TEXBook leaves a lot to be desired. However,
the unrivaled quality of the resulting typeset output
makes the eUort to learn TEX worthwhile.

LaTEX [Lamport, 1994] was created by Leslie Lam-
port to make using TEX simpler, primarily by distin-
guishing the logical structure of a document from its
typographical realization, and by providing a number
of macros for constructions common in mathematical
texts. LaTEX has now replaced pure TEX for most math-
ematical typesetting.

Most beginning LaTEX users in my experience (lim-
ited to computer science and physics departments in
universities) start by modifying a LaTEX Vle from a col-
league. Many of the high-level commands have well-
chosen mnemonic names, and some users even add
illuminating comments to their LaTEX Vles making the
learning-by-modifying exercise much easier. However,
inevitably there comes a time that this approach no
longer works, and the dreaded stage of consulting a
manual cannot be avoided. It seems that Voss’ book is
aimed at users in that situation.

Description
This book is a translation of the German version
[Voß, 2009]. It is similarly priced, so you can choose
either based on your linguistic preferences.

The book has eleven chapters. After the (one-page)
Introduction, chapter 2 treats in-line mathematical ex-
pressions, using standard LaTEX. Chapter 3 treats
display mode mathematics, while chapter 4 describes
other constructs standard LaTEX oUers for mathematical

formulae. Compared to Lamport’s book, these chapters
contain little that is new, either in substance or in pre-
sentation. What is new, is sometimes bordering on the
esoteric, for example the discussion of the interchanged
role of comma and point in (American) English versus
‘continental’ usage, and the repercussions this has for
spacing large numbers. Doubtless this diUerence should
be hidden in a macro.

Chapter 5 gives a brief, but nevertheless too long,
description of the color package to colour formulae.
Chapter 6 describes the various packages provided
by the American Mathematical Society (without ref-
erence to the admittedly old manual by M.D. Spivak
[Spivak, 1986]). Chapter 7, with 50 pages the longest
chapter, lists mathematical symbols provided by stan-
dard LaTEX as well as a number of other packages. As
the author says: “The order of the packages in this chap-
ter is purely based on optimising page breaks”. This
does not really help in guiding the user to Vnd the pack-
age that may contain the symbol he/she is looking for.

Chapter 8 describes some of the internals of TEX,
while chapter 9 lists a number of packages with material
useful for typesetting mathematical formulae, and gives
some examples of using them. Again in the author’s

6 MAPS 42 N.J.I. Mars

words: “The selection in this chapter is more or less arbi-
trary, but common problems are addressed.” Chapter 10
gives a number of examples of various constructions,
without a clear organization, based ‘on personal experi-
ence’. Finally, chapter 11 discusses which text and math
fonts can be combined with good typographical results;
this is illustrated with examples.

Evaluation
It is quite unclear to me what audience the author had in
mind when writing this book. Newcomers will Vnd the
book impenetrable: it assumes prior knowledge of con-
cepts like packages, character codes, and macro writing.
To illustrate: without elaborating further, on page 24 the
author suggests “Remember when using this package
[. . .] that you have to embed this reset command in a
makeatletter . . .makeatother sequence though.”

Advanced users, who are familiar with these con-
cepts, may wish to use this book to Vnd solutions to the
question “How to code this particular mathematical for-
mula in LaTEX?” If they do, they encounter a problem:
the lack of organization of the book. Although the ti-
tle mentions typesetting mathematics, the organization
is not based on mathematical constructs at all (unless
by accident, because most packages described are for
specialized mathematical constructs). The index does
not help here: if one does not yet know the name of the
macro to use, exhaustive search (of the book, not of the
index!) seems the only way to Vnd it.

Organization aside: one expects a book on typeset-
ting mathematics to be meticulously copy-edited. Un-
fortunately, that is not the case here. Already in the
Preface (p. vii), the reader is confronted with an unre-
solved page reference (??); there are several more of
these. In the (brief) index of persons, N.B. Taylor can be
found under N rather than T. The cover uses American
spelling, while the book uses British English.

Surprisingly, the bibliography does not include Lam-
port’s book [Lamport, 1994]. Both Lamport and Knuth
are absent from the index of persons.

In summary, it is not clear what category of users can
beneVt from this book. There is certainly a need for a
book that helps beginning users, versed in mathematics
but not in typographical tools, to convert their ideas
into beautifully typeset documents. This is not that
book.

Typesetting mathematics with LaTEX , Herbert Voss,
UIT Cambridge Ltd., 2010, 304 pagina’s, ISBN 978-1-
906860-17-2.

References
[Knuth, 1986] Knuth, D. E. (1986). The TEXbook.

Addison-Wesley Publishing Company.
[Lamport, 1994] Lamport, L. (1994). LaTEX a Doc-

ument Preparation System. Addison-Wesley
Publishing Company, 2nd edition.

[Spivak, 1986] Spivak, M. D. (1986). The joy of TEX.
A gourmet guide to typesetting with the AmSTeX
macropackage. American Mathematical Society.

[Voß, 2009] Voß, H. (2009). Mathematiksatz mit
LaTEX. Lehmanns Media-Lob.de.

Nicolaas J.I. Mars
University of Groningen, Groningen, The Netherlands
n.j.i.mars@alumnus.utwente.nl

Willi Egger VOORJAAR 2011 7

A Personal Organizer: PocketDiary
(a module)

Abstract
Sometimes, a cheap personal organizer on paper can come in handy. This solution prepared
in ConTeXt MKIV provides a range of options to set up such a personal organizer. The point
is, that the PocketDiary is printed on a single sided A4 landscape sheet of paper and then
folded into a pocket size booklet hereby preventing that unprinted/empty pages are seen.
The PocketDiary is easy to make and after 1 week it is simply replaced with a subsequent
booklet. A detailed description is given of the system and how to set up a production file. At
the end of the article instructions are included how to fold the booklet.

Keywords
Maps, Context, module, lua

Introduction
Some time ago my brother Heinz asked me to prepare him a special page-arrange-
ment scheme. This scheme is suitable to form a section with a single-sided printed
sheet of paper. He wanted to use it for a special kind of greeting-cards. By coinci-
dence I detected an article by U. Ziegenhagen in de TEXnische Kommödie nr. 3/2010
[4]. This article deals with the preparation of a PocketMod, which is a personal or-
ganizer based on the aforementioned arranging scheme. PocketMod is available as
an online version on http://www.pocketmod.com. – After reading the article and
visiting the web-site I got intrigued by the fact that ConTEXt has built-in arrang-
ing capabilities and due to the LuaTEX engine it should be possible to build such a
personal organizer in ConTEXt.

The result is a module which can generate such personal organizers, called Pock-
etDiary. I give a description of the possibilities in this article.

General Description
The PocketDiary is a personal organizer. It is like a section of a book, but very small
in size. The PocketDiary is based on the idea, that it should be possible to repeatedly
produce such a personal organizer during the year by altering a minimal number of
variables. The diary is based on a week number and, of course, the year. – Although
this is enough information for preparing a week-diary, it is not enough if you want
more options such as inclusion of month-tables, a year-table, inclusion of personal
data etc. To start up the PocketDiary production more information needs to be given
to the system.

PocketDiary Layout
The code presented hereunder is all you need to put into your personal PocketDiary
file to be able to produce a personal organizer.

First we program ConTEXt to load the module t-pocketdiary

\usemodule[pocketdiary]

Without stating the font to be used PocketDiary uses Latin Modern. If you have your
own favourite font set it up here:

8 MAPS 42 Willi Egger

\usetypescriptfile[type-seravek]

\usetypescript[Seravek]

\setupbodyfont[Seravek,ss,9pt]

PocketDiary has a multiple-language interface, so we need to tell it which language
we use. Therefore the document should start with the definition of themain language
used. Supported interfaces are English, Dutch, German, Italian and French.

\mainlanguage[nl]

The module automatically sets the layout of the PocketDiary page.
The PocketDiary's page design is based on a header and footer line and with the

calendar information in the main text area. The header line will contain main infor-
mation on the calendar-issue at hand i.e. Day of the month – Day name (short) –
Week number – Year.

Everything which is configurable, is brought together in 5 sets of variables.
In order to be able to calculate the desired calendars, the following variables of

PocketDiary should be set:

\setvariables

[PocketDiary]

[Year=2011,

Week=17,

Day=7,

Month=5,

Nextyear=yes]

The variables in the set ‘PocketDiary’ are explained in the following table. Be aware,
that some of the variables change the behaviour of the PocketDiary.

Variable Value Comment
Year number Year numbers in the range 1900 and 4099. The lower limit is com-

puter dependent (OS-timestamp), the upper limit is dependent on
the Easter Sunday calculation.

Week number Values between 1 and 53.
Day number Values between 1 and 7. If this variable contains a value, then

the PocketDiary will be made up according to the variable speci-
fications given in the ‘PocketDiaryLayout’ section. If this variable
is empty, then a PocketDiary with one page per day is made up.
The content of pages 1 and 8 can be chosen freely in the section
‘PocketDiaryLayout’.

Month number Values between 1 and 12. This variable is independent from the
variables ‘Year’ and ‘Week’. It indicates only which month should
be calculated for a month table.

Nextyear yes/no The testing is done on ‘yes’. If set to ‘yes’ the next year instead
of the current year is used for the calculation of the year calendar.
This can be practical when current year is nearly over.

The PocketDiary holds 8 (Page1 to Page8) pages. It is possible to give the organizer
an individual layout according to your own wishes. It is no problem to place several
pages with the same template name.

\setvariables

[PocketDiaryLayout]

A Personal Organizer: PocketDiary VOORJAAR 2011 9

[Page1=Lost-Return,

Page2=Week,

Page3=Day,

Page4=Monthcurrent,

Page5=Blank,

Page6=Contact,

Page7=Caro,

Page8=Lines]

Variable Comment
Day The weekday, indicated in the variable ‘Day’ in the previous section, is

used to make a PocketDiary page.
Week A week calendar, based on the variable ‘Week’ in the previous section,

is used for the presentation of a week table.
Monthcurrent A month table based on the value in the variable ‘Month’ of the pre-

vious section, is typeset.
Monthnext A month table of the next month based on the value in the variable

‘Month’ of the previous section is typeset.
Yearcalendar A complete year calendar is typeset. If the ‘Nextyear’ variable is not

‘yes’, the year calendar for the year indicated in variable ‘Year’ of the
previous section is used. Otherwise that variable is increased by 1 to
typeset the year calendar of the following year.

Lost-Return By means of the set values in the section ‘PocketDiaryAddress’ a
lost-and-return page is composed.

Blank This page carries a header and a footer but is otherwise empty.
Todo A todo-list template is typeset.
Caro A page with full-grid-paper is typeset.
Lines A page with grid lines is typeset
Contact A form with two sets of preprinted fields for marking down contact

information is typeset.

The third block of variables contains information used for the footer and the lost-re-
turn form.

\setvariables

[PocketDiaryAddress]

[Familyname=Egger,

Forename=Willi,

Street=Townstreet 3B,

Zipcode=5000,

City=New CONTEXT,

Country=TEX-world,

Phone=+22 444 55 88 66,

Mobile=+22 6 19 19 1717,

E-mail=info at pocketdiary.org,

Web=www.pocketdiary.org]

The footer line contains three fields which can be customized with the ‘PocketDi-
aryFooter’ variables.

\setvariables

[PocketDiaryFooter]

[Lefttext=PocketDiary,

Centertext=\pagenumber,

10 MAPS 42 Willi Egger

Righttext={\getvariable{PocketDiaryAddress}{Forename},~{\currentdate[year]}}]

The main text is separated from the header and footer with a line. This line can be
given a custom color. The standard color is blue. For those who wish grid lines in
another color than light-gray, they can give ‘Gridline’ another value.

\setvariables

[PocketDiaryColors]

[Separatorline=blue,

Gridline={s=.75}]

The last block of code states:

\starttext

\setups{PocketDiary}

\stoptext

The result: Day-Calendar with a Year Calendar
1 1

1 1

Todo

PocketDiary 8 Willi,2011

O

O

O

O

O

O

O

O

O

O

O

2011

PocketDiary7Willi,2011

JanuaryFebruaryMarchApril

5212345
Mon310172431
Tue4111825
Wed5121926
Thu6132027
Fri7142128
Sat18152229
Sun29162330

56789
Mon7142128
Tue181522
Wed291623
Thu3101724
Fri4111825
Sat5121926
Sun6132027

910111213
Mon7142128
Tue18152229
Wed29162330
Thu310172431
Fri4111825
Sat5121926
Sun6132027

1314151617
Mon4111825
Tue5121926
Wed6132027
Thu7142128
Fri18152229
Sat29162330
Sun3101724

MayJuneJulyAugust

171819202122
Mon29162330
Tue310172431
Wed4111825
Thu5121926
Fri6132027
Sat7142128
Sun18152229

2223242526
Mon6132027
Tue7142128
Wed18152229
Thu29162330
Fri3101724
Sat4111825
Sun5121926

2627282930
Mon4111825
Tue5121926
Wed6132027
Thu7142128
Fri18152229
Sat29162330
Sun310172431

303132333435
Mon18152229
Tue29162330
Wed310172431
Thu4111825
Fri5121926
Sat6132027
Sun7142128

SeptemberOctoberNovemberDecember

3536373839
Mon5121926
Tue6132027
Wed7142128
Thu18152229
Fri29162330
Sat3101724
Sun4111825

394041424344
Mon310172431
Tue4111825
Wed5121926
Thu6132027
Fri7142128
Sat18152229
Sun29162330

4445464748
Mon7142128
Tue18152229
Wed29162330
Thu3101724
Fri4111825
Sat5121926
Sun6132027

4849505152
Mon5121926
Tue6132027
Wed7142128
Thu18152229
Fri29162330
Sat310172431
Sun4111825

May2011

PocketDiary6Willi,2011

MonTueWedThuFriSatSun

1

2345678

9101112131415

16171819202122

23242526272829

3031

April2011

PocketDiary5Willi,2011

MonTueWedThuFriSatSun

123

45678910

11121314151617

18192021222324

252627282930

WeekcalendarWeek172011

PocketDiary4Willi,2011

25MonEasterMonday

26Tue

27Wed

28Thu

29Fri

30Sat1Sun

22 Fri Good Friday April 2011

PocketDiary 3 Willi,2011

Week calendar Week 16 2011

PocketDiary 2 Willi,2011

18 Mon

19 Tue

20Wed

21 Thu

22 Fri Good Friday

23 Sat 24 Sun Easter Sunday

PocketDiary 1 Willi,2011

If found, please return to

Willi Egger

Masstraat 2

5836 BB Sambeek

Tel: +31 485 57 38 96

Mob: +31 6 109 19 741

E-mail: w.egger@boede.nl

Web: www.boede.nl

A Personal Organizer: PocketDiary VOORJAAR 2011 11

The result: Week Calendar with Two Custom Pages
1 1

1 1

Todo

PocketDiary 8 Willi,2011

O

O

O

O

O

O

O

O

O

O

O

23SatApril2011

PocketDiary7Willi,2011

24SunEasterSundayApril2011

22FriGoodFridayApril2011

PocketDiary6Willi,2011

21ThuApril2011

PocketDiary5Willi,2011

20WedApril2011

PocketDiary4Willi,2011

19 Tue April 2011

PocketDiary 3 Willi,2011

18Mon April 2011

PocketDiary 2 Willi,2011PocketDiary 1 Willi,2011

If found, please return to

Willi Egger

Masstraat 2

5836 BB Sambeek

Tel: +31 485 57 38 96

Mob: +31 6 109 19 741

E-mail: w.egger@boede.nl

Web: www.boede.nl

Available templates

Day. The day calendar is shown in figure 1.
The weekend calendar shows Saturday and Sunday on one page (see figure 2)

Week Calendar. The week calendar looks as shown in the example figure 3.

Month Calendar. The month calendar is shown in figure 4.

Year Calendar. An example of the current year calendar you can find in figure 5.

Templates Unrelated to Calendar Calculations. The PocketDiary comes with a couple
of templates for writing down information. They are shown in figure 6.1 1

1 1

22 Fri Good Friday April 2011

PocketDiary Example page Willi,2011

Figure 1. The day calendar

2 2

2 2

23 Sat April 2011

PocketDiary Example page Willi,2011

24 Sun Easter Sunday April 2011

Figure 2. The weekend calendar

3 3

3 3

Week calendarWeek 16 2011

PocketDiary Example page Willi,2011

18 Mon

19 Tue

20Wed

21 Thu

22 Fri Good Friday

23 Sat 24 Sun Easter Sunday

Figure 3. The week calendar

12 MAPS 42 Willi Egger

4 4

4 4

May 2011

PocketDiary Example page Willi,2011

Mon Tue Wed Thu Fri Sat Sun

1

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30 31

Figure 4. The month calendar

5 5

5 5

2011

PocketDiary Example page Willi,2011

January February March April

52 1 2 3 4 5
Mon 3 10 17 24 31
Tue 4 11 18 25
Wed 5 12 19 26
Thu 6 13 20 27
Fri 7 14 21 28
Sat 1 8 15 22 29
Sun 2 9 16 23 30

5 6 7 8 9
Mon 7 14 21 28
Tue 1 8 15 22
Wed 2 9 16 23
Thu 3 10 17 24
Fri 4 11 18 25
Sat 5 12 19 26
Sun 6 13 20 27

9 10 11 12 13
Mon 7 14 21 28
Tue 1 8 15 22 29
Wed 2 9 16 23 30
Thu 3 10 17 24 31
Fri 4 11 18 25
Sat 5 12 19 26
Sun 6 13 20 27

13 14 15 16 17
Mon 4 11 18 25
Tue 5 12 19 26
Wed 6 13 20 27
Thu 7 14 21 28
Fri 1 8 15 22 29
Sat 2 9 16 23 30
Sun 3 10 17 24

May June July August

17 18 19 20 21 22
Mon 2 9 16 23 30
Tue 3 10 17 24 31
Wed 4 11 18 25
Thu 5 12 19 26
Fri 6 13 20 27
Sat 7 14 21 28
Sun 1 8 15 22 29

22 23 24 25 26
Mon 6 13 20 27
Tue 7 14 21 28
Wed 1 8 15 22 29
Thu 2 9 16 23 30
Fri 3 10 17 24
Sat 4 11 18 25
Sun 5 12 19 26

26 27 28 29 30
Mon 4 11 18 25
Tue 5 12 19 26
Wed 6 13 20 27
Thu 7 14 21 28
Fri 1 8 15 22 29
Sat 2 9 16 23 30
Sun 3 10 17 24 31

31 32 33 34 35
Mon 1 8 15 22 29
Tue 2 9 16 23 30
Wed 3 10 17 24 31
Thu 4 11 18 25
Fri 5 12 19 26
Sat 6 13 20 27
Sun 7 14 21 28

September October November December

35 36 37 38 39
Mon 5 12 19 26
Tue 6 13 20 27
Wed 7 14 21 28
Thu 1 8 15 22 29
Fri 2 9 16 23 30
Sat 3 10 17 24
Sun 4 11 18 25

39 40 41 42 43 44
Mon 3 10 17 24 31
Tue 4 11 18 25
Wed 5 12 19 26
Thu 6 13 20 27
Fri 7 14 21 28
Sat 1 8 15 22 29
Sun 2 9 16 23 30

44 45 46 47 48
Mon 7 14 21 28
Tue 1 8 15 22 29
Wed 2 9 16 23 30
Thu 3 10 17 24
Fri 4 11 18 25
Sat 5 12 19 26
Sun 6 13 20 27

48 49 50 51 52
Mon 5 12 19 26
Tue 6 13 20 27
Wed 7 14 21 28
Thu 1 8 15 22 29
Fri 2 9 16 23 30
Sat 3 10 17 24 31
Sun 4 11 18 25

Figure 5. The year calendar
6 6

6 6

Notes

PocketDiary Example page Willi,2011

7 7

7 7

Notes

PocketDiary Example page Willi,2011

8 8

8 8

Notes

PocketDiary Example page Willi,2011

The blank page Full grid paper Lines
9 9

9 9

Todo

PocketDiary Example page Willi,2011

O

O

O

O

O

O

O

O

O

O

O

10 10

10 10

Contact

PocketDiary Example page Willi,2011

Name:

Address:

Zip: Place Country

Phone:

e-mail

Name:

Address:

Zip: Place Country

Phone:

e-mail

11 11

11 11

PocketDiary Example page Willi,2011

If found, please return to

Willi Egger

Townstreet 3B

5000 New CONTEXT

Tel: +22 444 55 88 66

Mob: +22 6 19 19 1717

E-mail: info at pocketdiary.org

Web: www.pocketdiary.org

Todo list Contact information Lost-return to form

Figure 6. The templates of PocketDiary

The Lua Part
First I thought that it would not be that hard to build a calendar for this kind of per-
sonal organizer. It is fairly easy, if you expect just a basic organizer without fancy
bells and whistles. However one should not be scared to type again and again a lot of
information in order to get the desired output. – So, when I started this, I wanted to

A Personal Organizer: PocketDiary VOORJAAR 2011 13

get a production file, which would be easy to maintain and there should not be too
many changes during repeated cycles of making such a personal organizer. This im-
plies however, that the background machinery must be able to calculate everything
based on a year, week number, month and a day number. – Soon I detected that there
are more and less difficult areas in the year's calendar. The easier things comprise
leap-year calculations and calculations which do not involve january and december.
The beginning of the year and the end of the year are quite tricky moments. Think
e.g. whether the last days of december are in week 52 or 53 and whether the first
days of the next year belong to week 52, 53 or are representing the first week of the
new year.

The decision has been made, that this module would use the European standard
for date calculations. The Gregorian calendar is used exclusively. The module is
based on the ISO-8061 standard, which defines that the first week of a year is the
week having the year's first Thursday in it. Furthermore it states that the week
starts on Monday which is different from what Lua does, where day 1 is Sunday.
The os-library coming with lua can do a lot for date calculations. So, where possible
this library is used.

Googling helps a lot to gain insight in the date-calculations. The work of So-
hael Babwani [5] is an interesting source. I wanted the PocketDiary to indicate also
the main Christian feast days. I found the web-site of Ron Mallen [6], which was a
big help. He developed an Easter Sunday calculation based on three tables. He also
presents a BASIC programme on his web-site which calculates the date automati-
cally. This programme is then transcribed into Lua.

There are more questions to be answered e.g. how to calculate a week number
from a certain date. Thanks to Ferry van Schaik [7] I got a Java snippet, which I have
converted to Lua.

How to Fold the PocketDiary
The eight printed pages are folded in such a way that the PocketDiary presents itself
as a small booklet. There are no empty pages visible.

12 12

12 12

Page 1 Page 2 Page 3Page 8

Page7 Page6 Page5 Page4

Cutpoint A Cutpoint B

Figure 7. The basic folding scheme

First make twomountain-folds as indicated with the straight lines in figure 7. Unfold
the paper and turn it face up and 90∘ to the left. Make a valley-fold with the lower
part of the sheet onto the previously made mountain-fold. Unfold and turn the sheet
180∘. Make another valley-fold as described before. Unfold the sheet.

Take a sharp knife and a ruler. Cut the paper open between cutting point A and
B (see figure 7).

Now we can fold the booklet. First, fold the paper again lengthwise. Then hold
the double folded paper with the mountain-fold up. Push from both sides towards

14 MAPS 42 Willi Egger

the center in order to get a form similar to figure 8. Then fold the upper double-page
in direction B, the lower double-page in direction C and finally the lefthand dou-
ble-sided page in direction D.

13 13

13 13

B

C

D

Push A Push A

Figure 8. The basic folding scheme

Before creasing the booklet at the spine it is worthwhile to put the section down on
the table and adjust folds where needed. Finally the spine is creased preferably with
a bone-folder.

The Module
The module is available on the ConTEXt wiki and it can be downloaded from
http://modules.contextgarden.net/.

References

1. Programming in Lua. Roberto Ierusalimschy. Lua.org, Rio de Janeiro. 2nd ed.
2006.

2. Metafun. Hans Hagen. PRAGMA ade, Hasselt. Version 2. 2010.
3. ConTEXt Lua documents. Hans Hagen. PRAGMA ade, Hasselt. prelim. version.

2010.
4. Pocketmods mit LATEX erstellen. Uwe Ziegenhagen. In TEXnische Kommödie

3/2010, Dante e.V, Heidelberg. pp. 27-32. 2010.
5. An extended Approach to the Julian and Gregorian Calendar. Sohael Babwani.

2010. From:http://www.babwani-congruence.blogspot.com/
6. Easter Dating Method. Ron W. Mallen. Astronomical Society of Southern Aus-

tralia. 2002. Web-site: http://www.assa.org.au/edm.html.
7. How can I calculate the week number of the current date?. Ferry van Schaik.

2001. From:http://www.irt.org/script/914.htm

Thanks
I would like to thank Hans Hagen, Taco Hoekwater and Hartmut Henkel for the
great LuaTEX machinery and Wolfgang Schuster for supporting me in tackling the
multi-lingual interface. Silvan, thank you for proofreading this text.

Willi Egger
w.egger@boede.nl

Hans Hagen VOORJAAR 2011 15

Tagged PDF

Introduction
Occasionally users asked me if ConTEXt can produce tagged pdf and the answer to
that has been: I'll implement it when I need it. However, users tell me that publishers
show an increasing demand for tagged pdf files, although one might wonder what
for, except maybe for accessibility. Another reason for not having spent too much
time on it before, is that the specification was not that inviting.

At any rate, when I saw Ross Moore1 presenting tagged math at TUG 2010, I de-
cided to look up the spec once more and see if I could get into the mood to implement
tagging. Before I started it was already clear that there were a couple of boundary
conditions:

Tagging should not put a burden on the user but users should be able to do the
tagging themselves.
Tagging should not slow down a run too much; this is no big deal as one can
postpone tagging till the last run.
Tagging should in no way interfere with typesetting, so no funny nodes should
be injected.
Tagging should not make the code look worse, neither the document source, nor
the low level ConTEXt code.

And of course implementing it should not take more than a few days' work, certainly
not during an exceptionally hot summer.

You can ‘google’ for one of Ross's documents (like DML_002-2009-1_12.pdf) to see
how a document source looks at his end using a special version of pdfTEX. However,
the version on my machine didn't support the primitives shown, so I could not see
what was happening under the hood. Unfortunately it is quite hard to find a properly
tagged document so we have only the reference manual as starting point. As the
pdfTEX approach didn't look that pleasing anyway, I just started from scratch.

Tags can help Acrobat Reader when reading out the text aloud. But you cannot
browse the structure in the no-cost version of Acrobat and as not all users have
the professional version of Acrobat, the fact that a document has structure can go
unnoticed. Add to that the fact that the overhead in terms of bytes is quite large as
many more objects are generated, and you will understand why this feature is not
enabled by default.

Implementation
So, what does tagging boil down to? We can best look at how tagged information is
shown in Acrobat. Figure 1 shows the content tree that has been added (automati-
cally) to a document while figure 2 shows a different view.

In order to get that far, we have to do the following:

Carry information with (typeset) text.
Analyse this information when shipping out pages.

16 MAPS 42 Hans Hagen

Figure 1. A tag list in Acrobat.

Figure 2. Acrobat showing the tag order.

Tagged PDF VOORJAAR 2011 17

Add a structure tree to the page.
Add relevant information to the document.

That first activity is rather independent of the other three and we can use that infor-
mation for other purposes as well, like identifying where we are in the document.
We carry the information around using attributes. The last three activities took a
bit of experimenting mostly using the “Example of Logical Structure” from the pdf
standard 32000-1:2008.

This resulted in a tagging framework that uses explicit tags, meaning the user is
responsible for the tagging:

\setupstructure[state=start,method=none]

\starttext

\startelement[document]

\startelement[chapter]
\startelement[p] \input davis \stopelement \par

\stopelement

\startelement[chapter]
\startelement[p] \input zapf \stopelement \par
\startelement[whatever]

\startelement[p] \input tufte \stopelement \par
\startelement[p] \input knuth \stopelement \par

\stopelement
\stopelement

\startelement[chapter]
oeps
\startelement[p] \input ward \stopelement \par

\stopelement

\stopelement

\stoptext

Since this is not much fun, we also provide an automated variant. In the previous
example we explicitly turned off automated tagging by setting method to none. By
default it has the value auto.

\setupstructure[state=start] % default is method=auto

\definedescription[whatever]

\starttext

\startfrontmatter
\startchapter[title=One]

\startparagraph \input tufte \stopparagraph
\startitemize

\startitem first \stopitem
\startitem second \stopitem

\stopitemize
\startparagraph \input ward \stopparagraph
\startwhatever {Herman Zapf} \input zapf \stopwhatever

\stopchapter

\stopfrontmatter

18 MAPS 42 Hans Hagen

\startbodymatter
..................

If you use commands like \chapter you will not get the desired results. Of course
these can be supported but there is no real reason for it, as in MkIV we advise using
the start-stop variant.

It will be clear that this kind of automated tagging brings with it a couple of extra
commands deep down in ConTEXt and there (of course) we use symbolic names for
tags, so that one can overload the built-in mapping.

\setuptaglabeltext[en][document=text]

As with other features inspired by viewer functionality, the implementation of tag-
ging is independent of the backend. For instance, we can tag a document and access
the tagging information at the TEX end. The backend driver code maps tags to rele-
vant pdf constructs. First of all, we just map the tags used at the ConTEXt end onto
themselves. But, as validators expect certain names, we use the pdf rolemap feature
to map them to (less interesting) names. The next list shows the currently used in-
ternal names, with the pdf ones between parentheses.

construct (Span), delimited (Quote), delimitedblock (BlockQuote), description
(Div), descriptioncontent (Div), descriptionsymbol (Span), descriptiontag (Div),
division (Div), document (Div), float (Div), floatcaption (Caption), floatcontent
(P), floattag (Span), floattext (Span), formula (Div), formulacontent (P), formulaset
(Div), formulatag (Span), image (P), item (Li), itemcontent (LBody), itemgroup (L),
itemtag (Lbl), link (Link), list (TOC), listcontent (P), listdata (P), listitem (TOCI),
listpage (Reference), listtag (Lbl), margintext (Span), margintextblock (Span),
math (Div), merror (Span), mfrac (Span), mi (Span), mn (Span), mo (Span), mover
(Span), mpgraphic (P), mroot (Span), mrow (Span), ms (Span), msqrt (Span), msub
(Span), msubsup (Span), msup (Span), mtext (Span), munder (Span), munderover
(Span), paragraph (P), register (Div), registerentries (Div), registerentry (Span),
registerpage (Span), registerpagerange (Span), registerpages (Span), registersection
(Div), registersee (Span), registertag (Span), section (Sect), sectioncontent (Div),
sectionnumber (H), sectiontitle (H), sort (Span), subformula (Div), subsentence
(Span), synonym (Span), table (Table), tablecell (TD), tablerow (TR), tabulate
(Table), tabulatecell (TD), tabulaterow (TR), verbatim (Code), verbatimblock
(Code), verbatimline (Code), verbatimlines (Code).

So, the internal ones show up in the tag trees as shown in the examples but ap-
plications might use the rolemap which normally has less detail.

Since we keep track of where we are, we can also use that information for making
decisions.

\doifinelementelse{structure:section} {yes} {no}
\doifinelementelse{structure:chapter} {yes} {no}
\doifinelementelse{division:*-structure:chapter} {yes} {no}
\doifinelementelse{division:*-structure:*} {yes} {no}

As shown, you can use * as a wildcard. The elements are separated by -. If you don't
know what tags are used, you can always enable the tag related tracker:

\enabletrackers[structure.tags]

This tracker reports the identified element chains to the console and log.

Tagged PDF VOORJAAR 2011 19

Special care
Of course there are a few complications. First of all the tagging model sort of contra-
dicts the concept of a nicely typeset document where structure and outcome are not
always related. Most TEX users are aware of the fact that TEX does not have space
characters and does a great job on kerning and hyphenation. The tagging machinery
on the other hand uses a rather dumb model of strings separated by spaces.2 But we
can trick TEX into providing the right information to the backend so that words get
nicely separated. The non-optimized function that does this looks as follows:

function injectspaces(head)
local p
for n in node.traverse(head) do

local id = n.id
if id == node.id("glue") then

if p and p.id == node.id("glyph") then
local g = node.copy(p)
local s = node.copy(n.spec)
g.char, n.spec = 32, s
p.next, g.prev = g, p
g.next, n.prev = n, g
s.width = s.width - g.width

end
elseif id == node.id("hlist") or id == node.id("vlist") then

injectspaces(n.list,attribute)
end
p = n

end
end

Here we squeeze in a space (given that it is in the font which it normally is when
you use ConTEXt) and make a compensation in the glue. Given that your page sits
in box 255, you can do this just before shipping the page out:

injectspaces(tex.box[255].list)

Then there are the so-called suspects: things on the page that are not related to
structure at all. One is supposed to tag these in a special way to prevent the built-in
reading equipment from getting confused. So far we could get around them simply
because they don't get tagged at all and therefore are not seen anyway. This might
well be enough of a precaution.

Of course we need to deal with mathematics. Fortunately the presentation
MathML model is rather close to TEX and so we can map onto that. After all we
don't need to care too much about back-mapping here. The currently present code
is rather experimental and might get extended or thrown out in favour of inline
MathML. Figure 3 demonstrates that a first approach does not even look that bad. In
future versions we might deal with table-like math constructs, like matrices.

This is a typical case where more energy has to be spent on driving the voice of
Acrobat but I will do that when we find a good reason.

As mentioned, it will take a while before all relevant constructs in ConTEXt sup-
port tagging, but support is already quite complete. Some screen dumps are included
as examples at the end.

20 MAPS 42 Hans Hagen

Figure 3. Experimental math tagging.

Conclusion
Surprisingly, implementing all this didn't take that much work. Of course detailed
automated structure support from the complete ConTEXt kernel will take some time
to get completed, but that will be done on demand and when we run into missing
bits and pieces. It's still not decided to what extent alternate representations and
alternate texts will be supported. Experiments with the reading-aloud machinery are
not satisfying yet but maybe it just can't get any better. It would be nice if we could
get some tags being announced without overloading the content, that is: without
using ugly hacks.

And of course, code like this is never really finished if only because pdf evolves.
Also, it is yet another nice test case and torture test for LuaTEX and it helps us to
find buglets and oversights.

Some more examples
In ConTEXtwe have user definable verbatim environments. As with other user defin-
able environments we show the specific instance as comment next to the structure
component. See figure 4. Some examples of tables are shown in figure 5. Future ver-
sions will have a bit more structure. Tables of contents (see figure 6) and registers
(see figure 7) are also tagged. (One might wonder how useful this is.) In figure 8 we
see some examples of floats. External images as well as MetaPost graphics are tagged
as such. This example also shows an example of a user environment, in this case:

\definestartstop[notabene][style=\bf]

In a similar fashion, footnotes (figure 9) end up in the structure tree, but in the type-
set document they move around (normally forward when there is no room).

Hans Hagen
Pragma ADE, Hasselt, The Netherlands
pragma@wxs.nl

Tagged PDF VOORJAAR 2011 21

Figure 4. Verbatim, including dedicated instances.

Figure 5. Natural tables as well as the tabulate mechanism is supported.

22 MAPS 42 Hans Hagen

Figure 6. Tables of content with specific entries tagged.

Figure 7. A detailed view of registered is provided.

Tagged PDF VOORJAAR 2011 23

Figure 8. Floats tags end up in text stream. Watch the user defined construct.

Figure 9. Footnotes are shown at the place in the input (flow).

24 MAPS 42 Hans Hagen

Inter-character spacing and ligatures1

There was a discussion on the LuaTEX (dev) list about inter character spacing and lig-
atures. The discussion involved a mechanism inherited from pdfTEX but in ConTEXt
we don't use that at all. Actually, support for inter character spacing was added in
an early stage of MkIV development as an alternative for the MkII variant, which
used parsing at the TEX end. Personally I never use this spacing, unless a design in a
project demands it.

In the MkIV method we split ligatures when its components are known. This
works quite well. It's anyway a good idea to disable ligatures, so it's more of a fall-
back. Actually we should create components for hard coded characters like æ but as
no one ever complained I leave that for a later moment.

As we already had the mechanisms in place, support for selective spacing of lig-
atures was a rather trivial extension. If there is ever a real need for it, I will provide
control via the normal user interface, but for now using a few hooks will do. The
following code shows an example of an implementation.

local utfbyte = utf.byte

local keep = {
[0x0132] = true, [0x0133] = true, -- IJ ij
[0x00C6] = true, [0x00E6] = true, -- AE ae
[0x0152] = true, [0x0153] = true, -- OE oe

}

function typesetters.kerns.keepligature(n)
return keep[n.char]

end

local together = {
[utfbyte("c")] = { [utfbyte("k")] = true },
[utfbyte("i")] = { [utfbyte("j")] = true },
[utfbyte("I")] = { [utfbyte("J")] = true },

}

function typesetters.kerns.keeptogether(n1,n2)
local k = together[n1.char]
return k and k[n2.char]

end

The following also works:

local lpegmatch = lpeg.match
local fontdata = fonts.identifiers

local keep = -- start of name
lpeg.P("i_j")

+ lpeg.P("I_J")
+ lpeg.P("aeligature")

1. Excerpt from the ‘Weird Examples’ chapter in hybrid.pdf

Inter-character spacing and ligatures VOORJAAR 2011 25

+ lpeg.P("AEligature")
+ lpeg.P("oeligature")
+ lpeg.P("OEligature")

function typesetters.kerns.keepligature(n)
local d = fontdata[n.font].descriptions
local c = d and d[n.char]
local n = c and c.name
return n and lpegmatch(keep,n)

end

A more generic solution would be to use the tounicode information, but it would be
overkill as we're dealing with a rather predictable set of characters that have gotten
Unicode slots assigned. When using basemode most fonts will work anyway.

So, is this really worth the effort? Take a look at the following example.

\definecharacterkerning [KernMe] [factor=0.25]

\start
\setcharacterkerning[KernMe]
\definedfont[Serif*default]
Ach kijk effe, \ae sop draagt een knickerbocker! \par
\definedfont[Serif*smallcaps]
Ach kijk effe, \ae sop draagt een knickerbocker! \par

\stop

Typeset this (Dutch text) looks like:

Ac h k ij k e f f e, æ s o p d r a a g t ee n k n i cke r bocke r !
Ac h k i j k e f f e , æ s o p d r aag t e e n k n i c k e r b oc k e r !

You might wonder why I decided to look into it. Right at the moment when it was
discussed, I was implementing a style that needed the Calibri font that comes with
MS Windows, and I visited the FontShop website to have a look at the font. To my
surprise it had quite some ligatures, way more than one would expect.

Hans Hagen
Pragma ADE, Hasselt, The Netherlands
pragma@wxs.nl

26 MAPS 42 Hans Hagen

Figure 1. Some of the ligatures in Calibri Regular. Just wonder what intercharacter spacing will do here.

Kees van der Laan VOORJAAR 2011 27

8th March
—an OTF exercise of Cyrillic by PostScript—

Abstract
An OTF with Cyrillic — keyboard and glyphs — is used in PostScript for an 8th March con-
gratulation. The wired-in ASCII code table in TEX inhibits keyboarding Cyrillic.

Keywords
Adobe, afii, ASCII, CID, Cyrillic, EPSF, encoding vector, keyboard layout, lemniscate, mini-
mal encapsulated PostScript, OTF, plain TeX, Photoshop, PSlib, qwerty, TEXworks

Introduction
In the beginning of March I saw an advertisement on Russian (satellite) tv with a
congratulation along the path of the digit 8 on occasion of the international women
day. This inspired me to make a present for my wife: a lemniscate as path with
congratulations in Russian along its path by PostScript.

On the internet I found many congratulations as YTUBE videos, only a few pho-
tographs

20 years ago I might have tried to use TEX for the purpose unaware of the Post-
Script pathtext procedure for typesetting text along an arbitrary path, as published
in Adobe's 1985 Blue Book. However …

EPSF is an AnyTEXie's graphics companion
This note is not about OpenTypeFonts in PostScript in general, but only about

how the congratulation was obtained via the use of MinionPro-Regular, an Adobe
OpenTypeFont with Cyrillic glyphs, available in Acrobat Pro, which I use as Post-
Script interpreter.

Lemniscate
The equation for the lemniscate in polar coordinates (ϕ,r) reads r2 = 2a2 cos 2ϕ, a
a constant.

28 MAPS 42 Kees van der Laan

Text along the lemniscate With the use of pathtext, to set text along an arbitrary
path, as given by Program 11 p.167 of Adobe's Blue Book the following with con-
gratulations in Dutch and sender in transcribed Russian, was easily obtained.

Gefe
lic

ite
er

d m
et de 8e Maart 2011

do rogaja moja---K
isa

.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: -200 -300 200 310
%%BeginSetup
%%EndSetup
%%DocumentFonts: Helvetica
%%BeginProlog
(c:\\PSlib\\BlueBook.eps) run %pathtext
%%EndProlog
%
% Program ---the script---
%
/Helvetica 16 selectfont /a 90 def
%upper part of lemniscate
3 2.2 scale 90 rotate 0 0 moveto
45 -1 -45{/t exch def
/r sqrt2 a mul 2 t mul cos sqrt mul def
/x r t cos mul def
/y r t sin mul def
x y lineto
}for
gsave .9 setgray stroke grestore%paint path to the current page
gsave
1 0 0 setrgbcolor (Gefeliciteerd met de 8e Maart 2011) 41 pathtext
grestore
%lower part of lemniscate
newpath 0 0 moveto
45 -1 -45{/t exch def
/r 2 sqrt a mul 2 t mul cos sqrt mul def
/x r t cos mul neg def
/y r t sin mul def
x y lineto
}for
gsave .9 setgray stroke grestore%paint path to the current page
1 0 0 setrgbcolor (dorogaja moja---Kisa.) 91 pathtext
showpage
%%EOF

But … how to do the above with Cyrillic glyphs?

Cyrillic by PostScript
I did not know on 8th March how to use Cyril-
lic in ASCII-biased PostScript. The above was my
present, apart from two added photographs by
Photoshop in the inner parts of the lemniscate.

But … I did continue, I wanted to know how
to use Cyrillic in PostScript. Is PostScript's CID
multi-byte fonts machinery necessary?
For the use of Cyrillic in PostScript we have 2
problems:

8th March VOORJAAR 2011 29

what is the font name
how to keyboard the characters.

The LRM 3, p.330 prompts the solution
… It allows applications to specify how characters selected from a large character

set are to be encoded. Some character sets, especially OTF, consist of more than 256
characters, including ligatures, accented characters, and other symbols required for
highquality typography or non-Latin writing systems. Different encodings can select
different subsets of the same character set. …

Font name What fonts are in PostScript available? FontDirectory does not provide
the answer. I looked into the font directory of Acrobat Pro and found the Minion-
Pro-Regular OTF. I read in the ATN `OpenType User Guide for Adobe Fonts' that
when the name contains Pro the font has Cyrillic glyphs, which I verified with the
MS accessory `Character Map' i.e. speciale tekens in Dutch.

Keyboarding Cyrillic The layout of a Russian keyboard is given below with at right
the layout of my QWERTY keyboard.

With the help of ReEncodeSmall of the Blue Book Program 18, I reencoded the font
MinionPro-Regular such that for example the ASCII code 8#141, corresponding to
the character a on the QWERTY keyword, is associated with the Russian afii10086,
i.e. the glyph ϕ. (In ATN 5013 Adobe Standard Cyrillic Font Specification I found the
Adobe names for the Cyrillic glyphs: capital Russian A is called afii10017 etc.)

From the LRM 3, p.329

show
string

Character
−−−−−−−→

code

Encoding
array

Character
−−−−−−−→

name

CharStrings
dictionary ⟶ Glyph

description

Encoding scheme for Type 1 fonts

… For example, in the standard encoding vector used by Type 1 Latin-text fonts
such as Helvetica, the element at index 38 is the name object ampersand. When show
encounters the value 38 (the ASCII character code for &) as an element of a string
it is printing, it fetches the encoding vector entry at index 38, obtaining the name
object ampersand. It then uses ampersand as a key in the current font dictionary’s
CharStrings subdictionary and executes the associated charstring that renders the
& glyph. …

30 MAPS 42 Kees van der Laan

The extra level in referencing in PostScript is more flexible than the (internal)
1-level of ASCII referencing in TEX. The lack of the encoding vector concept is a
serious flaw in the otherwise parametric setup of TEX&METAFONT.

The encoding of the 33 Cyrillic letters and the most common punctuation marks is
given in the procedure RUSvec in the program below.

%!PS-Adobe-3.0 EPSF-3.0
%%Title: Cyrillic (Changing the encoding vector; Blue Book Program~18 .p207)
%%Creator: Kees van der Laan, kisa1@xs4all.nl
%%BoundingBox: 0 530 700 620
%%CreationDate: March 2011
%%BeginSetup
%%EndSetup
%%BeginProlog
(c:\\PSlib\\Bluebook.eps) run %used: ReEncodeSmall
/RUSvec [%Russian keybord a la MS word etc %Cyrillic 33 letters
8#101 /afii10038 8#141 /afii10086 %key A a --> cyrillic letter f
8#102 /afii10026 8#142 /afii10074 %... B b --> cyrillic letter i
8#103 /afii10035 8#143 /afii10083 % C c --> cyrillic letter es
8#104 /afii10019 8#144 /afii10067 % D c --> cyrillic letter ve
8#105 /afii10037 8#145 /afii10085 % E e --> cyrillic letter u
8#106 /afii10017 8#146 /afii10065 % F c --> cyrillic letter a
8#107 /afii10033 8#147 /afii10081 % G g --> cyrillic letter pe
8#110 /afii10034 8#150 /afii10082 % H h --> cyrillic letter er
8#111 /afii10042 8#151 /afii10090 % I i --> cyrillic letter sha
8#112 /afii10032 8#152 /afii10080 % J j --> cyrillic letter o
8#113 /afii10029 8#153 /afii10077 % K k --> cyrillic letter el
8#114 /afii10021 8#154 /afii10069 % L l --> cyrillic letter de
8#115 /afii10046 8#155 /afii10094 % M m --> cyrillic letter soft sign
8#116 /afii10036 8#156 /afii10084 % N n --> cyrillic letter te
8#117 /afii10043 8#157 /afii10091 % O 0 --> cyrillic letter shcha
8#120 /afii10025 8#160 /afii10073 % P p --> cyrillic letter ze
8#121 /afii10027 8#161 /afii10075 % Q q --> cyrillic letter short i
8#122 /afii10028 8#162 /afii10076 % R r --> cyrillic letter ka
8#123 /afii10045 8#163 /afii10093 % S s --> cyrillic letter yeru
8#124 /afii10022 8#164 /afii10070 % T t --> cyrillic letter ie
8#125 /afii10020 8#165 /afii10068 % U u --> cyrillic letter ghe
8#126 /afii10030 8#166 /afii10078 % V v --> cyrillic letter em
8#127 /afii10040 8#167 /afii10088 % W w --> cyrillic letter tse
8#130 /afii10041 8#170 /afii10089 % X x --> cyrillic letter che
8#131 /afii10031 8#171 /afii10079 % Y y --> cyrillic letter en
8#132 /afii10049 8#172 /afii10097 % Z z --> cyrillic letter ya
8#173 /afii10039 8#133 /afii10087 % { [--> cyrillic letter X
8#175 /afii10044 8#135 /afii10092 % }] --> cyrillic letter hard sign
8#176 /afii10023 8#140 /afii10071 % ~ ` --> cyrillic letter io
8#42 /afii10047 8#47 /afii10095 % " ' --> cyrillic letter e
8#74 /afii10018 8#54 /afii10066 % < , --> cyrillic letter be
8#76 /afii10048 8#56 /afii10096 % > . --> cyrillic letter yu
8#72 /afii10024 8#73 /afii10072 % : ; --> cyrillic letter zhe
8#44 /semicolon 8#136 /colon % $ ^ --> semicolon colon
8#43 /afii61352 8#46 /question % # & --> numero sign question mark
8#77 /period 8#57 /comma % ? / --> period comma

] def
%

8th March VOORJAAR 2011 31

/width 19 def /tabstops{pop pop /k k 1 add def k width mul y moveto}def
%%EndProlog
/MinionPro-Regular /MPR RUSvec ReEncodeSmall
/k 0 def /y 600 def 0 y moveto
/Courier 16 selectfont
{tabstops}(ABCDEFGHIJKLMNOPQRSTUVWXYZ{}:><~"#?$^) kshow
/k 0 def /y 580 def 0 y moveto
/MPR 16 selectfont
{tabstops}(ABCDEFGHIJKLMNOPQRSTUVWXYZ{}:><~"#?$^) kshow
%
/k 0 def /y 555 def 0 y moveto
/Courier 16 selectfont
{tabstops}(abcdefghijklmnopqrstuvwxyz[];.,`'&/) kshow
/k 0 def /y 535 def 0 y moveto
/MPR 16 selectfont
{tabstops}(abcdefghijklmnopqrstuvwxyz[];.,`'&/) kshow
showpage
%%EOF

with result

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z { } : > < ~ " # ? $ ^
Ф И С В У А П Р ШО Л Д Ь Т Щ З Й К Ы Е Г М Ц Ч Н Я Х Ъ ЖЮ Б Ё Э № . ; :

a b c d e f g h i j k l m n o p q r s t u v w x y z [] ; . , ‘ ’ & /
ф и с в у а п р ш о л д ь т щ з й к ы е г м ц ч н я х ъ ж ю б ё э ? ,

QWERTY keys (upper and lower case) with the Cyrillic glyphs underneath

A nice application of kshow this tabular printing of the glyphs; the more efficient
xshow could have been used as well, though a little more verbose with the array of
equal widths. Another option is to modify the width parameter of the font.

Result

П

оз
др

ав
л я

ю с
праздником 8го марта!

До р огая моя! ---К
иса

--
-

The modified 8th March program with Cyrillic and the 2 photographs embedded
in PostScript reads

%!PS-Adobe-3.0 EPSF-3.0
%%Title: 8 March surprise in Cyrillic
%%Author: Kees van der Laaan, kisa1@xs4all.nl
%%CreationDate: March 2011
%%BoundingBox: -200 -300 200 310
%%DocumentFonts: MinionPro-Regular
%%BeginProlog
(c:\\PSlib\\Pslib.eps) run %Rusvec ReEncodeSmall

% and pathtext (modified with centershow)
%%EndProlog
/MinionPro-Regular /MPR RUSvec ReEncodeSmall
/MPR 16 selectfont
%lemniscate upper part
/a 90 def
3 2.2 scale 90 rotate
0 0 moveto
45 -1 -45{/t exch def
/r sqrt2 a mul 2 t mul cos sqrt mul def
/x r t cos mul def

32 MAPS 42 Kees van der Laan

/y r t sin mul def
x y lineto
}for
gsave .9 setgray stroke grestore%paint the path, and restore the path
gsave
1 0 0 setrgbcolor (Gjplhfdkz. c ghfplybrjv 8uj vfhnf) 41 pathtext
grestore
%lemniscate lower part
newpath 0 0 moveto
45 -1 -45{/t exch def
/r sqrt2 a mul 2 t mul cos sqrt mul def
/x r t cos mul neg def
/y r t sin mul def
x y lineto
}for
gsave .9 setgray stroke grestore%paint the path, and restore the path

%for reuse by pathtext
1 0 0 setrgbcolor (Ljhjufz vjz ---Rbcf---) 85 pathtext
%embedding of converted .jpg photographs
gsave -40 150 translate (C:\\CyrillicinPS\\tulpen.eps) run
grestore
-35 -200 translate (C:\\CyrillicinPS\\winteraconiet.eps) run
showpage
%%EOF

Note The positioning of embedded EPSF photographs I did by trial and error, quick
and dirty. Insert the .jpg photographs in Photoshop, interactively, if you wish.

Conclusions
Using an OTF with Cyrillic glyphs was laborious and confusing, especially creating
the encoding vector. More OTF's with Cyrillic would be nice.

The RUSvec encoding vector I expect to be applicable to any Adobe font with pro
as part of the name, because the Russian keyboard and the afii… -names are general.

The inclusion of .jpg illustrations converted to EPSF by Adobe Photoshop is
handy.

I don't know how the use the OTF MinionPro-Regular in TEX with the input via
a Cyrillic keyboard, apart from the hazzle of the conversion of accompanying AFM
into TFM, needed by TEX. The wired-in ASCII code table in TEX inhibits Cyrillic
keyboarding.

TEX is becoming of age. In PostScript the AFM is not needed.
My wife was happy with the present.

Æsthetics and effectiveness of the message, cultural contexts?

PostScript can be used gracefully, æsthetically, and effectively to set Cyrillic
along an arbitrary path
EPSF is an AnyTEXie's graphics companion.

TEXies should catch up

Literature

Adobe's Red and Blue books. http://www-cdf.fnal.gov/offline/PostScript/
AdobeTechnicalNote#5013, 18 February 1998. Adobe Standard Cyrillic Font
Specification.

8th March VOORJAAR 2011 33

OpenType User Guide for Adobe Fonts, October 2008. http://www.adobe.com
/type/opentype
AdobeTechnicalNote#5002, Encapsulated PostScript File Format Specification
http://partners.adobe.com/public/developer/en/ps/5002.EPSF_Spec.pdf
The Unicode Standard 6.0. 2010.
http://www.unicode.org/versions/Unicode6.0.0/
For use of Cyrillic in TEX my EuroBachoTEX 2002 paper
Cyrillic and TEX — reappraisal of the WNCY font set.

(The keyboarding of Cyrillic is done by transcription which with WNCY fonts and
the ligature mechanism yields the Cyrillic glyphs. I don't know how to emulate a
Cyrillic keyboard in TEX. The assignment of charcode 98 to the letter b etc is internal
to TEX, which I can't modify as mentioned in Ch8 The TEXBook:… Thus, b is 98 inside
of TEX even when your computer normally deals with EBCDIC or some other non-ASCII
scheme.… A little later in the chapter it is explained how to deal with a Norwegian
keyboard with key æ, for example, via ligatures.
Even the Russian translation of the TEXbook, Vse0 pro TEX, does not explain how
to keyboard Cyrillic, does not mention a Russified TEX, a serious omission IMHO.)

Note My BachoTEX 2010 programming pearl — typesetting Π-decimals along an
spiral — does not make use of an explicit path.

Acknowledgements
Thank you Adobe for your maintained, adapted to LanguageLevel 3 since 1997, good
old, industrial standard PostScript and Acrobat to view it, for your Photoshop which
allows straightforward conversion to EPSF, Don Knuth for your stable plain TEX,
Jonathan Kew for the TEXworks IDE, Hàn Thế Thành for pdfTEX.

Thank you Svetlana Morozova for the Russian keyboard layout and for prompt-
ing the Russian texts, and not in the least for being the person to be surprised by
my present. Thank you MAPS editors for improving my use of English and Taco
Hoekwater for procrusting my plain TEX note into MAPS format.

My case rests, have fun and all the best.

Kees van der Laan
Hunzeweg 57, 9893PB Garnwerd, Gr, NL
kisa1@xs4all.nl

34 MAPS 42 Luigi Scarso

Extending ConTEXt MKiV with PARI/GP
Abstract
This paper shows how to build a binding to PARI GP, the
well known computer algebra system, for ConTEXt MKiV,
showing also some examples on how to solve some common
basic algebraic problems.

Keywords
LuaTeX, ConTeXt MARKIV, binding, PARI/GP

Introduction
PARI/GP[1] is a relatively small computer algebra sys-
tem that comes as C library (libpari) and an interpreter
(gp) for its own language (GP) built on upon the same li-
brary. Although it has discrete capabilities on symbolic
manipulations, it has an extensive algebraic number
theory module and hence it can do, due to the highly
optimised C library, complex numeric calculations very
quickly and accurately. In this paper we will show
a way to ‘extend’ ConTEXt MKiV with PARI/GP and
some examples on how to use this powerful library.
PARI stands for ‘Pascal ARIthmétique’ (the very first
choice was the Pascal language, dropped soon for C),
while GP originally was GPC for ‘Great Programmable
Calculator’, but the C was dropped for unknown reason.
The current stable version is 2.3.4.

Build the Lua binding
It's well known that ConTEXt MKiV uses LuaTEX as
a typesetting engine, but maybe it's little known to
the tex-user that Lua itself is used either as embedded
language to enhance an application with a simple but
powerful high level language (e.g. to build plug-ins) or
as glue language to ‘connect’ several libraries, mostly
written in C\C++ — exactly the same as in Sage[2],
where the glue language is Python. In the latter case
Lua is extended with the new libraries that become
practically Lua modules (i.e. modules written in native
Lua language) and they can be built in into the lua
interpreter at compile time (as in the GSL Shell[3]
program) or loaded at runtime, which is the case of the
extension of this paper.

Most often it's necessary to write some C code that
acts as an interface between the library and Lua: this
process is called ‘build the Lua binding for the library’

and it's where the developer decides which symbols of
the library (i.e. functions, classes, variables and con-
stants) export to Lua and how they are seen from the
Lua side (under which name, for example). This is a
delicate phase, because onemust know the conventions
of the lua library on which the Lua language relies
(the ‘lua Application Program Interface’ or API), the
API of the target library and write the appropriate C
code for each symbol to export: for the C language
these APIs are usually organized in so-called header
files (with suffix ".h") that contain the declarations
of each function, variable or constant that the library
exposes — but not always all of them can be exported:
the developer must consult the documentation to know
which set of admissible symbols to export).

Luckily the lua API are completely listed in the Lua
book[4] and they describe a simple and robust mecha-
nism: basically every C function that wants to interact
with the Lua interpreter uses a stack (a LIFO queue)
to exchange data. The stack is modified by a relatively
small set of functions that act on the Lua state, a global
data structure that also keeps track of unused objects
and calls the garbage collector when necessary. Hence
every C function of the binding must only take care
of calling the right function of the target library with
the right arguments and to use the stack to exchange
the in (input to the function) and/or out (output to the
Lua interpreter) values. If the target library has many
functions this is a long and tedious work, because most
of the time the functions follow few common patterns
and most of the binding code can be cut-and-pasted
with few modifications, but on average the headers of
the target library are difficult to read.

This is where SWIG enters the play. SWIG (Simplified
Wrapper and Interface Generator, see[5]) is a program
to help the developer to build bindings and, for some
libraries, it can almost automatically build a binding by
merely reading all headers files. SWIG reads a driver
file, the so-called interface file ".i", and it executes
its instructions. For libpari the instructions in the
interface file pari.i are quite simple: basically ‘read the
headers and produce the binding’. This is for example
the role of the %include "pari/paritype.h"; instruc-
tion, that just says ‘read the header paritype.h which is
in the pari folder and write the binding code’; but we
can also map some libpari functions into something
else, as in

Extending ConTEXt MKiV with PARI/GP VOORJAAR 2011 35

GEN uti_mael2(GEN m,long x1,long x2)

{return mael2(m,x1,x2);}

where the libpari macro mael2 is wrapped into the C
function uti_meal2 for sake of simplicity.

The binding is then built with
swig -lua pari.i

This is the complete interface file pari.i used under
Linux 32 bit: the header files are in the sub-folder pari
of the folder that contains the build script.
%module pari

%{

#include "pari.h"

ulong overflow;

%}

%ignore gp_variable(char *s);

%ignore setseriesprecision(long n);

%ignore killfile(pariFILE *f);

%include "pari/paritype.h";

%include "pari/parisys.h";

%include "pari/parigen.h";

%include "pari/paricast.h";

%include "pari/paristio.h";

%include "pari/paricom.h";

%include "pari/parierr.h";

%include "pari/paridecl.h";

%include "pari/paritune.h";

%include "pari/pariinl.h";

%inline %{

GEN uti_mael2(GEN m,long x1,long x2)

{return mael2(m,x1,x2);}

GEN uti_mael3(GEN m,long x1,long x2,long x3)

{return mael3(m,x1,x2,x3);}

GEN uti_mael4(GEN m,long x1,long x2,long x3,

long x4)

{return mael4(m,x1,x2,x3,x4);}

GEN uti_mael5(GEN m,long x1,long x2,long x3,

long x4,long x5)

{return mael5(m,x1,x2,x3,x4,x5);}

GEN uti_mael(GEN m,long x1,long x2)

{return mael2(m,x1,x2);}

GEN uti_gmael1(GEN m,long x1)

{return gmael1(m,x1);}

GEN uti_gmael2(GEN m,long x1,long x2)

{return gmael2(m,x1,x2);}

GEN uti_gmael3(GEN m,long x1,long x2,long x3)

{return gmael3(m,x1,x2,x3);}

GEN uti_gmael4(GEN m,long x1,long x2,long x3,

long x4)

{return gmael4(m,x1,x2,x3,x4);}

GEN uti_gmael5(GEN m,long x1,long x2,long x3,

long x4,long x5)

{return gmael5(m,x1,x2,x3,x4,x5);}

GEN uti_gmael(GEN m,long x1,long x2)

{return gmael2(m,x1,x2);}

GEN uti_gel(GEN m,long x1)

{return gmael1(m,x1);}

GEN uti_gcoeff(GEN a,long i,long j)

{return gcoeff(a,i,j);}

GEN uti_coeff(GEN a,long i,long j)

{return coeff(a,i,j);}

%};

The binding is quite straightforward: almost every
symbol of libpari has a counterpart in Lua with
the same name; the symbols ‘private’ are exposed in
paripriv.h which is not listed in pari.i — they aren't
exported and hence they are not reachable from Lua.

The build script (for Linux) assumes the latest SWIG
and PARI/GP installed under /opt/swig-2.0.2:
/opt/swig-2.0.2/bin/swig -lua pari.i

gcc -ansi \

-I./pari -I/opt/swig-2.0.2/include \

-c pari_wrap.c -o pari_wrap.o

gcc -Wall -ansi -shared -I./pari \

-I/opt/swig-2.0.2/include -L./ \

-L/opt/swig-2.0.2/lib pari_wrap.o \

-lpari -lm -o pari.so

Once compiled, the pari.so is suitable to be loaded as
Lua module with require("pari").

As a final note for this section, the same steps can
be followed under Windows using MinGW[6] or with
GUB[7] to cross-compile the library in a host system
(Linux) for a target system (Windows) — as is the case
of this paper, where the examples use a cross-compiled
dll libpari.

Examples
Summations
As we said briefly in the introduction, PARI/GP has its
own language GP, with more than 450 functions, and
its interpreter, the gp program. Most of the time these
functions are one-to-one with the functions exported
by the library libpari, but sometimes there are some
‘sugar syntactic’ constructs for the sake of simplic-
ity. In any case, libpari has the gp_read_str(char *)
function that evaluates a GP sentence and returns the
result, so that on the Lua side it's possible to use both
the library and the GP language. The library is usually
quicker thanGP and it has a finer grain control —which
usually also means that it's necessary to write more
code.

In this first example, we will see how to cal-
culate exactly a summation. The GP function is

sum(X,a,b,expr,start) that stands for
b

∑
X=a

expr(X, ⋅),

where start is the initial value of expr(X, ⋅) :

36 MAPS 42 Luigi Scarso

\startluacode

require("pari")

pari.pari_init(4000000,500000)

document = document or {}

document.lscarso= document.lscarso or {}

local function sum(X,a,b,expr,start)

local avma = pari.avma

local start = start or '0.'

local res =

pari.gp_read_str(string.format(

"sum(%s=%s,%s,%s,%s)",X,a,b,expr,start))

res = pari.GENtoTeXstr(res)

pari.avma = avma

return res

end

document.lscarso.sum = sum

\stopluacode

\starttext

\startTEXpage

\startformula

\sum_{k=0}^{30}\frac{4(-1)^k}{2k+1}=

\ctxlua{context(document.lscarso.sum(

"k",0,30,"4*(-1)^k/(2*k+1)","0"))}

\stopformula

\stopTEXpage

\stoptext

that gives

30∑
k=0

4(−1)k

2k + 1
= 58630135791001973169852284

18472920064106597929865025

Let's explain the code step by step. First we need
to load the module with require("pari") — assuming
that the library is in the standard path or in the current
folder (cfr. CLUAINPUTS in [8] for more details).

Next, we must avoid conflicts with other Lua
functions. A common solution is to define a name-
space (document.lscarso in this case), a local function
(sum(X,a,b,expr,start)) and expose it with the name-
space (document.lscarso.sum= sum). This is a general
issue when one defines its own module, not only for
PARI/GP — it's the same problem of redefining TEX
macros.

There is another issue with PARI/GP. Like Lua,
PARI/GP also uses a stack but it has not a garbage
collector, and every time it makes a calculation the
result is not deleted; after a while the stack is full
and the process aborts. Luckily it's easy to clear the
stack: at the beginning of every function it's suffi-
cient to record the initial position on the stack with
local avma=pari.avma and then reset the stack with
pari.avma=avma just before the return statement of the
function. This is an issue with libpari, because most of
GP functions manage the stack correctly.

After these notes, calling the GP sum function is
a matter of calling gp_read_str(char *) with the
right formatted string which is trivial thanks to
string.format, a standard LuaTEX function. Last but
not least is pari.GENtoTeXstr(GEN), a libpari function
that translates a pari object (e.g a fraction) into a TEX
expression. It's important to note that the result is exact
because we have imposed with start=0 that all the
values are in𝐐: if we want an approximated value just
use start=0. and the result is

30∑
k=0

4(−1)k

2k + 1
= 3.173842337190749408690224140

But we can do things a bit better. First, we want to
control the precision of the result, i.e. how many digits
to show. This is quite simple: the GP default(.,.)
function can be used to get/set some internal constants
and realprecision is what we need:
local function set_precision(prec)

local avma = pari.avma

local prec = math.floor(prec+0.5) or 28

local res = pari.gp_read_str(

string.format("default(realprecision,%s)",

prec))

res = pari.GENtostr(pari.gp_read_str(

"default(realprecision)"))

pari.avma = avma

return res

end

local function get_precision(prec)

local avma = pari.avma

local res = pari.GENtostr(

pari.gp_read_str(

"default(realprecision)"))

pari.avma = avma

return res

end

Once we have the notion of precision, we can extend
the summation to ‘infinity’, i.e. until the partial sums
are stable within the precision. Of course this depends
on the character of the series — in our case it's an
alternating series. For this kind of series GP has the
sumalt(X=a,expr) function that does the job:
local function sum_alternate(X,a,expr,prec)

local avma = pari.avma

local gp = document.lscarso.get_precision

local oldprec = gp(prec)

document.lscarso.set_precision(prec)

local res=pari.GENtostr(pari.gp_read_str(

string.format("sumalt(%s=%s,%s)",

X,a,expr)))

document.lscarso.set_precision(oldprec)

pari.avma = avma

Extending ConTEXt MKiV with PARI/GP VOORJAAR 2011 37

res=string.gsub(res,"(%d)","%1\\hskip0sp")

return res

end

We can hence try to calculate the series with a precision
of 800 digits:
\startformula

\sum_{k=0}^{\infty}\frac{4(-1)^k}{2k+1}=

\stopformula

\ctxlua{context(

document.lscarso.sum_alternate(

"k",0,"4*(-1)^k/(2*k+1)",800))}

Given that the result is quite long (see fig.1) with
string.gsub(res,"(%d)","%1\\hskip0sp") we insert
an invisible skip to help TEX to break the expression.

∞∑
k=0

4(−1)k

2k + 1
≈

3.141592653589793238462643383279502884197
1693993751058209749445923078164062862089
9862803482534211706798214808651328230664
7093844609550582231725359408128481117450
2841027019385211055596446229489549303819
6442881097566593344612847564823378678316
5271201909145648566923460348610454326648
2133936072602491412737245870066063155881
7488152092096282925409171536436789259036
0011330530548820466521384146951941511609
4330572703657595919530921861173819326117
9310511854807446237996274956735188575272
4891227938183011949129833673362440656643
0860213949463952247371907021798609437027
7053921717629317675238467481846766940513
2000568127145263560827785771342757789609
1736371787214684409012249534301465495853
7105079227968925892354201995611212902196
0864034418159813629774771309960518707211
3499999983729780499510597317328160963186

Figure 1. Evaluation of an alternating
series with 800 digit precision.

Of course this is a well known series: from arctan(1) =
π
4 one can calculate the Taylor expansion of arctan(x)
around x = 0 with taylor(expr,x):
local function taylor(expr,x)

local avma = pari.avma

local res = pari.gp_read_str(

string.format("taylor(%s,%s)",expr,x))

res = pari.GENtoTeXstr(res)

pari.avma = avma

return res

end

$\mathrm{arctan}(x)=$

\startformula

\ctxlua{context(document.lscarso.taylor(

"atan(x)","x"))}

\stopformula

i.e.
arctan(x) =

x − 1
3

x3 + 1
5

x5 − 1
7

x7 + 1
9

x9 − 1
11

x11 + 1
13

x13 − 1
15

x15 + O(x16)

The series is convergent in x = 1 (there are several
proofs about this, e.g. see [9]), hence

4
∞

∑
k=0

(−1)k

2k + 1 =
∞

∑
k=0

4(−1)k

2k + 1 = 4
π
4 = π .

It's important to note that theoretically this series has
a slow convergence to π (it's hence a bad choice to
calculate π) but practically it can be used with PARI/GP
to give quickly an high precision result — this is the
power of the library.

Before continuing, let's consider this summation:
\startformula

\sum_{k=0}^{3}\frac{1}{x^2+k}=

\ctxlua{context(document.lscarso.sum(

"k",0,3,"1/(x^2+k)","0"))}

\stopformula

that gives
3∑

k=0

1
x2 + k

= 4x6 + 18x4 + 22x2 + 6
x8 + 6x6 + 11x4 + 6x2

PARI/GP is also capable of some symbolic calcula-
tions — it's not only a numeric library.

Continued fractions
A simple finite (canonical) continued fraction is a ratio-
nal number q given by

q = a0 +
1

a1 +
1

a2 +
1

⋱ + 1
an

where a0 is an integer and aj,j>0 are strictly positive
integers. Every rational number can be expressed with
a finite continued fraction; if we consider a succession
of finite continued fractions for n → ∞we have an infi-
nite (canonical) continued fraction, and every irrational
number has an unique infinite continued fraction. For
a finite c.f. [a0,a1,a2, …, an] the rational number given

38 MAPS 42 Luigi Scarso

by calculating all the intermediate fractions is usually
termed as pn/qn i.e. [a0,a1,a2, …, an] =

pn
qn

. For exam-

ple [0,3] = 1
3 and it's possible to show that pn/qn is the

fraction in lowest terms. The GF contfrac function cal-
culates (the vector of) the continued fraction of a ratio-
nal number, while contfracpnqn given a (finite vector
of) continued fraction returns pn, qn but the interesting
point here is to use, given a real number with a fixed
precision, the continued fraction to find its best rational
approximation. The libpari bestappr(x,A) function
calculates exactly what we need:
local function bestappr(x,A)

local avma = pari.avma

local x = tostring(x) or nil

local A = math.floor(A+0.5)

local res, bestx

if x == nil then return nil,nil end

bestx = pari.bestappr(pari.geval(

pari.strtoGENstr(x)),

pari.geval(

pari.strtoGENstr(tostring(A))))

res = {}

res[1] = pari.GENtostr(bestx)

res[2] = pari.GENtostr(

pari.uti_gel(bestx,1))

res[3] = pari.GENtostr(

pari.uti_gel(bestx,2))

pari.avma = avma

return res[1],res[2],res[3]

end

Note that the return value is an array with 3 compo-
nents, namely pn/qn, pn, qn.We also use pari.uti_gel,
the wrapped version of libpari gel function, to access
an array by components.

Instead of an arbitrary real number, we choose π
because the libpari mppi(long) function gives πwith the
required precision .
\startluacode

local collect = {}

local avma = pari.avma

local prec = 800

document.lscarso.set_precision(prec)

avma = pari.avma

local pi = pari.mppi(prec)

local pi_str = pari.GENtostr(pi)

pari.avma = avma

--print("=====>pi:",pi_str)

for d = 4,50000,1 do

res,num,den =

document.lscarso.bestappr(pi_str,d)

collect[res] = {num,den,d}

end

context("\\starttabulate[|l|l|]")

context("\\HL")

context(string.format(

"\\NC %s \\NC %s \\NC\\NR",

"fraction","approx. value"))

context("\\HL")

for k,v in pairs(collect) do

print(k, v[1]/v[2],v[3])

-- context(k, v[1]/v[2],v[3])

context(string.format(

"\\NC %s \\NC %s \\NC\\NR",k,v[1]/v[2]))

end

context("\\stoptabulate")

\stopluacode

Note that we use pn,qn as a key for the dictionary
collect, so we have just the set of results – i.e. we
drop the same best approximations for different de-
nominators. For a precision of 800 digits and a range
of denominators between 4 and 50000 we have hence:

fraction approx. value
333/106 3.1415094339623
104348/33215 3.1415926539214
16/5 3.2
13/4 3.25
22/7 3.1428571428571
355/113 3.141592920354
19/6 3.1666666666667
103993/33102 3.1415926530119

where the approx. values are due to the Lua floating
point math.

Equations
Solving numeric equations in PARI/GP required more
attention than other packages. The solve(X=a,b,expr)
GP function implements a very good algorithm but it
works with one variable only and it fails if expr is not
defined in [a,b] and it hasn't a variation in [a,b]. This
Lua wrapper solve tries to ensure that at in [a,b] there
is a variation evaluating the sign of expr(a)*expr(b):
function solve(expr,X,a,b,prec)

local av = pari.avma

pari.gp_read_str(

string.format(

"default(realprecision,%s)",prec))

local tr,res

pari.gp_read_str(string.format("f(%s)=%s",

X,expr))

tr = pari.gp_read_str(

string.format(

"if(f(%s)*f(%s)<0,1,0)",a,b))

tr = pari.GENtostr(tr)

Extending ConTEXt MKiV with PARI/GP VOORJAAR 2011 39

tr = tonumber(tr)

res = nil

if (tr==1) then

local expr=string.format(

"solve(%s=%s,%s,%s)",X,a,b,expr)

res = pari.gp_read_str(expr)

res = pari.GENtostr(res)

end

return res,

pari.GENtoTeXstr(

pari.strtoGENstr(expr))

end

The next code tries to solve

x5 + x3arctan(x) + 2x2 + x + 1 = 0

for x ∈ [−100,100] with a precision of 12 digits:
\startluacode

local solve = document.lscarso.solve

for a=-100,99,1 do

local res,TeX,aa,bb =

solve('x^5+atan(x)*x^3+2*x^2+x+1',

"x",a,(a+1),12)

if res ~= nil then

context(string.format(

"$%s\\approx 0$ \\crlf

for $x\\approx%s$\\par",

TeX,res))

else

-- print("TeX="..TeX)

end

end

\stopluacode

We have hence:
x5 + atan(x) ∗ x3 + 2 ∗ x2 + x + 1 ≈ 0
for x ≈ −1.47704735548

PARI/GP has a rich set of functions for polynomials,
and solve is not necessarily the best choice to find the
roots of multivariate polynomials; the next example
will show how to draw the real roots of P[X,Y] with a
given precision in a square region [a,b] × [a,b]. First of
all, we need to understand that with a fixed precision
there is also an associated zero: with precision=12 then
zero=1E-96. Next,PARI/GP finds the complex roots of a
univariate polynomial, sowe need a get_valuewrapper
to evaluate P(x,y) for y ∈ [a,b] (with a given precision),
so we have an expression in the x variable that we will
consider as a polynomial P[X]:
local function get_value(expr,X,a,prec)

local avma = pari.avma

pari.gp_read_str(string.format(

"default(realprecision,%s)",prec))

pari.gp_read_str(string.format(

"%s=%s",X,a))

local res = pari.gp_read_str(

string.format("eval(%s)",expr))

res = pari.GENtostr(res)

pari.avma = avma

return res

end

The polroots function evaluates the roots and returns
an array of roots where each root is separated into the
real and complex components:
local function polroots(poly,prec)

local avma = pari.avma

pari.gp_read_str(string.format(

"default(realprecision,%s)",prec))

local poly = tostring(poly)

local prec = tonumber(prec)

local degree = pari.degree(

pari.geval(pari.strtoGENstr(poly)))

local roots = pari.roots(

pari.geval(pari.strtoGENstr(poly)),prec)

local res ={}

for i=1,degree do

local real_part,im_part =

pari.GENtostr(pari.uti_gel(

pari.uti_gel(roots,i),1)),

pari.GENtostr(pari.uti_gel(

pari.uti_gel(roots,i),2))

res[#res+1]={real_part,im_part}

end

pari.avma = avma

return res

end

Last we need to iterate y over [a,b] and find the roots
of P[X]. Instead of producing a table, we plot the value
by a MetaPost page:
\startluacode

local poly = "x^3-x-y^2"

local step= 1/2^6

local results = {}

local limit = 5

local zero = '0.E-96'

local prec = 12

get_value = document.lscarso.get_value

polroots = document.lscarso.polroots

context("\\startMPpage")

context("pickup pencircle scaled 0.1pt;")

context(string.format("draw (-%s,0)--(%s,0);",

limit,limit))

context(string.format("draw (0,-%s)--(0,%s);",

limit,limit))

context("pickup pencircle scaled 0.2pt;")

for y=-limit,limit,step do

local poly_x = get_value(poly,'y',y,prec)

-- print("poly_x="..poly_x,y)

40 MAPS 42 Luigi Scarso

local roots = polroots(poly_x,prec)

for _,root in pairs(roots) do

local real,imag = root[1],root[2]

-- print("real="..real,"imag="..imag)

if imag == zero then

if real == zero then real = '0' end

--print(string.format("(%s,%s)",real,y))

context(string.format("draw (%s,%s);",

real,y))

end

end

end

context("\\stopMPpage")

\stopluacode

With a precision of 12 digits and a square region of
[−5,5] we have then :

Implicitization of a cubic bezier curve
The next and last example will show how to find,
given 𝐩,𝐜𭟏,𝐜𭟐,𝐪 the points of a cubic Bezier curve in
parametric form (𝐩 start point, 𝐜𝟏 and 𝐜𝟐 control points
and 𝐪 end point), a polynomial P[X,Y] that is the implicit
form of the curve. Given the parametric form of a cubic
Bezier 𝒞 ∈ 𝐐

𝒞 ={ (1 − t)
3𝐩 + 3(1 − t)2t𝐜𭟏 + 3(1 − t)t2𝐜𭟐 + t3𝐪,

t ∈ [0, 1] }

for a point (xt,yt) ∈ 𝒞 we have

xt = a3t3 + a2t2 + a1t + a0 = a(t)

yt = b3t3 + b2t2 + b1t + b0 = b(t)

Following Sederberg([10], chap. "Algebraic Geometry
for CAGD"), let

f = f(t, x) = a(t) − x

g = g(t, y) = b(t) − y

and

h1(t, x, y) = (a3g − b3f)

h2(t, x, y) = (a3t + a2)g − (b3t + b2)f

h3(t, x, y) = (a3t2 + a2t + a1)g − (b3t2 + b2t + b1)f

In PARI/GP every indeterminate has an order and the
first indeterminate is x, so it's better rename (t,x,y) →
(x,X,Y) so that each ℎj can be seen as a polynomial
(ℎj[X,Y])[x] with at most degree 2 with respect to x. If
we are able to find ℎ1[x] = ℎ2[x] = ℎ3[x] = 0 (the null
polynomial of 𝐐[𝐱]) then we have found the implicit
form of our curve. It can be demonstrated that, if ℎj,n
is the coefficient of xn of ℎj,

⎛⎜
⎝

ℎ1,2[X,Y] ℎ1,1[X,Y] ℎ1,0[X,Y]
ℎ2,2[X,Y] ℎ2,1[X,Y] ℎ2,0[X,Y]
ℎ3,2[X,Y] ℎ3,1[X,Y] ℎ3,0[X,Y]

⎞⎟
⎠

⎛
⎝

x2
x
1
⎞
⎠
= ⎛
⎝

0
0
0
⎞
⎠

if and only if

|

ℎ1,2[X,Y] ℎ1,1[X,Y] ℎ1,0[X,Y]
ℎ2,2[X,Y] ℎ2,1[X,Y] ℎ2,0[X,Y]
ℎ3,2[X,Y] ℎ3,1[X,Y] ℎ3,0[X,Y] |

= 0

and hence this determinant is our P[X,Y].

The code is quite long, but not complicated:
local function bezier_impl(p,c1,c2,q)

local avma = pari.avma

local f = string.format(

"(1-t)^3*%s+3*(1-t)^2*t*%s+3*(1-t)*t^2*%s+t^3*%s",

p[1], c1[1], c2[1], q[1])

local g = string.format(

"(1-t)^3*%s+3*(1-t)^2*t*%s+3*(1-t)*t^2*%s+t^3*%s",

p[2], c1[2], c2[2], q[2])

local fx =

pari.gp_read_str(string.format("X-Pol(%s,x)", f))

local gx =

pari.gp_read_str(string.format("Y-Pol(%s,x)", g))

fx = pari.GENtostr(fx)

gx = pari.GENtostr(gx)

local coeff_f_str =

Extending ConTEXt MKiV with PARI/GP VOORJAAR 2011 41

string.format("A=Vec(%s);B=if(poldegree(%s)==3,

A,if(poldegree(%s)==2,[0,A[1],A[2],A[3]],

if(poldegree(%s)==1,[0,0,A[1],A[2]],

if(poldegree(%s)==0,[0,0,0,A[1]],[0,0,0,0]))));B",

fx,fx,fx,fx,fx)

local coeff_g_str =

string.format("A=Vec(%s);B=if(poldegree(%s)==3,

A,if(poldegree(%s)==2,[0,A[1],A[2],A[3]],

if(poldegree(%s)==1,[0,0,A[1],A[2]],

if(poldegree(%s)==0,[0,0,0,A[1]],[0,0,0,0]))));B",

gx,gx,gx,gx,gx)

local coeff_f = pari.gp_read_str(coeff_f_str)

local coeff_g = pari.gp_read_str(coeff_g_str)

local a3,a2,a1 =

pari.uti_gel(coeff_f,1), pari.uti_gel(coeff_f,2),

pari.uti_gel(coeff_f,3)

local b3,b2,b1 =

pari.uti_gel(coeff_g,1), pari.uti_gel(coeff_g,2),

pari.uti_gel(coeff_g,3)

local h1 =

pari.gp_read_str(string.format("%s*(%s)-%s*(%s)",

pari.GENtostr(a3), gx, pari.GENtostr(b3),fx))

local h2 =

pari.gp_read_str(

string.format("(%s*x+%s)*(%s)-(%s*x+%s)*(%s)",

pari.GENtostr(a3), pari.GENtostr(a2), gx,

pari.GENtostr(b3), pari.GENtostr(b2), fx))

local h3 =

pari.gp_read_str(string.format(

"(%s*x^2+%s*x+%s)*(%s)-(%s*x^2+%s*x+%s)*(%s)",

pari.GENtostr(a3), pari.GENtostr(a2),

pari.GENtostr(a1),gx, pari.GENtostr(b3),

pari.GENtostr(b2), pari.GENtostr(b1),fx))

local h1_v = pari.gtovec(h1)

local h2_v = pari.gtovec(h2)

local h3_v = pari.gtovec(h3)

local idmat= pari.gp_read_str("idmat=matid(3)")

pari.gp_read_str(string.format("idmat[1,]=%s",

pari.GENtostr(h1_v)))

pari.gp_read_str(string.format("idmat[2,]=%s",

pari.GENtostr(h2_v)))

pari.gp_read_str(string.format("idmat[3,]=%s",

pari.GENtostr(h3_v)))

idmat = pari.gp_read_str("idmat")

idmat_det = pari.gp_read_str("matdet(idmat)")

local PXY = pari.GENtostr(idmat_det)

local PxY =

pari.gp_read_str(string.format("subst(%s,X,x)",PXY))

local Pxy =

pari.gp_read_str(string.format("subst(%s,Y,y)",

pari.GENtostr(PxY)))

local res = pari.GENtostr(Pxy)

local resTeX = pari.GENtoTeXstr(Pxy)

pari.avma = avma

return res,resTeX

end

For a curve 𝒞 with 𝐩 = (1,1), 𝐜𭟏 = (10,10), 𝐜𭟐 =
(−10,10), 𝐪 = (−15,5) we have

P[X, Y] = − 64X3 + (2112Y + 312360)X2 +

(−23232Y2 − 67920Y + 4711200)X +

(85184Y3 − 4440Y2 − 5383200Y + 368000)

It's easy to plot 𝒞 with MetaPost (it's just draw (1,1)
.. controls(10,10) and (-10,10) .. (-15,5)) so the
next picture shows the MetaPost curve (thick, color
gray) and the roots of P[X,Y] for −15 <= x <=
15,−15 <= y <= 15 (thin, color black).

Conclusion
One of the main beneficts of ConTEXt MKiV is the clear
separation between Lua code and TEX code, and in this
case it's a good thing that we can import a pari-lua
script into ConTEXt MKiV without too much work to
adapt it to the ConTEXt MKiVmachinery — i.e. we have
an high degree of code reuse. PARI/GP has also a nice
TEX formatter, even if in some situations things are a
bit raw. On the other side, solving numerical problems
always requires some amount of theoretical analysis
before doing the computation, as in the case of solve
— in some circumstances PARI/GP abruptly aborts if
it finds an error. Some computations can require a
long time to finish, and given that ConTEXt MKiV is
a multipass system a caching mechanism should be
provided to solve these situations. Numeric results can
(but they shouldn't) depend on the compiler and/or
platform, but from this point of view it seems that
PARI/GP is platform-independent.

42 MAPS 42 Luigi Scarso

Bibliography

[1] http://pari.math.u-bordeaux.fr.
[2] http://sagemath.org.
[3] http://www.nongnu.org/gsl-shell.
[4] http://www.inf.puc-rio.br/~roberto/pil2.
[5] http://swig.org.

[6] http://www.mingw.org.
[7] http://www.lilypond.org/gub.
[8] http://www.luatex.org/svn/trunk/manual/luatexref-t.pdf.
[9] http://en.wikipedia.org/wiki/Leibniz_formula_for_pi.
[10] tom.cs.byu.edu/~557/text/cagd.pdf

Luigi Scarso

Graham Douglas VOORJAAR 2011 43

Customised LaTEX page layout with LuaTEX

Abstract
The relationship between LaTEX’s page layout
parameters and the conventional desktop publishing
(DTP) model of a page are explored and formulae to
map between them are presented. A sample
implementation of those formulae in Lua is provided,
showing how to achieve customised page layouts in
LuaTEX. The placement of crop marks is addressed,
and a technique for preparing and adding them to
typeset pages is discussed.

1 Introduction
Whilst LaTEX and its wealth of packages and facilities
for typesetting are truly superb, I don’t think it is unfair
to say that it can be quite troublesome to achieve highly
customised page layouts which need careful adjustment
of the LaTEX parameters to control margins and page
size. There are LaTEX packages, such as geometry.sty,
which help you set the LaTEX layout parameters but
sometimes it is nice to have access to the details to
Vne-tune them as you need to. In this paper, some
equations which map LaTEX page layout parameters to
the conventional desktop publishing (DTP) model of a
page are presented and implemented through a simple
Lua script for use with LuaTEX. In writing this paper
I have to assume that you have a working installation
of LuaTEX and that you know where to save and store
the various Vle types discussed in this article: there is
neither time nor space to address those issues here.

2 Problem definition: what are we aiming
to do?

Suppose you want to produce a document which has
a certain physical printed page width and page height,
and you would like to achieve a layout such that your
document’s page(s) will be horizontally and vertically
centred within the area deVned by the PDF page size.
Of course, the size of the PDF page is also something
you want to control. Consider a typical business card
which might be 85mm tall and 55mm wide. You want to
create this card and have it centred within a PDF page
which has, perhaps, 20mm of white space to the left and
right of your card, and 10mm above and below, giving
a PDF page width of 85 + (2 × 20) = 125mm and a
height of 55 + (2 × 10) = 75mm. See Figure 1.

In addition, commercial printing companies may re-
quest that the pages in your PDF document are a certain
size; e.g., for use with their imposition software used
during preparation of “page impositions”.

2.1 Setting the size of the PDF page
LuaTEX is derived from pdfTEX so you set the width
and height of the PDF page using registers called
\pdfpagewidth and \pdfpageheight. Returning to our
business card example in Figure 1, to set the PDF page
size to 125mm wide and 75mm tall we put the com-
mands \pdfpagewidth 125mm and \pdfpageheight 75mm
in our document, not forgetting that you may need to
set \pdfoutput=1, depending on your TEX setup and
distribution.

\documentclass[11pt,twoside]{article}
\pdfoutput=1
\pdfpagewidth 125mm
\pdfpageheight 75mm
\begin{document}
Your text here...
\end{document}

3 The “DTP design world” layout model
The usual way to think about layouts is, of course, as
a series of enclosed boxes. Figure 2 generalises our
business card example to show a typical setup for a
“book” – but do remember that although I’m using the
term “book”, you should think of this as any document
type. The outermost box is the size of the PDF page as
deVned by \pdfpagewidth and \pdfpageheight. Inside
the PDF page box is the box deVning the physical size of
your “book” or document pages. Inside the box of your
physical page is a non-printing area for margins which
deVnes the boundary or enclosure for the live text area;
i.e., the area in which text or other content will appear.
And Vnally, within the live text area are the boxes that
LaTEX uses to place the text on your page – such as the
main text area, headers and footers.

4 LaTEX page parameters to achieve your
layout

And so we reach the question: how do we deVne or cal-
culate the LaTEX page parameters to achieve our desired
“DTP design world” layout model? Figure 3 superim-

44 MAPS 42 Graham Douglas

he
ig

ht
 o

f P
D

F
pa

ge
 (7

5
m

m
)

width of PDF page (125 mm)

business card defined by
the grey area and centred

in the area of the PDF page

width of card (85 mm)

he
ig

ht
 o

f c
ar

d
(5

5
m

m
)

Figure 1. A business card centred within the area defined by the PDF document page. The crop marks define the
boundaries of the card within the PDF document area.

poses the two world views: the LaTEX view and that of
conventional desktop publishing, showing our page hor-
izontally and vertically centred within a deVned PDF
document page. Separate graphics are shown for a
left-hand page and a right-hand page, which, for left-to-
right languages, usually implies books with even page
numbers on the left-hand page and odd page numbers
on the right-hand page.

Working from Figures 2 and 3 we can now write
down some simple formulae to calculate LaTEX page
parameters that will achieve our layout. Firstly, some
deVnitions:

BPW = width of the book page
BPH = height of the book page
BOM = the Book Outer Margin
BIM = the Book Inner Margin

BTM = the Book Top Margin
BBM = the Book Inner Margin

The following values control centring the book page
within the PDF document page size:

∆X =
1

2
(pdfpagewidth − BPW)

∆Y =
1

2
(pdfpageheight − BPH)

∆Y

∆X

∆X

∆Y

\p
df
pa
ge
he
ig
ht

\pdfpagewidth

book page width
bo

ok
 p

ag
e

he
ig

ht

This is the text area of
your book page: i.e., this

is the area in which
material is printed

non-printing margin area

non-printing margin area

no
n-

pr
in

tin
g

m
ar

gi
n

ar
ea

non-printing m
argin area

Figure 2. A generalised view of a “book” page:
horizontally and vertically centred within the enclosing
PDF document page area.

Customised LaTEX page layout with LuaTEX VOORJAAR 2011 45

∆Y

∆X∆X

∆Y

BOM

Left-hand (even) page

BTM

BIM

BBM

1" + \voffset

\topmargin

\headheight
\headsep

\marginparwidth

\marginparsep

\evensidemargin

\textwidth

\textheight

\footskip

1" + \hoffset

\p
df
pa
ge
he
ig
ht

\pdfpagewidth

∆Y

∆X∆X

∆Y

BTM

BOM
BIM

BBM

1" + \voffset

\topmargin

\headheight

\headsep

\marginparwidth

\marginparsep

\oddsidemargin

\textwidth

\textheight

1" + \hoffset

\pdfpagewidth

\footskip

\p
df
pa
ge
he
ig
ht

Right-hand (odd) page

Figure 3. The LaTEX view of a page superimposed onto the conventional “desktop publishing” model to achieve a
“book page” which is horizontally and vertically centred within the PDF document area. A separate graphic is shown for
left- and right-hand pages.

4.1 Formulae for the width of the PDF
document page

Starting with the left-hand (even-numbered) page
shown in Figure 3:

pdfpagewidth = ∆X + BOM

+ marginparwidth

+ marginparsep

+ textwidth

+ BIM + ∆X

and

pdfpagewidth = 1inch + hoffset

+ evensidemargin

+ textwidth

+ BIM + ∆X

For the right-hand (odd-numbered) page shown in
Figure 3:

pdfpagewidth = ∆X + BIM

+ textwidth

+ marginparsep

+ marginparwidth

+ BOM + ∆X

and
pdfpagewidth = 1inch + hoffset

+ oddsidemargin

+ textwidth

+ marginparsep

+ marginparwidth

+ BOM + ∆X

46 MAPS 42 Graham Douglas

4.2 Formulae for the height of the PDF page
Clearly, the following holds true for left- and right-hand
pages:

pdfpageheight = 1inch + voffset

+ topmargin

+ headheight

+ headsep

+ textheight

+ footskip

+ BBM + ∆Y

and

1inch + voffset + topmargin = ∆Y + BTM

5 Implementation using Lua and LuaTEX
The details above can be implemented in any TEX en-
gine, whether they output PDF directly or you have
to go through a DVI-to-PostScript driver. Of course,
the direct use of \pdfpagewidth and \pdfpageheight
would be ruled out for non-pdfTEX-based engines and
for DVI–PostScript–PDF workWows you’d need to tell
your DVI-to-PostScript driver how to set the paper size
to the values we are specifying with \pdfpagewidth and
\pdfpageheight. For example, the formulae above are
easily programmed into, say, a Perl script or any other
scripting language, to output a TEX Vle which sets the
various LaTEX parameters. But for the purposes of this
paper the implementation will be in Lua and LuaTEX.

5.1 Implementation overview
The goal is quite straightforward: the formulae
above will be turned into a simple Lua script, say
pagecalcs.lua, which will be run or called using
LuaTEX’s \directlua{ } primitive. pagecalcs.lua out-
puts a LaTEX Vle (margins.tex) which contains some
code to deVne various LaTEX parameters such that your
physical page area is centred within the PDF document
page area.

5.2 Many choices
A quick inspection of the page formulae shows that the
various parameters are all interrelated so the immediate
question is which ones do you specify and which ones
do you calculate? The answer really depends on your
starting point; i.e., what type of document do you want
to produce, which parameters do you want to deVne
(assign values to) and which ones you want or need to
calculate. The sample implementation, discussed below,
is just one of the many possible variations. I have chosen
the following setup which could be used for a typical

business card or journal/book cover:

@ set the following LaTEX values to zero:
\hoffset, \voffset, \marginparsep, \headheight,
\marginparwidth, \headsep and \footskip;

@ calculate the following LaTEX parameters:
\textwidth, \topmargin, \oddsidemargin,
\evensidemargin and \textheight;

@ input the “DTP design world” values for the paper
(PDF page) size, the size of our physical “book” pages
and the various white space margins surrounding
the live text area (see Figure 2);

@ generalise the margins to consider diUerent values
for the white space at the top, bottom, left and right
of our live text area, which is quite typical for book
designs. Of course, you can set them to be all the
same, if you wish.

Clearly, these assumptions are hard-coded into
pagecalcs.lua and a much more sophisticated imple-
mentation would support far more Wexibility; but the
purpose here is to demonstrate the basic ideas.

5.3 Using Lua
For our Lua script, pagecalcs.lua, we will use the fol-
lowing variable names which are rather long but have
the beneVt of being descriptive.

@ PaperWidth = the value of \pdfpagewidth
@ PaperHeight = the value of \pdfpageheight
@ BookPageWidth = your document’s page width
@ BookPageHeight = your document’s page height
@ BookOuterMargin = BOM as deVned above
@ BookInnerMargin = BIM as deVned above
@ BookTopMargin = BTM as deVned above
@ BookBottomMargin = BBM as deVned above

In the Lua code below, the variables names for the
LaTEX parameters follow their LaTEX counterparts mi-
nus the leading ‘\’. For example,\textwidth will be
referred to as textwidth and so forth. The following
listing is pagecalcs.lua, just one of many calculation
scenarios for one document type based on values we
deVne and values we choose to calculate.
pagecalcs.lua deVnes a Lua function called
calcvals() which takes a single argument called
arg. In Lua-speak arg will be a table so that when
we call the function calcvals({...}), the data in
braces {...} is passed in as the value of arg and
will contain a number of key–value pairs. The val-
ues we will pass to calcvals() are PaperWidth,
PaperHeight, BookPageWidth, BookPageHeight,
BookOuterMargin, BookInnerMargin, BookTopMargin
and BookBottomMargin. Each of these values is accessed

Customised LaTEX page layout with LuaTEX VOORJAAR 2011 47

pagecalcs.lua

function calcvals(arg)
local OneInch=25.4
local hoffset=0
local voffset=0
local marginparsep=0
local headheight=0
local marginparwidth=0
local headsep=0
local footskip=0
local DeltaX = 0.5*(arg.PaperWidth - arg.BookPageWidth)
local DeltaY = 0.5*(arg.PaperHeight - arg.BookPageHeight)
local textwidth = arg.PaperWidth -(2*DeltaX) -

(arg.BookOuterMargin + arg.BookInnerMargin) -
(marginparsep + marginparwidth)

local topmargin = DeltaY + arg.BookTopMargin -(OneInch + voffset)
local oddsidemargin = arg.PaperWidth - (OneInch + hoffset + textwidth +

marginparsep + marginparwidth +
arg.BookOuterMargin+ DeltaX)

local evensidemargin = arg.PaperWidth -(OneInch + hoffset + textwidth +
arg.BookInnerMargin + DeltaX)

local textheight = arg.PaperHeight -(OneInch + voffset + topmargin +
headheight + headsep + footskip +
arg.BookBottomMargin + DeltaY)

local marg = assert(io.open("path_to_your_tex_setup/margins.tex","w"))
marg:write("\\pdfpagewidth="..arg.PaperWidth.."mm\n")
marg:write("\\pdfpageheight="..arg.PaperHeight.."mm\n")
marg:write("\\newlength{\\deltax}\n")
marg:write("\\setlength{\\deltax}{"..DeltaX.."mm}\n")
marg:write("\\newlength{\\deltay}\n")
marg:write("\\setlength{\\deltay}{"..DeltaY.."mm}\n")
marg:write("\\newlength{\\bookpagetopmargin}\n")
marg:write("\\setlength{\\bookpagetopmargin}{"..arg.BookTopMargin.."mm}\n")
marg:write("\\newlength{\\bookpageheight}\n")
marg:write("\\setlength{\\bookpageheight}{"..arg.BookPageHeight.."mm}\n")
marg:write("\\newlength{\\bookpagebottommargin}\n")
marg:write("\\setlength{\\bookpagebottommargin}{"..arg.BookBottomMargin.."mm}\n")
marg:write("\\newlength{\\bookpagewidth}\n")
marg:write("\\setlength{\\bookpagewidth}{"..arg.BookPageWidth.."mm}\n")
marg:write("\\newlength{\\bookpageinnermargin}\n")
marg:write("\\setlength{\\bookpageinnermargin}{"..arg.BookInnerMargin.."mm}\n")
marg:write("\\newlength{\\bookpageoutermargin}\n")
marg:write("\\setlength{\\bookpageoutermargin}{"..arg.BookOuterMargin.."mm}\n")
marg:write("\\setlength{\\hoffset}{"..hoffset.."mm}\n")
marg:write("\\setlength{\\marginparsep}{"..marginparsep.."mm}\n")
marg:write("\\setlength{\\marginparwidth}{"..marginparwidth.."mm}\n")
marg:write("\\setlength{\\textwidth}{"..textwidth.."mm}\n")
marg:write("\\setlength{\\oddsidemargin}{"..oddsidemargin.."mm}\n")
marg:write("\\setlength{\\evensidemargin}{"..evensidemargin.."mm}\n")
-- Vertical parameters
marg:write("\\setlength{\\voffset}{"..voffset.."mm}\n")
marg:write("\\setlength{\\headheight}{"..headheight.."mm}\n")
marg:write("\\setlength{\\headsep}{"..headsep.."mm}\n")
marg:write("\\setlength{\\footskip}{"..footskip.."mm}\n")
marg:write("\\setlength{\\textheight}{"..textheight.."mm}\n")
marg:write("\\setlength{\\topmargin}{"..topmargin.."mm}\n")
marg:flush()
marg:close()

return DeltaX, DeltaY, textwidth,topmargin,oddsidemargin,evensidemargin,textheight
end -- function

48 MAPS 42 Graham Douglas

using a standard Lua method for accessing table values,
such as arg.PaperWidth and arg.BookPageWidth. The
code also sets some LaTEX parameters to 0 (based on
our input assumptions above) and deVnes OneInch as
25.4. Note that we are working with units in mm, just
because it is convenient: hence 1 inch is 25.4 mm. Note
the following:

@ local marg = assert(io.open("path_to...;
@ calcvals() returns multiple values, a standard

feature of Lua.

Of course, the output from pagecalcs.lua,
margins.tex, will subsequently be input into our LaTEX
document via \input margins.tex, hence you will
need to output margins.tex into a location where your
LuaTEX engine can Vnd it.

6 The LaTEX side of things in LuaTEX
We have seen the Lua code to output margins.tex but,
of course, we need some way to call the calcvals()
function deVned in pagecalcs.lua and pass in the table
arg containing our various values. We can do this from
LuaTEX using one of the new primitives provided by
this amazing new engine: \directlua{...}. One sim-
ple setup is using the standard LaTEX document class
article.cls, as follows:

\documentclass[11pt,twoside]{article}
\input setpage
\setpage{300}{485}{250}{255}{10}{15}{20}{25}
\begin{document}
....
\end{document}

Of course, this should all be wrapped up into
a proper LaTEX package but, again, my objective
is to demonstrate the basic ideas. \input setpage
inputs a Vle (setpage.tex) which deVnes a com-
mand \setpage that takes a number of arguments
to deVne your custom PDF page, document page
and margins and uses \directlua{...} to call our
Lua function calcvals(), which is itself stored in
pagecalcs.lua. For example, \setpage{300}{485}{250}
{255}{10}{15}{20}{25} would assign the following val-
ues (in mm):

@ PaperWidth = 300mm
@ PaperHeight = 485mm
@ BookPageWidth = 250mm
@ BookPageHeight = 255mm
@ BookOuterMargin = BOM = 10mm
@ BookInnerMargin = BIM =15mm
@ BookTopMargin = BTM = 20mm
@ BookBottomMargin = BBM =25mm

Graham Douglas
Senior Publisher

Figure 4. A business card

Here is the code for our Vle setpage.tex which again
assumes that pagecalcs.lua is saved in a location where
your LuaTEX engine can Vnd Lua scripts.

setpage.tex

\def\setpage#1#2#3#4#5#6#7#8{%
\directlua {%

pagecals, loaderror = loadfile("pagecalcs.lua")
%good code would check the value of loaderror!
pagecals()
deltax, deltay, textwidth, topmargin,
oddsidemargin,evensidemargin,textheight =
calcvals({PaperWidth=#1, PaperHeight=#2,

BookPageWidth=#3,
BookPageHeight=#4, BookOuterMargin=#5,
BookInnerMargin=#6, BookTopMargin=#7,
BookBottomMargin=#8})

pagevars={}
pagevars["paperwidth"]=#1
pagevars["paperheight"]=#2
pagevars["bookpagewidth"]=#3
pagevars["bookpageheight"]=#4
pagevars["bookoutermargin"]=#5
pagevars["bookinnermargin"]=#6
pagevars["booktopmargin"]=#7
pagevars["bookbottommargin"]=#8
pagevars["deltay"]=deltay
pagevars["deltax"]=deltax
pagevars["textwidth"]=textwidth
pagevars["topmargin"]=topmargin
pagevars["oddsidemargin"]=oddsidemargin
pagevars["evensidemargin"]=evensidemargin
pagevars["textheight"]=textheight}

\input margins.tex\relax}
}

6.1 A business card
Just by way of an example, Figure 4 shows a business
card created by \setpage{125}{95}{85}{55}{0}{0}{0}
{0}. However, the code to generate the crop marks (see
Section 7) at the corners is not shown here.

Customised LaTEX page layout with LuaTEX VOORJAAR 2011 49

6.2 Anatomy of setpage.tex
The deVnition \def\setpage#1#2#3#4#5#6#7#8 is a
fairly standard TEX aUair to deVne a macro that
takes 8 parameters, but the interesting bit starts with
\directlua. Let me just say that, of course, the material
in this paper could just as easily be implemented in
Perl, or another scripting language, and the TEX engine
could make system calls to run the script/interpreter
of your choice to output margins.tex. Or, it could be
implemented completely outside the TEX engine with
the script being run manually. However, the use of
LuaTEX’s ability to run Lua code with \directluamakes
for a very nice integration. For sure, this example does
not even begin to indicate the world of possibilities
that LuaTEX opens, for that you should visit luatex.org
and grab a copy of the latest reference manual. But be
warned, LuaTEX is highly addictive, utterly absorbing
and quite damaging to other hobbies you may enjoy be-
cause it truly opens a whole new universe of typesetting
solutions. Now, back to setpage.tex.

In the listing of setpage.tex the following lines are
worth some explanation, especially if you are new to
Lua or LuaTEX.

pagecals, loaderror = loadfile("pagecalcs.lua")
%good code would check the value of loaderror!
pagecals()
deltax, deltay, textwidth,topmargin,
oddsidemargin,evensidemargin,textheight =

calcvals({PaperWidth=#1, PaperHeight=#2,
BookPageWidth=#3,
BookPageHeight=#4, BookOuterMargin=#5,
BookInnerMargin=#6, BookTopMargin=#7,
BookBottomMargin=#8})

The line pagecals, loaderror = loadfile ... uses
Lua’s method of “running” code stored in a Vle; it re-
turns a function (here called pagecals) and an error
value (here called loaderror), which you should check.
Without going into detail, loadfile(...) “loads a Lua
chunk from a Vle but does not run the chunk. Instead,
it only compiles the chunk and returns the compiled
chunk as a function.” (Google, or see page 63 of Program-
ming in Lua by Roberto Ierusalimschy, Second Edition,
ISBN 85-903798-2-5).

In practical terms, loadfile(...) returns a function
(here called pagecals) that you need to run in order
to make calcvals(...) accessible. Don’t worry about
this Lua way of doing things, just accept it for present
purposes. Once we have run pagecals() we can then
call calcvals({...}) with the input values (as a Lua
table).

The next few lines of setpage.tex create another Lua
table, pagevars, in which we store the values returned
by calcvals({...}) and the values of the \setpage pa-
rameters #1...#8. Finally, it inputs margins.tex into our

document. The reason for creating pagevars will be
outlined in Section 7.2.

6.3 A more complete example
By way of a more complete demonstration, the follow-
ing example shows \setpage being used to deVne a
custom page of 234mm tall × 156mm wide being out-
put on a PDF page size of 180mm wide × 260mm tall
(just enough to contain the crop marks, see Section 7).
This example uses a number of additional packages
including atbegshi.sty and fancyhdr.sty. In partic-
ular, fancyhdr.sty has been used to output the head-
ers and footers to show that \setpage cooperates with
fancyhdr.sty. The package atbegshi.sty is used to
output the crop marks on the pages. See Figure 5. There
is also some homegrown code to setup the crop marks
(lines 9 to 12 of example.tex)

example.tex

\documentclass[11pt,twoside]{article}
\input setpages
\setpage{180}{260}{156}{234}{15}{25}{10}{10}
\usepackage{fontspec}
\usepackage{atbegshi}
\usepackage{fancyhdr}
\begin{document}
% start of crop mark code
\input pix
\startpix
\imbox{c:/crops.pdf}{crop}
\endpix
% end of crop mark code
\setmainfont[Ligatures=TeX,Numbers=OldStyle]

{Constantia}
\fontsize{10}{11}\selectfont
\pagestyle{fancy}
\fancyhead{} % clear all header fields
\fancyhead[RO,LE]

{\bfseries The performance of new graduates}
\fancyfoot{} % clear all footer fields
\fancyfoot[LE,RO]{\thepage}
\fancyfoot[LO,CE]{From: K. Grant}
\fancyfoot[CO,RE]{To: Dean A. Smith}
\renewcommand{\headrulewidth}{0.4pt}
\renewcommand{\footrulewidth}{0.4pt}

\textsc{but i must explain} to you how all this
mistaken...

\end{document}

7 Crop marks
Many of the Vgures in this paper contain a small graphic
at the corners of the area deVned by the document pages.
They are called crop marks, also referred to as “printers
marks”, “cut marks” or “trim marks”, and are used to
indicate the physical size of the Vnal printed document
pages. They are used during commercial printing activi-
ties, such as page imposition, colour separation, folding

50 MAPS 42 Graham Douglas

The performance of new graduates

pleasure?BUT I MUST EXPLAIN to you how all this mistaken idea of denouncing
pleasure and praising pain was born and I will give you a complete account
of the system, and expound the actual teachings of the great explorer of the
truth, the master-builder of human happiness. No one rejects, dislikes, or
avoids pleasure itself, because it is pleasure, but because those who do not
know how to pursue pleasure rationally encounter consequences that are ex-
tremely painful. Nor again is there anyone who loves or pursues or desires
to obtain pain of itself, because it is pain, but because occasionally circum-
stances occur in which toil and pain can procure him some great pleasure.
To take a trivial example, which of us ever undertakes laborious physical ex-
ercise, except to obtain some advantage from it? But who has any right to
find fault with a man who chooses to enjoy a pleasure that has no annoying
consequences, or one who avoids a pain that produces no resultant pleasure?

BUT I MUST EXPLAIN to you how all this mistaken idea of denouncing plea-
sure and praising pain was born and I will give you a complete account of the
system, and expound the actual teachings of the great explorer of the truth,
the master-builder of human happiness. No one rejects, dislikes, or avoids
pleasure itself, because it is pleasure, but because those who do not know
how to pursue pleasure rationally encounter consequences that are extremely
painful. Nor again is there anyone who loves or pursues or desires to obtain
pain of itself, because it is pain, but because occasionally circumstances occur
in which toil and pain can procure him some great pleasure. To take a triv-
ial example, which of us ever undertakes laborious physical exercise, except
to obtain some advantage from it? But who has any right to find fault with
a man who chooses to enjoy a pleasure that has no annoying consequences,
or one who avoids a pain that produces no resultant pleasure?you a complete
account of the system, and expound the actual teachings of the great explorer
of the truth, the master-builder of human happiness. No one rejects, dislikes,
or avoids pleasure itself, because it is pleasure, but because those who do not
know how to pursue pleasure rationally encounter consequences that are ex-
tremely painful. Nor again is there anyone who loves or pursues or desires
to obtain pain of itself, because it is pain, but because occasionally circum-
stances occur in which toil and pain can procure him some great pleasure.
To take a trivial example, which of us ever undertakes laborious physical ex-
ercise, except to obtain some advantage from it? But who has any right to
find fault with a man who chooses to enjoy a pleasure that has no annoying
consequences, or one who avoids a pain that produces no resultant pleasure?

BUT I MUST EXPLAIN to you how all this mistaken idea of denouncing plea-
sure and praising pain was born and I will give you a complete account of the
system, and expound the actual teachings of the great explorer of the truth,
the master-builder of human happiness. No one rejects, dislikes, or avoids
pleasure itself, because it is pleasure, but because those who do not know
how to pursue pleasure rationally encounter consequences that are extremely
painful. Nor again is there anyone who loves or pursues or desires to obtain
pain of itself, because it is pain, but because occasionally circumstances occur
in which toil and pain can procure him some great pleasure. To take a trivial
example, which of us ever undertakes laborious physical exercise, except to
obtain some advantage from it? But who has any right to find fault with a
man who chooses to enjoy a pleasure that has no annoying consequences, or
one who avoids a pain that produces no resultant pleasure?

2 From: K. Grant To: Dean A. Smith

The performance of new graduates

BUT I MUST EXPLAIN to you how all this mistaken idea of denouncing plea-
sure and praising pain was born and I will give you a complete account of the
system, and expound the actual teachings of the great explorer of the truth,
the master-builder of human happiness. No one rejects, dislikes, or avoids
pleasure itself, because it is pleasure, but because those who do not know
how to pursue pleasure rationally encounter consequences that are extremely
painful. Nor again is there anyone who loves or pursues or desires to obtain
pain of itself, because it is pain, but because occasionally circumstances oc-
cur in which toil and pain can procure him some great pleasure. To take a
trivial example, which of us ever undertakes laborious physical exercise, ex-
cept to obtain some advantage from it? But who has any right to find fault
with a man who chooses to enjoy a pleasure that has no annoying conse-
quences, or one who avoids a pain that produces no resultant pleasure?you
a complete account of the system, and expound the actual teachings of the
great explorer of the truth, the master-builder of human happiness. No one
rejects, dislikes, or avoids pleasure itself, because it is pleasure, but because
those who do not know how to pursue pleasure rationally encounter conse-
quences that are extremely painful. Nor again is there anyone who loves or
pursues or desires to obtain pain of itself, because it is pain, but because oc-
casionally circumstances occur in which toil and pain can procure him some
great pleasure. To take a trivial example, which of us ever undertakes labori-
ous physical exercise, except to obtain some advantage from it? But who has
any right to find fault with a man who chooses to enjoy a pleasure that has no
annoying consequences, or one who avoids a pain that produces no resultant
pleasure?BUT I MUST EXPLAIN to you how all this mistaken idea of denouncing
pleasure and praising pain was born and I will give you a complete account
of the system, and expound the actual teachings of the great explorer of the
truth, the master-builder of human happiness. No one rejects, dislikes, or
avoids pleasure itself, because it is pleasure, but because those who do not
know how to pursue pleasure rationally encounter consequences that are ex-
tremely painful. Nor again is there anyone who loves or pursues or desires
to obtain pain of itself, because it is pain, but because occasionally circum-
stances occur in which toil and pain can procure him some great pleasure.
To take a trivial example, which of us ever undertakes laborious physical ex-
ercise, except to obtain some advantage from it? But who has any right to
find fault with a man who chooses to enjoy a pleasure that has no annoying
consequences, or one who avoids a pain that produces no resultant pleasure?

BUT I MUST EXPLAIN to you how all this mistaken idea of denouncing plea-
sure and praising pain was born and I will give you a complete account of the
system, and expound the actual teachings of the great explorer of the truth,
the master-builder of human happiness. No one rejects, dislikes, or avoids
pleasure itself, because it is pleasure, but because those who do not know
how to pursue pleasure rationally encounter consequences that are extremely
painful. Nor again is there anyone who loves or pursues or desires to obtain
pain of itself, because it is pain, but because occasionally circumstances occur
in which toil and pain can procure him some great pleasure. To take a triv-
ial example, which of us ever undertakes laborious physical exercise, except
to obtain some advantage from it? But who has any right to find fault with
a man who chooses to enjoy a pleasure that has no annoying consequences,
or one who avoids a pain that produces no resultant pleasure?you a complete

From: K. Grant To: Dean A. Smith 3

Figure 5. Using setpage.tex with fancyhdr.sty and atbegshi.sty.

Figure 6. The crop mark produced by crop.ps.

and trimming. The physical appearance of crop marks
will vary depending on the application used to generate
the pages but, of course, with LuaTEX and other TEX
engines you are free to create your own. With LuaTEX
you can take advantage of the built-in METAPOST li-
brary, MPlib, to create crop marks with great precision.
Figure 6 shows one design of crop mark, used by the
author in various projects, which was created through
some simple hand-rolled PostScript code (shown in list-
ing crops.ps at the end of this article). To use this
with LuaTEX or pdfTEX run the PostScript code through
GhostScript or Adobe’s Distiller to create a PDF Vle.

7.1 Crop marks and PDF XObjects
There are, of course, many possible techiques for getting
crop marks placed on your pages, including PGF and
TikZ, METAPOST, LaTEX packages and so forth. Here,
I’ll give an overview of the technique which has been
used to generate crop marks on some of the Vgures in
this paper. The crop mark shown in Figure 6 is stored
in an external PDF Vle and embedded just once into the
PDF generated by LuaTEX as a PDF object type called
a form XObject, which is a “self-contained description
of any sequence of graphics objects”. The use of form
XObjects helps to minimise the size of the PDF Vle: the
data (PDF graphics operators) describing the XObject
(our crop mark) are included into the PDF Vle just once.
Instead of embedding the data multiple times, each page
in your PDF Vle can “reference” the XObject by apply-
ing PDF operators to re-use it as part of the content of
your pages. For example, by performing various coor-
dinate transformations, such as translation or rotation,
and then drawing the XObject into your transformed
coordinate system.

Customised LaTEX page layout with LuaTEX VOORJAAR 2011 51

area of the document page

crop marks are offset,
typically by 3mm,

away from the edge of
the document page area

Figure 7. The location of crop marks relative to the
document page.

7.2 Placing crop marks
Although crop marks are placed at the corners of the
printed page, there are a couple of points to consider,
especially when using the technique of an external
graphic.

@ crop marks are oUset from the actual page area,
typically by 3mm, so that they do not risk “contami-
nating” the actual printed area (see Figure 7);

@ a more subtle point when placing crop marks
contained in an external Vle is to take into account
the actual width of the lines of the crop marks
themselves and shift the positioning of the crop
mark, relative to page corners, by half the width of
the lines (see Figure 8);

Advanced readers will also observe that if you are
involved in colour printing work, which requires colour
separations, then of course, you may need to ensure
that your crop marks appear on each colour separa-
tion/plate. However, this is beyond the scope of this
paper and deVnitely something you should be discussing
with the prepress department of your printing com-
pany. Additionally, the PDF speciVcation makes speciVc
provision for something called Printer’s mark annota-
tions which “...provide a mechanism for incorporating
printer’s marks into the PDF representation of a page,
while keeping them separate from the actual page con-
tent.” Again, this is beyond the scope of this paper and
the interested reader is referred to the PDF speciVcation
(1.4 and later).

7.3 Getting crop marks onto the PDF page
Firstly, let me note that at the time of writing this article
(April 2011), not only does LuaTEX support pdfTEX’s fa-
cilities for embedding external PDF Vles but, in addition,
it oUers the built-in epdf library, thanks to the ongo-
ing development work of Hartmut Henkel. The epdf
library looks to provide a wonderful API for working
with PDFs so by the time you read this article you’ll
likely have even more options at your disposal.

To place the crop marks you will, of course, need the
(x, y) coordinates of the corners of your page, relative

for accurate placement you need to offset the
the graphic by half the line width in x and y

directions (relative to the coordinates of
page corners)

bounding box may
include full line width

small but finite line width

0.5 x line width

0.5 x line width

Figure 8. When placing an external graphic as a crop
mark you may need to make micro-adjustments to account
for the widths of lines.

to some origin which is usually the bottom left-hand cor-
ner of the PDF document area. Although this origin is
common in PDF documents the reader should be aware
that it is not required by the PDF standard. Refer to the
PDF speciVcation for details on “user space”, coordinate
systems and the CropBox for detailed guidance.

In outline you need to:

1. embed your crop mark graphic as a form XObject;
2. determine the (x, y) coordinates of the corners of

your page;
3. for each corner, apply some PDF operators to place

and rotate the form XObject;
4. get the crop marks shipped out on every page.

Embedding a form XObject. This is quite straightfor-
ward using pdfTEX’s primitive \pdfximage.

Calculating page-corner coordinates. Section 6.2
discussed setpage.tex and the creation of a Lua table
called pagevars and here is where we can make use of
it. Looking at setpage.tex you will see that pagevars
stores the following values (in mm):

pagevars["paperwidth"]=#1
pagevars["paperheight"]=#2
pagevars["bookpagewidth"]=#3
pagevars["bookpageheight"]=#4
pagevars["bookoutermargin"]=#5
pagevars["bookinnermargin"]=#6
pagevars["booktopmargin"]=#7
pagevars["bookbottommargin"]=#8
pagevars["deltay"]=deltay
pagevars["deltax"]=deltax

We can re-use the values stored in pagevars, via
\directlua{ }, to calculate our page corners, relative
to the lower-left corner of the main PDF document. Re-
membering that pagevars stores our values in mm, the
following Lua fragment calculates the values we need
using the default PDF user space units of 72 points = 1
inch.

\directlua{
dx = 72.0*(pagevars["deltax"]/25.4)

52 MAPS 42 Graham Douglas

The performance of new graduates

pleasure?BUT I MUST EXPLAIN to you how all this mistaken idea of denouncing
pleasure and praising pain was born and I will give you a complete account
of the system, and expound the actual teachings of the great explorer of the
truth, the master-builder of human happiness. No one rejects, dislikes, or
avoids pleasure itself, because it is pleasure, but because those who do not
know how to pursue pleasure rationally encounter consequences that are ex-
tremely painful. Nor again is there anyone who loves or pursues or desires
to obtain pain of itself, because it is pain, but because occasionally circum-
stances occur in which toil and pain can procure him some great pleasure.
To take a trivial example, which of us ever undertakes laborious physical ex-
ercise, except to obtain some advantage from it? But who has any right to
find fault with a man who chooses to enjoy a pleasure that has no annoying
consequences, or one who avoids a pain that produces no resultant pleasure?

BUT I MUST EXPLAIN to you how all this mistaken idea of denouncing plea-
sure and praising pain was born and I will give you a complete account of the
system, and expound the actual teachings of the great explorer of the truth,
the master-builder of human happiness. No one rejects, dislikes, or avoids
pleasure itself, because it is pleasure, but because those who do not know
how to pursue pleasure rationally encounter consequences that are extremely
painful. Nor again is there anyone who loves or pursues or desires to obtain
pain of itself, because it is pain, but because occasionally circumstances occur
in which toil and pain can procure him some great pleasure. To take a triv-
ial example, which of us ever undertakes laborious physical exercise, except
to obtain some advantage from it? But who has any right to find fault with
a man who chooses to enjoy a pleasure that has no annoying consequences,
or one who avoids a pain that produces no resultant pleasure?you a complete
account of the system, and expound the actual teachings of the great explorer
of the truth, the master-builder of human happiness. No one rejects, dislikes,
or avoids pleasure itself, because it is pleasure, but because those who do not
know how to pursue pleasure rationally encounter consequences that are ex-
tremely painful. Nor again is there anyone who loves or pursues or desires
to obtain pain of itself, because it is pain, but because occasionally circum-
stances occur in which toil and pain can procure him some great pleasure.
To take a trivial example, which of us ever undertakes laborious physical ex-
ercise, except to obtain some advantage from it? But who has any right to
find fault with a man who chooses to enjoy a pleasure that has no annoying
consequences, or one who avoids a pain that produces no resultant pleasure?

BUT I MUST EXPLAIN to you how all this mistaken idea of denouncing plea-
sure and praising pain was born and I will give you a complete account of the
system, and expound the actual teachings of the great explorer of the truth,
the master-builder of human happiness. No one rejects, dislikes, or avoids
pleasure itself, because it is pleasure, but because those who do not know
how to pursue pleasure rationally encounter consequences that are extremely
painful. Nor again is there anyone who loves or pursues or desires to obtain
pain of itself, because it is pain, but because occasionally circumstances occur
in which toil and pain can procure him some great pleasure. To take a trivial
example, which of us ever undertakes laborious physical exercise, except to
obtain some advantage from it? But who has any right to find fault with a
man who chooses to enjoy a pleasure that has no annoying consequences, or
one who avoids a pain that produces no resultant pleasure?

2 From: K. Grant To: Dean A. Smith

The performance of new graduates

BUT I MUST EXPLAIN to you how all this mistaken idea of denouncing plea-
sure and praising pain was born and I will give you a complete account of the
system, and expound the actual teachings of the great explorer of the truth,
the master-builder of human happiness. No one rejects, dislikes, or avoids
pleasure itself, because it is pleasure, but because those who do not know
how to pursue pleasure rationally encounter consequences that are extremely
painful. Nor again is there anyone who loves or pursues or desires to obtain
pain of itself, because it is pain, but because occasionally circumstances oc-
cur in which toil and pain can procure him some great pleasure. To take a
trivial example, which of us ever undertakes laborious physical exercise, ex-
cept to obtain some advantage from it? But who has any right to find fault
with a man who chooses to enjoy a pleasure that has no annoying conse-
quences, or one who avoids a pain that produces no resultant pleasure?you
a complete account of the system, and expound the actual teachings of the
great explorer of the truth, the master-builder of human happiness. No one
rejects, dislikes, or avoids pleasure itself, because it is pleasure, but because
those who do not know how to pursue pleasure rationally encounter conse-
quences that are extremely painful. Nor again is there anyone who loves or
pursues or desires to obtain pain of itself, because it is pain, but because oc-
casionally circumstances occur in which toil and pain can procure him some
great pleasure. To take a trivial example, which of us ever undertakes labori-
ous physical exercise, except to obtain some advantage from it? But who has
any right to find fault with a man who chooses to enjoy a pleasure that has no
annoying consequences, or one who avoids a pain that produces no resultant
pleasure?BUT I MUST EXPLAIN to you how all this mistaken idea of denouncing
pleasure and praising pain was born and I will give you a complete account
of the system, and expound the actual teachings of the great explorer of the
truth, the master-builder of human happiness. No one rejects, dislikes, or
avoids pleasure itself, because it is pleasure, but because those who do not
know how to pursue pleasure rationally encounter consequences that are ex-
tremely painful. Nor again is there anyone who loves or pursues or desires
to obtain pain of itself, because it is pain, but because occasionally circum-
stances occur in which toil and pain can procure him some great pleasure.
To take a trivial example, which of us ever undertakes laborious physical ex-
ercise, except to obtain some advantage from it? But who has any right to
find fault with a man who chooses to enjoy a pleasure that has no annoying
consequences, or one who avoids a pain that produces no resultant pleasure?

BUT I MUST EXPLAIN to you how all this mistaken idea of denouncing plea-
sure and praising pain was born and I will give you a complete account of the
system, and expound the actual teachings of the great explorer of the truth,
the master-builder of human happiness. No one rejects, dislikes, or avoids
pleasure itself, because it is pleasure, but because those who do not know
how to pursue pleasure rationally encounter consequences that are extremely
painful. Nor again is there anyone who loves or pursues or desires to obtain
pain of itself, because it is pain, but because occasionally circumstances occur
in which toil and pain can procure him some great pleasure. To take a triv-
ial example, which of us ever undertakes laborious physical exercise, except
to obtain some advantage from it? But who has any right to find fault with
a man who chooses to enjoy a pleasure that has no annoying consequences,
or one who avoids a pain that produces no resultant pleasure?you a complete

From: K. Grant To: Dean A. Smith 3

Figure 9. Using the AtBeginShipout command from atbegshi to draw a rectangle around the page area.

dy = 72.0*(pagevars["deltay"]/25.4)
bph=72.0*(pagevars["bookpageheight"]/25.4)
bpw=72.0*(pagevars["bookpagewidth"]/25.4)

}

Working from Figures 2 and 3 and starting at the
lower-left corner working clockwise, we can see that the
page corner coordinates are (dx, dy), (dx, dy + bph),
(dx + bpw, dy + bph), (dx + bpw, dy)

Placing the form XObject. In addition to the com-
mands inherited from pdfTEX, LuaTEX provides an ex-
tensive and rapidly developing set of APIs for working
with PDF Vles, so you have a lot of choice in tackling
this aspect of the problem. Here, we’ll default to summa-
rizing pdfTEX’s \pdfliteral page {<PDF code>} which
injects PDF code into the main PDF, establishing the
origin as the lower-left corner of the PDF document
page. This suits our needs because we already have our
coordinates, from Section 7.3, relative to the lower-left
corner of the main PDF document.

The graphic representing our crop mark, stored as a
form XObject, clearly needs to be rotated as we move
around the four corners of our page. Translation and

rotation to establish a transformed coordinate system
is a very standard operation within graphics and PDF
work, typically achieved via matrix multiplications and
won’t be covered here. The PDF speciVcation contains a
very nice description of the relevant matrix maths and
transformation of its coordinate systems and spaces.

PDF coordinate transformations. In PDF terms, for
each page corner we need to:

1. modify the current transformation matrix using the
PDF cm operator;

2. make a “call” to “paint” the embedded XObject using
the PDF Do operator.

making sure, of course, that any modiVcation to the cur-
rent transformation matrix is local and enclosed within
a PDF q...Q pair to save and restore the current PDF
graphics state. To “execute” the \pdfliteral ... com-
mand which injects the PDF code to place and draw
our crop mark, we use LuaTEX’s tex.print() API call
within a \directlua { } command. In the author’s
working code, this is achieved by calls such as this

Customised LaTEX page layout with LuaTEX VOORJAAR 2011 53

tex.print("\\pdfliteral page{q "..s..
" cm /Im\csname pdf:crop\endcsname \space Do Q}")

By way of a small example, the following Lua frag-
ment draws a rectangle around the area occupied by
our pages within the actual PDF document area (see
Figure 9 and compare to Figure 5).
% switch off current meaning of \\
\let\temp\\
\let\\\relax
\directlua{

dx = 72.0*(pagevars["deltax"]/25.4)
dy = 72.0*(pagevars["deltay"]/25.4)
bph=72.0*(pagevars["bookpageheight"]/25.4)
bpw=72.0*(pagevars["bookpagewidth"]/25.4)
tex.print("\\pdfliteral page{q "..dx.."
"..dy.." "..bpw.." "..bph.." re S Q}")

}

7.4 Shipping crop marks on every page
And Vnally, you will need to ensure that your crop
marks are shipped out on every page. One way
to achieve this is to use the excellent atbegshi
package by Heiko Oberdiek. In outline, you use
\AtBeginShipout{...} with a directlua{ } command
containing the Lua code required to place your crop
marks. Here is a short fragment drawing a rect-
angle around our page. Note the \let\temp\\ and
\let\\\relax which temporarily disable LaTEX’s def-
inition of \\ so that we can use this construct within
tex.print(). See Figure 9.
\AtBeginShipout{

\let\temp\\%
\let\\\relax
\directlua{
dx = 72.0*(pagevars["deltax"]/25.4)
dy = 72.0*(pagevars["deltay"]/25.4)
bph=72.0*(pagevars["bookpageheight"]/25.4)
bpw=72.0*(pagevars["bookpagewidth"]/25.4)
tex.print("\\pdfliteral page{q "..dx.."
"..dy.." "..bpw.." "..bph.." re S Q}")

}}

8 Conclusions and summary
The discussions and use of LuaTEX in this paper do not
even begin to hint at the amazing versatility and po-
tential of this incredible next-generation TEX engine.
For that you should download and browse the latest
LuaTEX Reference Manual from luatex.org and take a
look at the available APIs. However, it is the author’s
hope that this paper has oUered an interesting and prac-
tical starting point for anyone who wishes to explore
LuaTEX.

8.1 Why I absolutely love LuaTEX
Here, I am grateful to the MAPS editors for allowing me
a section of space for some personal reWection and in-
dulgence. I Vrst encountered LuaTEX when researching

tools for typesetting my Arabic study notes and came
across videos of conference presentations, by Hans
Hagen and Idris Hamid, on River Valley’s absolutely
fabulous river-valley.tv website. I was transVxed and
stunned by the truly beautiful and unbelievably sophis-
ticated Arabic typography being presented by Hans and
Idris. What was this amazing application? I recall being
up to the early hours of the morning, on a work day...,
Googling until I understood that the underlying TEX
engine powering this incredible work was LuaTEX via,
of course, the highly sophisticated ConTeXt package.

I had encountered the Lua language some years be-
fore and experimented with it for a number of projects,
so I was aware of Lua’s power, Wexibility and ease of
use as an embeddable scripting language with a won-
derfully clean and straightforward C API, and certainly
far easier to use than the APIs of more “heavyweight”
scripting languages. Personally, I think the choice of
Lua as the scripting language is perfect. For sure, we’ve
all seen the mailing list or newsgroup arguments and
threads spiralling into Wame wars debating the merits
of scripting language X or scripting language Y, with
domain experts proposing complex arguments for and
against a particular language. But LuaTEX is here, it is
being actively developed, it works and it opens a truly
staggering world of new solutions and opportunities to
use the sophisticated algorithms of TEX exposed and
accessible through a wonderfully simple but powerful
scripting language.

The combination of a TEX-based typesetting engine
coupled with OpenType fonts, UTF-8 input, exposure
of TEX’s internals, plug-ins through DLLs (on Windows)
and all enabled through Lua as a scripting language
was something I just had to explore. Well, nearly 18
months after my “discovery” of LuaTEX I have still not
resumed my Arabic studies, continuing to follow the
very latest updates of LuaTEX, compiling it from the
latest source code as soon as any updates are available:
sometimes daily. I am hooked, pure and simple! Be
warned, LuaTEX is highly addictive, utterly absorbing
and quite damaging to other hobbies you may enjoy.
Happy TEXing.

8.2 Publication note
The material presented in this paper is based on inde-
pendent work undertaken by the author in his spare
time and does not necessarily reWect, represent or ex-
press any views or focus of interest or opinions of his
employer the Institute of Physics or any of its group
companies, including IOP Publishing Limited.

Graham Douglas, Senior Publisher
IOP Publishing, Dirac House, Temple Back,
Bristol BS1 6BE, UK
graham.douglas@readytext.co.uk

54 MAPS 42 Graham Douglas

crops.ps

/ss {setgray} def
/ssgs {/col exch def gsave col setgray} def
/gres {grestore} def
/MM {25.4 div 72 mul} def
%==============================
% Define lengths
%==============================
%offset from page
/TrimOffset 3 MM def
%length of trim mark
/TrimLength 8 MM def
/TotalLength TrimOffset TrimLength add def
%set the PostScript page size
<</PageSize
[TotalLength 0.25 add TotalLength 0.25 add]
>> setpagedevice
%Define Circle’s parameters
%==================================
%Centre of the circle
/CircleCentre TotalLength 2 div def
/Sqrt2 2 sqrt def
% Radius of circle
/CircleRadius TotalLength Sqrt2 3 mul div def
% Define hair lengths
%==
/LengthOfBlackHair Sqrt2 1 sub Sqrt2 div neg
TotalLength mul TrimLength add 2 mul def
/LengthOfWhiteHair CircleRadius 2 mul def
%Positioning of black hairs
%==
/BlackHairGap TotalLength LengthOfBlackHair sub 2 div def
/WhiteHairGap TotalLength LengthOfWhiteHair sub 2 div def
%==
%Drawing procedures
%==
/DrawTrimLines {
0 ssgs
0 TrimOffset moveto
0 TrimLength rlineto
TrimOffset neg 0 moveto
TrimLength neg 0 rlineto
stroke
gres

} def

/DrawBlackHairs {
0 ssgs
CircleCentre neg BlackHairGap moveto
0 LengthOfBlackHair rlineto stroke
BlackHairGap neg CircleCentre moveto
LengthOfBlackHair neg 0 rlineto stroke
gres

} def

/DrawCircle {
newpath
0 ssgs
CircleCentre neg CircleCentre CircleRadius
0 360 arc
gsave fill grestore stroke
gres

} def

/DrawWhiteHairs {
1 ssgs

CircleCentre neg WhiteHairGap moveto
0 LengthOfWhiteHair rlineto stroke
WhiteHairGap neg CircleCentre moveto
LengthOfWhiteHair neg 0 rlineto stroke
gres
} def

/DrawAllMarks {
0.5 setlinewidth
DrawTrimLines
DrawBlackHairs
DrawCircle
DrawWhiteHairs
} def

TotalLength 0.25 add 0 translate
-1 1 scale

TotalLength 0.25 translate
DrawAllMarks
showpage

Taco Hoekwater VOORJAAR 2011 55

LuaTEX Lua modules on Linux

Abstract
How to use the dynamic Lua module loading abilities in LuaTEX under Linux or similar sys-
tems.

Introduction
First, I should warn you that dynamic loading of modules is not quite trivial. It is
simple enough if everything works as expected, but lots of problems can come up,
and if you are not a programmer, it can be extremely confusing.

It is hoped that eventually some knowledgeable people will create ready-to-use
packages that are then made available via the normal TEX distributions like TEX Live,
MikTEX, or the ConTEXt minimals. But for now, you have to do it on your own (or
find a programming friend to do it for you).

As in Thomas Schmitz' article elsewhere in this Maps, I will use the luasqlite3
module as an example. The latest version of this module is here: http://lua.sqlite.org
/index.cgi/index

Building a module
On any Unix-like platform, you will first have to compile the module. Here is a step
by step guide for Linux (I don't know how to compile modules for Windows or Ma-
cOSX, sorry), which is what I use, but for most Unix-like system the procedure is
very close if not identical:

Make sure you have both the lua51 and sqlite3 development packages in-
stalled. You need the development version of the packages because the module
that we will build will be linked against those libraries. You can use your normal
package manager for that, but the names of the packages may vary a little: my
exact names on this Linux distribution where liblua-devel (version 5.1.4) and
libsqlite3-devel (version 3.7.3).
Then, download the module source from the URL given above, and unpack the
zip file somewhere where you have write access. This will give you the direc-
tory lsqlite3_svn08.
Move into the lsqlite3_svn08 directory, and type make. With some luck, this
is good enough, and you will now have lsqlite3.so. If make fails, it is likely
because you have to adjust some of the variables in the top of the Makefile.
Open Makefile in an editor and have a look. Usually, there are a few helpful
comments included explaining you what you have to modify. Of course, if you
cannot figure out what to do from that, you can always ask on the luatex mail-
ing list (luatex@tug.org).

Also, usually there is a file named README or INSTALL that can contain valu-
able hints.
To verify that the created lsqlite3.so file is actually OK, type make test. The
output should end with:

Test Suite finished.

479 Assertions checked. All Tests passed!

56 MAPS 42 Taco Hoekwater

All the hard parts have now been done, we just have to copy the file to a more
useful location.

Installation
for texlua
If LuaTEX runs as texlua (a.k.a. Lua interpreter mode), it will search for lsqlite3.so
in exactly the same way as the standalone Lua does.

So, for that case, a simple make install will do the trick (you will probably need
sudo rights). This will install the module in the correct system-wide spot and both
lua and texlua will be able to find it.

Testing the standalone texlua is a simple case of, after make install, executing
make clean to remove the generated files in the local directory and then using texlua
to run the test suite instead of lua:

[... lsqlite3_svn08]$ texlua tests-sqlite3.lua

for typesetting
Having successfully created the .so file, now we also have to put it where LuaTEX
can find it while typesetting.

To this end, LuaTEX uses a new kpathsea file type created specifically for this
purpose: clua. This file type searches for files with extension .dll and .so. The
texmf.cnf variable for this new file type is CLUAINPUTS, and by default it has this
value:

CLUAINPUTS=.:$SELFAUTOLOC/lib/{$progname,$engine,}/lua//

This path a bit odd because it requires a TDS subtree below the binaries directory,
but the architecture has to be in the path somewhere, and the simplest way to do
that is to search below the binaries directory only.

In my case, the LuaTEX executable lives in /opt/tex/texmf-linux/bin/ which re-
places $SELFAUTOLOC,We will add the luatex path part as well as that is a nice thing
to do (this replaces $engine), so the lsqlite3.so file should go here:

/opt/tex/texmf-linux/bin/lib/luatex/lua

Just copy the file there manually (again, you may need sudo rights).

To test, create a minimal input file tests-sqlite3.tex containing this:

\directlua {dofile('tests-sqlite3.lua'); }
\bye

and run it from that same directory:

[... lsqlite3_svn08]$ luatex tests-sqlite3.tex

You should get the same output again.

Taco Hoekwater
taco@luatex.org

Thomas A. Schmitz VOORJAAR 2011 57

Using ConTEXt with Databases

Accessing and typesetting information that is stored in databases is a common task.
There are large-scale commercial solutions, and a number of database engines allow
formatted output. In this article, I will show you one particular example: how I use
ConTEXt MkIV to typeset material from a database. For my classes in Greek and
Latin grammar, I have accumulated a large collection of exercises and examples from
which I produce exercise sheets for my students. For a long time, I have relied on
good old copy-and-paste to make new exercises and reuse some old material every
year. But then I decided to do things in a more structuredmanner: I am in the process
of putting all my examples into some sort of database from which the single exercise
sheets will retrieve the exercises. This makes it easier to keep track of the material,
make additions, and reuse elements in different ways without being too repetitive.
In this article, I will demonstrate how ConTEXt can be applied to use such a database.
There are two parts: in the first, you will see the newMkIV xml system in action; this
new approach to processing xml from within ConTEXt makes it easy to access and
manipulate parts of xml files. The second part will show away to use sql databases as
input for ConTEXt. I hope these examples can be useful for others who have similar
needs.

The xml Database
The structure of our database is pretty simple: it has chapters covering single gram-
matical topics; every chapter has different examples. Every example has a unique
identifier (expressed with an xml attribute "id"). There are two types of examples:

1. Normal examples have three elements: the “problem” (an English sentence or
passage which is a translation of a Latin original), the “solution” (the Latin orig-
inal), and the “origin” (the reference to the original, which is for my reference
only and will not be typeset).

2. Some grammatical phenomena, however, can better be shown with Latin exam-
ples. In this case, we only have a Latin “problem” and an “origin.” These prob-
lems receive an identifier in the form of an xml attribute type="latinonly".

Hence, a few examples from this database would look like this:

<examples>

<chapter id="moods">

<example id="deliberative1">

<problem type="latinonly">

quid ergo istius in iure dicundo libidinem et scelera demonstrem?

</problem>

<origin>

Cicero, Verr. 2.39

</origin>

</example>

<example id="indirect1">

<problem>

You do not see what he means.

58 MAPS 42 Thomas A. Schmitz

</problem>

<solution>

quid sentiat, non uidetis.

</solution>

<origin>

Cicero, fin. 2.21

</origin>

</example>

<example id="interdicere1">

<problem>

I have neither done it yet nor do I think it is forbidden to do it.

</problem>

<solution>

id neque feci adhuc nec mihi tamen ne faciam interdictum puto.

</solution>

<origin>

Cicero fin. 1.7

</origin>

</example>

</chapter>

</examples>

The ConTEXt Environment
How can we make use of this xml database examples.xml in ConTEXt? We will use a
ConTEXt environment to set up xml processing and format the output to our needs;
this environment will be stored in a file compositionxmlstyle.tex. The first thing it
does is define our environment:

\startenvironment compositionstyle

\stopenvironment

All the following lines go into this environment. We will now go through the TEX
code step by step and seewhat it does.1Webegin by simply loading our xml database:

\xmlloadonly{grammar}{examples.xml}{}

This simply makes the content of the database available to ConTEXt and it reserves
the namespace grammar for this content.
We now have to process our database. There are two cases that we need to consider:
the first is the “Problems” section. We want to be able to pick single problems, de-
pending on their id attribute. Our first macro does just that: it extracts (“filters”) a
particular example:

\def\MyExample#1%

{\xmlfilter{grammar}

{/examples/chapter/example[@id=='#1']/command(xml:choose)}}

This macro is an instructive example of what the newMkIV xml mechanism can do.2

As you see, it takes one argument, which it transfers to the command \xmlfilter.
This command selects (or “filters”) the content of our xml file (which is available
under the name grammar). It traverses the structure of our xml file and picks the
element <example>whose id corresponds to the argument of our macro; it then takes
the content of the <example> element and transmits it to the command xml:choose.

Using ConTEXt with Databases VOORJAAR 2011 59

Hence, this macro could be used in the form \MyExample{deliberative1} to pick the
first example in our database.

\startxmlsetups xml:choose

\doifelse {\xmlattribute{#1}{/problem}{type}} {latinonly}

{\startitem[\xmlatt{#1}{id}]

{\language[latin]\xmlstripped{#1}{problem}}

\stopitem}

{\startitem[\xmlatt{#1}{id}]

\xmlstripped{#1}{problem}

\stopitem}

\stopxmlsetups

When we “choose” our examples, we distinguish two cases: if the problem is of the
"latinonly" type, it is a Latin phrase; otherwise, it is an English phrase. So we use
the command \doifelse to distinguish between these two cases. This macro takes
four arguments: the first two arguments are two strings that will be compared. If
they are equal, the third argument will be executed; if they are not equal, the fourth.
In our case, then:

The command \doifelse looks at the attribute type of the sub-element prob-
lem of the current xml node (that's what \xmlattribute{#1}{/problem}{type}
expands to).
If the type attribute is equal to "latinonly", the first branch is executed:
we produce an \item; its reference (in square brackets) is the id attribute
(\startitem[\xmlatt{#1}{id}]). For the text of the \item, we switch to the Latin
language (to get proper hyphenation). \xmlstripped takes the value of the xml
element and strips leading and trailing spaces, so the text in the problem subele-
ment is typeset as the content of the item.
If we have a “normal” example, with a solution subelement, we do the same
thing, but we do not switch to Latin (because the sentence is English).

So now our “problems” are wrapped up as ConTEXt items, ready to be processed
in a \startitemize environment. Next, we look at the solutions. We write a similar
macro that filters examples; this time, it passes their content to a different command:

\def\MySolution#1%

{\xmlfilter{grammar}

{/examples/chapter/example[@id=='#1']/command(xml:solution)}}

This macro works exactly like the \MyExample macro. Next, we define the command
xml:solution. Again, we will use ConTEXt's conditional mechanism: The \doifnot
macro only processes examples that do not have a problem subelement of the "lati-
nonly" type (remember, only these have a solution):

\startxmlsetups xml:solution

\doifnot {\xmlattribute{#1}{/problem}{type}} {latinonly}

{\SolutionMargin{\in[\xmlatt{#1}{id}]}

{\language[latin]\xmlstripped{#1}{solution}}

\par\blank[line]}

\stopxmlsetups

Every problem was converted into an item which had its id attribute as a reference.
The second example from our database would thus be processed by ConTEXt as

60 MAPS 42 Thomas A. Schmitz

\startitem[indirect1]

You do not see what he means.

\stopitem

Our xml:solution command now picks up this reference (\in[\xmlatt{#1}{id}]
will expand to \in[indirect1]) and wraps it into a ConTEXt macro \SolutionMargin
(which we will define shortly). It then switches to Latin, gets rid of unwanted spaces,
and typesets the text of the solution subelement, followed by a paragraph and an
empty line.
Now, we prepare the look of our exercise sheets. We want problems and solutions
to look exactly like the same. In both cases, we want the numbers to appear in the
margin, in bold. So we first define \SolutionMargin as a margintext which will be
typeset in the left margin:

\defineinmargin [SolutionMargin] [left] [normal] [style=bold]

Then, we define an itemgroup for our problemswhichwill also display its numbering
in the margin:

\defineitemgroup[MyExamples]

\setupitemgroup[MyExamples][n,inmargin]

\setupitemgroup[MyExamples][style=bold]

Now, the last macro we have to define; this is the one that we will really use in our
document. Since we are lazy and want to type as few words as possible when we
prepare our exercise sheets, this macro will do all the work for us:

\def\MyExercises[#1]%

{\startsubsection[title=Problems]

\startMyExamples

\processcommalist[#1] \MyExample \par

\stopMyExamples

\stopsubsection

\startsubsection[title=Solutions]

\processcommalist[#1] \MySolution \par

\stopsubsection}

Do you see what this macro does? It takes a comma-separated list as argument. It
then starts a subsection (with title “Problems”), and within this subsection, it starts
our itemgroup \MyExamples. It then processes our comma list and hands every ar-
gument over to the macro \MyExample, which in turn retrieves the examples from
our xml database. Since, as you remember, this macro calls the helper command
xml:choose, this will take the content of the problem and pass it to a \startitem,
with reference id. Then, the macro inserts a new subsection (with title “Solutions”),
processes our comma list again and typesets all the solutions as we defined in our
xml:solution command, viz., with the reference to the problem in the margin. This
guarantees that the numbering of problems and solutions will be consistent.

The User Interface
After all this hard work, we can finally reap the benefits: when we prepare our ex-
ercise sheets, we will only have to do a minimum of typing: we include our environ-
ment, we give some structure in the form of sections, and we include a comma-sep-
arated list of the examples from the xml database that we want typeset. All the rest
is done by the macros we defined. So our document will look like this

Using ConTEXt with Databases VOORJAAR 2011 61

\environment compositionstyle

\starttext

\startsection[title={Moods}]

\MyExercises[deliberative1,indirect1,interdicere1]

\stopsection

\stoptext

This will typeset exercise sheets, complete with examples and solutions. But wait:
what if you first want to give out exercises to the students without the solutions?
Of course, you could postprocess the resulting pdf file and pick only the pages with
the problems, but that would not be very elegant. A better solution is to build this
capability right into our environment. We will use ConTEXt modes. We modify our
main macro:

\def\MyExercises[#1]%

{\startsubsection[title=Problems]

\startMyExamples

\processcommalist[#1] \MyExample \par

\stopMyExamples

\stopsubsection

\startmode[solutions]

\startsubsection[title=Solutions]

\processcommalist[#1] \MySolution \par

\stopsubsection

\stopmode}

Now, the part of our macro which typesets the solutions will only be executed if
the mode solutions is set. You can either insert a line \enablemode[solutions] into
your file, or, even easier, you can set the mode when you call ConTEXt from the
command line. When you typeset your file and want to have the solutions as well,
the command is: context --mode=solutions; if you don't enable this mode, only the
problems will be typeset.

Further Elements
As an example of what else we can do, I'll show you how you can handle more xml
elements. Alas, students are not as fluent in Latin as they used to be a mere 450 years
ago, so they sometimes need a little bit of help. How can this be integrated into our
documents? First, let us look at the xml side. In order to give subtle hints, we just
invent a new xml element <hint>; here is an example:

<examples>

<chapter id="moods">

<example id="interdicere1">

<problem>

I have neither done it yet nor do I think it is forbidden

<hint>interdicere</hint> to do it.

</problem>

<solution>

id neque feci adhuc nec mihi tamen ne faciam interdictum puto.

</solution>

<origin>

Cicero fin. 1.7

62 MAPS 42 Thomas A. Schmitz

</origin>

</example>

</chapter>

</examples>

Wewant these hints typeset in the text of the problems, between square brackets, in
italics. How do we do this? First, we have to “grab” these elements from our loaded
xml file and connect them with a setup command:

\xmlgrab{grammar}{hint}{xml:hint}

Then, we define our setup command:

\startxmlsetups xml:hint

\dontleavehmode[{\language[latin]\em \xmlflush{#1}}]

\stopxmlsetups

Which will take care of the <hint> elements, apply Latin hyphenation, and typeset
them as we want them.

Other Databases: sql
If you did not like the preceding paragraphs, I have something else to offer: you may
have been disappointed that the title of this article mentions “databases,” yet all it
talks about is xml. What if you want to use a “real” database format such as sql?
ConTEXt MkIV can also cope with sql databases – or, to be more precise: Lua can,
and so can ConTEXt with the luaTEX engine. I do not have the knowledge to make an
in-depth comparison of xml with sql. If you search the web, you will see that people
have (sometimes strong) preferences for one or the other. One advantage of xml is
that it's stored in simple text files, in a human readable form; you are thus sure that
your database will be usable for a long time. sql, on the other hand, has its advantages
when it comes to speed (though the speed of the lookups is relatively negligible
compared to the time it takes to typeset the document, so unless your database is
really huge, there should not be much of a difference). One rule of thumb seems
to be that xml is better for data which has a strong hierarchical structure, whereas
relational databases (such as sql) are better for large sets of weakly structured data.
When you look at our database of grammatical exercises, you will see that there is
not much hierarchical structure; what we really need is to retrieve single examples
by their ids, and this is something that sql is very good at. It is thus easy to think of
a way to represent our grammatical exercises as an sql database. The table will need
five columns (I abbreviate the text to make this representation easier to read):

id | type | problem | solution | origin

------------- | -------- | ----------- | ------------ | -------------------

deliberative1 | latin | quid... | | Cicero, Verr. 2.39

indirect1 | both | You do... | quid... | Cicero, fin. 2.21

interdicere1 | both | I have... | id neque... | Cicero, fin. 1.7

It is easy to see how this is (almost) identical to our xml file. We now have a column
type to distinguish between sets with and without a solution. The other columns
correspond exactly to our xml tags. (We lose the information about the grammatical
“chapter” to which every example belongs; if we wanted to, we could add another
column to our database carrying that information).
This is not the place to give an introduction to sql, so I will be very brief here: I chose
the sqlite3 database management system because it is leightweight, open source,

Using ConTEXt with Databases VOORJAAR 2011 63

available on many platforms, and does not rely on a server-client structure, hence it
is well adapted for managing local databases.3 sqlite3 may already be available on
your system, or else it can be installed quite easily. Creating such a database is easy.
From the command line, we first create an empty database file:

sqlite3 grammar.db

SQLite version 3.7.3

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite>

We are now at the sqlite command prompt and can create our table:

CREATE TABLE examples (id TEXT PRIMARY KEY UNIQUE,

...> type TEXT,

...> problem TEXT,

...> solution TEXT,

...> origin TEXT);

This creates the structure (or “schema”) for our table, and we can now insert our
exercise problems; I give one example only:

INSERT INTO examples(id, type, problem, solution, origin)

...> VALUES('indirect1', 'both', 'You...', 'quid...', 'Cicero, fin. 2.21');

This will populate our table with our exercises, ready to be retrieved later.
How can we use an sql database in ConTEXt, then? Some years ago, Berend de Boer
published a paper on this topic in the EuroTEX 2001 conference; of course, this ap-
plied to ConTEXt MkII.4 He pointed out that it is fairly easy to insert xml tags or
even ConTEXt commands into the output of an sql query. So one could massage the
output and write it to a file, then call ConTEXt on that file. Berend proposed to do all
this in a perl wrapper script. This would still be a viable route – but how much fun
would that be? In MkIV, we can use a different approach: we can do the sql queries
directly from within our document and typeset the results with ConTEXt. However,
there are two caveats you will have to keep in mind when you read the remainder
of this article:

1. I am not a database programmer by any means, I just impersonate one for this
article. The code I will show you here does work for me, but it may be quite
naive or unsophisticated – you are welcome to improve it!

2. Unfortunately, what I have written in the first paragraph of this section is not
quite literally true: Lua can indeed deal with sql, but it needs additional modules
to do so. Unfortunately, I found the situation a bit confusing: there are (at least)
three different modules that allow Lua to work with sqlite databases.5 Even after
doing some research on the web, I could not quite figure out in which relation
these modules are – they are quite similar in their basic approach, but differ in
many aspects of the user interface.6 For this article, I use the Lua module
LUASQLite3,7 which appears to be the only one which is still actively maintained.
In another article in this issue, Taco Hoekwater explains how to install a Lua
module so that luaTEX and ConTEXt can actually use it.

With all this understood, let us set our specifications for what we want to achieve,
then. We want to keep exactly the same user interface in our ConTEXt file as in the
first part of this article when we were dealing with xml; i.e., we still want to use our

64 MAPS 42 Thomas A. Schmitz

macro \MyExercises[] with a comma list of examples; and we want to be able to
use modes to have our solutions typeset or not. Our aim is to produce a universal
macro that can be driven either by an sql database or by an xml file, without the user
having to worry about it.
So let us roll up our sleeves: our database grammar.db is in place; its table examples is
populated with our exercises; our luatex binary is able to find and use the lsqlite3
module. What would our new environment look like? Much of what we will do now
will be done in Lua, so we begin by writing our Lua code. I find it convenient to write
and test my Lua code first and wrap it into the proper \startluacode \stopluacode
environment later, but this is just a habit.
We could, of course, reuse some of the code we have written for handling the xml
file, especially the part where we used the neat \processcommalist macro, but since
we will be writing a Lua function anyway, I found it interesting to see how much
of this could be done in Lua. As you will see, it is possible to write the cimplet set
of processing and typesetting commands in Lua. This may sometimes appear a bit
convoluted, but it may inspire you when you want to write your own Lua functions,
so here we go: our Lua function (which will later be wrapped into a \ctxlua macro)
will take as its argument a comma-separated list of values. So the first thing we have
to do is split this list into its elements and make a table out of them; we use the lpeg
library for this.8 In the following code, the variable keywordlist designates what will
be the user input when we define our ConTEXt macro.

userdata = userdata or { }

userdata.sql = userdata.sql or { }

userdata.sql.sep = lpeg.P(",")

userdata.sql.mywords = lpeg.C((1 - userdata.sql.sep)^0)

userdata.sql.p = lpeg.Ct(userdata.sql.mywords *

(userdata.sql.sep * userdata.sql.mywords)^0)

userdata.sql.mytable = lpeg.match(userdata.sql.p, keywordlist)

This creates a Lua table userdata.sql.mytable with all the keywords in it. We will
later use this table to retrieve the single problems from our database. But let us first
look at the way we will be accessing the database itself.
The Lua function proper will query the database for entries whose id corresponds
to this element. Here is how this can be achieved:

require("lsqlite3")

userdata.sql.mygrammar = assert (sqlite3.open("grammar.db"))

function userdata.sql.getproblem(myid)

userdata.sql.myquery =

userdata.sql.mygrammar:prepare("SELECT problem FROM examples WHERE id = ?")

userdata.sql.myquery:bind_values(myid)

userdata.sql.myproblem = userdata.sql.myquery:get_value(0)

userdata.sql.myquery:step()

userdata.sql.myquery:finalize()

end

Let us have a brief look at this code. This is the part where Lua interacts with our
database. The first thing we have to do is load (“require”) the lsqlite3 module. We
use it to open our database and give a symbolic name to the resulting Lua structure.
We then run an sql SELECT query on the table examples in this database. This query
creates an object, to which we again assign a handle, userdata.sql.myquery. The
interesting part here is the end of the query: in WHERE id = ?, the question mark

Using ConTEXt with Databases VOORJAAR 2011 65

is a placeholder which we then “bind” to the argument of our Lua function, myid.
Our query selects the column problem from the database which is captured in the
function call userdata.sql.myquery:get_value(0) (if we wanted to retrieve n more
columns, these would be captured as userdata.sql.myquery:get_value(0+n)). We
assign a Lua variable to this result. The function call userdata.sql.myquery:step()
will actually apply our query to the next row of the database; the query is closed
with userdata.sql.myquery:finalize().
So all we have to do now is write a loop which will take the single elements of our
userdata.sql.mytable, make sure to get rid of all whitespace which users may put
into this comma list, pass the single values on to the userdata.sql.myquery function,
and then do something with the results we receive. Since we want the results to be
the same as with the xml example, we reuse the setups for our item lists and our
margin numbers:

\defineinmargin [SolutionMargin] [left] [normal] [style=bold]

\defineitemgroup[MyExamples]

\setupitemgroup[MyExamples][n,inmargin]

\setupitemgroup[MyExamples][style=bold]

And this is how we will use these definitions in our Lua loop:

context.startsubsection({ "title=Problems" })

context.startMyExamples()

for k, myid in ipairs(userdata.sql.mytable) do

myid = myid:gsub(" ", "")

userdata.sql.myquery =

userdata.sql.mygrammar:prepare("SELECT problem, type

FROM examples WHERE id = ?")

userdata.sql.myquery:bind_values(myid)

userdata.sql.myquery:step()

userdata.sql.myproblem = userdata.sql.myquery:get_value(0)

userdata.sql.mytype = userdata.sql.myquery:get_value(1)

userdata.sql.myquery:finalize()

context.startitem({ myid })

if userdata.sql.mytype == "latin" then

context.bgroup()

context.language({ "latin" })

context.delayed(userdata.sql.myproblem)

context.egroup()

else

context(myproblem)

end

context.stopitem()

end

context.stopMyExamples()

context.stopsubsection()

What you see here is ConTEXt code written in Lua. Every ConTEXt command has a
corresponding Lua equivalent. If you define an environment \MyExamples, the Lua
function call context.startMyExamples() is equivalent to \startMyExamples.9 As I
said before, we could have done most of this in ConTEXt itself; I just wanted to
demonstrate this Lua interface here.

66 MAPS 42 Thomas A. Schmitz

But there is more! Remember, we also wanted to typeset the solutions for problems
that were of type latinonly if the mode solutions was set. Here is how we can do
this in Lua:

if tex.modes["solutions"] then

context.startsubsection({ "title=Solutions" })

for k, myid in ipairs(userdata.sql.mytable) do

myid = myid:gsub(" ", "")

local userdata.sql.myquery = userdata.sql.mygrammar:prepare

("SELECT type, solution FROM examples WHERE id = ?")

userdata.sql.myquery:bind_values(myid)

userdata.sql.myquery:step()

userdata.sql.mytype = userdata.sql.myquery:get_value(0)

userdata.sql.mysolution = userdata.sql.myquery:get_value(1)

userdata.sql.myquery:finalize()

if userdata.sql.mytype == "both" then

context.SolutionMargin(context.delayed["in"]({ myid }))

context.bgroup()

context.language({ "latin" }, context.delayed(mysolution))

context.egroup()

context.par()

end

end

context.stopsubsection()

end

As you can see, we have to query the database a second time, to retrieve the solutions.
This time, we also need to retrieve the type column since only database entries with
type both do, in fact, have a solution, and we need to test this (otherwise, Lua will
complain because the instruction context(userdata.sql.mysolution) may result in
an empty argument). You will find it easy to recognize the other elements which we
have already done in the first part: we test whether the mode solutions is enabled;
if it is, we further test whether the type of the entry is both; if it is, we typeset it,
with its id as a reference to the item in the problem list.
So all we need to do now is wrap the entire Lua code in the proper environment (I
give just the beginning and the end) and define the command that we will use in our
file:

\startluacode

require("lsqlite3")

userdata.sql.sep = lpeg.P(",")

function userdata.sql.getexample(keywordlist)

...

end

\stopluacode

\def\MyExercises[#1]%

{\ctxlua{userdata.sql.getexample("#1")}}

As you see, in our sql environment, themacro \MyExercises passes its argument over
to our Lua function getexample, which will in turn split it into its single keywords,
query the database for them, and finally typeset the corresponding problems and
solutions. So we have achieved exactly what we wished: we have defined the same
macro which will now retrieve our exercises from an sql database!

Using ConTEXt with Databases VOORJAAR 2011 67

What about our special <hint> element? If you remember, we wanted these hints
typeset within brackets, and in italics. How can we integrate this into our sql ap-
proach? One solution would be to write the ConTEXt code which youwant evaluated
directly into the entry in the database, so the problem column of our example would
look like this:

... it is forbidden [{\language[latin]\em interdicere}] to do it.

If you are certain that you will never use your database with any other (necessarily
inferior) tools than ConTEXt, this would be a possible way, but it is not very ele-
gant. Better to keep the database as generic as possible and massage the data at the
ConTEXt end. So we have to think of a delimiter for our hints – this must be a pair
of characters that you will not use in any other way. In our case, square brackets are
used for nothing else but to include such hints, so our database simply contains:

... it is forbidden [interdicere] to do it.

When we retrieve the problems in our Lua code, we simply replace these brackets
with the code:

function userdata.sql.debracket(s)

p = string.sub(s,2,-2)

return p

end

userdata.sql.myproblem = userdata.sql.myproblem:gsub

("(%b[])", function(t) return "[{\\language[latin]\em"

.. userdata.sql.debrac(t) .. "}]"; end)

This operation on the string with Lua's gsub command will simply replace all strings
within balanced brackets (such as [interdicere]) in the output of our query with
[{\language[latin]\em interdicere}].

Conclusion
The actual output of our exercise sheets doesn't look very exciting yet (actually,
“Problems” and “Solutions” will be typeset on two different pages, but here I have
indicated the page break by a simple line).

Moods

Problems

1 quid ergo istius in iure dicundo libidinem et scelera demonstrem?
2 You do not see what he means.
3 I have neither done it yet nor do I think it is forbidden [interdicere] to do it.

Solutions

2 quid sentiat, non uidetis.
3 id neque feci adhuc nec mihi tamen ne faciam interdictum puto.

68 MAPS 42 Thomas A. Schmitz

But it is easy to add bells and whistles, color, different fonts and sizes, etc. It's all a
matter of adapting settings in your environment. The example I have shown here
may be a bit specialized, but it should allow you to appreciate the simplicity of the
underlying mechanism.

Footnotes

1. As always, I would not have been able to figure all this out myself. I gratefully acknowledge
the help of the ConTEXt community on the mailing list; in particular, Aditya Mahajan and
Peter Münster have provided valuable help. And, as always, none of this would have been
possible without Hans Hagen's kind support.
2. If you are curious and want to know more about xml in ConTEXt MkIV, you should
have a look at the manual which can be downloaded at http://www.pragma-ade.com/general
/manuals/xml-mkiv.pdf.
3. For more information, point your browser at http://sqlite.org/.
4. The paper is available at http://www.ntg.nl/eurotex/deboer.pdf.
5. See the somewhat terse wiki page at http://lua-users.org/wiki/LuaSqlite.
6. It is somewhat reassuring to see that other users feel confused, too; see the questions at
http://lua-users.org/lists/lua-l/2009-03/msg00405.html.
7. See http://luaforge.net/projects/luasqlite/.
8. The following code is adapted from the lpegwebsite at http://www.inf.puc-rio.br/~roberto
/lpeg/lpeg.html#ex.
9. For more information, see Hans Hagen's article “Typesetting in Lua using LuaTEX” in the
previous issue of MAPS and the manual at http://www.pragma-ade.com/general/manuals/cld
-mkiv.pdf.

Thomas A. Schmitz

Kees van der Laan VOORJAAR 2011 69

Gabo's Torsion
—and some more—

Abstract
Gabo’s Torsion is emulated in EPSF, Encapsulated PostScript File format. Gabo’s construc-
tive art, Math, Computer Graphics and the use of PostScript are touched upon. Whether
PostScript is a suitable language for projection and drawing 3D objects on paper is expe-
rienced. An introduction to PostScript aimed at EPSF use, in a nutshell, is included. How
to obtain cropped pictures along with the conversion to .pdf is mentioned. An interesting
observation is made: Bézier cubics, specified by begin point, the control points and the end
point, are invariant under (oblique parallel) projection, which allows to project B-cubics effi-
ciently. The efficient projection of (approximated) circles and ellipses has been addressed. For
the evaluation of B-cubics de Casteljau’s algorithm is used. Emulations in EPSF of Gabo’s
Linear Construction in Space No 1 and 2, of one of his Spheric Themes, and his Linear Con-
struction Suspended, are also included. For the MetaFont aficionados my interactive version
of old is also included.

Keywords
2.5D, art, AFII, ASCII, astroid, Bernstein polynomials, BoundingBox, Bézier cubic, de
Casteljau algorithm, ConTEXt, cropping on-the-fly, EPSF, Gabo, hyperboloid, METAFONT,
MetaPost, minimal encapsulated PostScript, plain TeX, projection, PSlib, stringed surface,
TEXworks

Abbreviations
3D (3 Dimensional), ASCII (American Standard Code for Information Interchange), AFII
(Association for Font Information Interchange), ATN (Adobe Technical Note), BB (Bound-
ingBox), CAD (Computer Aided Design), DVD (Digital Versatile Disk), EPSF (Encapsu-
lated PostScript File format), GS (GhostScript), IDE (Integrated Development Environment),
IMHO (In My Honest Opinion), LL (LanguageLevel), LRM (Language Reference Manual),
PDF (Portable Document Format), PS (PostScript), PSlib (my PostScript library), MF
(METAFONT), MP (MetaPost), MS (MicroSoft), PC (Personal Computer), RF (Reference
Manual), US (User Space), WWW (WorldWide Web), XPS (XML Paper Specification of
MS, a functional subset of PDF), XML (eXtensible Markup Language).

Introduction
Nearly 50 years ago, while on a physics students excursion in the UK, I visited
the Tate Gallery. I was captivated by LINEAR CONSTRUCTION IN SPACE No 2 by Naum
Gabo.1 Much later, in the mid 90s, I emulated this object in MetaFont, and Jos
Winnink processed my adapted MetaFont code for MetaPost. Earlier, in the 80s,
I made a perspex emulation and also did Gabo's TORSION in triplex. The tedious
stringing was done together with my youngest daughter. On my WWW of old
I even had a quasi-animation of LINEAR CONSTRUCTION IN SPACE No 2. For the Eu-
roTEX&ConTEXt 2009 Jos and I had to repeat the processing of the .mp files, because
the .eps files were lost, after 15 years.

Lauwerier(1987) treats the projection of polyhedra, crystals, toroid, sphere with
meridians, and … in BASIC. The present work goes beyond Lauwerier in the sense
that projection of planar curves, with circles and ellipses as special cases, is done via
B-cubics, in time-proven EPSF.

70 MAPS 42 Kees van der Laan

Of late, I had the inspiration to emulate Gabo's TORSION, see below, in EPSF directly.

I have no access to CAD/CAM software nor Mathematica nor … to emulate 3D, but
… happily

EPSF is a TEXie's graphics companion
For completeness I have included in the Appendices emulations in EPSF of Gabo's

LINEAR CONSTRUCTIONS IN SPACE No 1 and 2, as well as one of his Spheric Themes, and
on the nick LINEAR CONSTRUCTION SUSPENDED.

Analysis of the Torsion object
The construction, a stringed metal frame, consists essentially of 2 identical rectan-
gular isosceles triangles, with a curved hypotenuse and curved inner sides, on top of
each other, with the upper triangle turned upside down and rotated over 90∘.

Frame. In the accompanying picture at the left the lower triangle with on top what
I call a cap. At the right the upper triangle with the mirrored cap under it, which I
call a cup.

Stringing. The inner curves of the lower triangle are connected by lines to the inner
curves of the upper triangle, the strings of the object. Cap and cup have horizontal
strings. The stringing yields what I call stringed surfaces.

Stringed surfaces. intrigue me because the impression of a curved surface is obtained
from straight lines, which only require 1D information: the boundaries of the frame.

My youngest daughter at primary school in the 70s made already a sort of Gabo
in 2D, branches of an astroid, which I emulated.

Gabo’s Torsion VOORJAAR 2011 71

← 2D stringed surface
with spurious envelope
Gabo's emulated 2.5D→

LINEAR CONSTRUCTION No 1

As appetizer of the use of EPSF the program of the 2D stringed surface is given,
which reflects the essentials and structure of the codes for the emulations of the
TORSION, the LINEAR CONSTRUCTION, the SPERICAL THEME, and LINEAR CONSTRUCTION
SUSPENDED objects.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: -55 -55 55 55
%%BeginSetup
%%EndSetup
%%Title: 2D stringed surface (envelopes are branches of astroid)
%%Creator: Kees van der Laan, kisa1@xs4all.nl
%%CreationDate: Februari 2011
%%EndComments
%%BeginProlog
/reversevideo{-55 -55 110 110 rectfill}def %(Black) Background; Mimics BoundingBox
%
/framestroke{-50 -50 100 100 rectstroke}def
%
/dostringing{0.05 .05 1.01{%for

/incr exch s mul 2 mul def
s neg s neg incr add moveto
s neg incr add s lineto
s neg incr add s neg moveto
s s neg incr add lineto

}for}bind def %end dostringing
%%EndProlog
%
%---Program--- the script
%
reversevideo 1 setgray %black background and white lines, further on
1 setlinejoin 1.415 setmiterlimit 1 setlinecap
2 setlinewidth framestroke %paint frame to the current page
.1 setlinewidth dostringing stroke %paint strings to the current page
showpage %send the current page to the raster device, printer...
%%EOF

Note. Because I made use of rectstroke in the framestroke procedure the set-
linewidth must precede framestroke. In all emulation programs rounded line joins
and line caps were asked for and spikes were suppressed by the settings as given in
the example program.

Equation of the envelope? Let us spend a little time on refreshing our analytic geom-
etry.

If a family of curves f(x,y,α) = 0, parameterized by α, is tangent to a plane
curve E then the curve E is the envelope of the family of curves.

72 MAPS 42 Kees van der Laan

An envelope E is characterized by
(
f(x,y,α)
fα(x,y,α))

= 0. Suppose our family of curves

are the straight lines of unit length intercepted by the x and y axis, which make an
angle α with the x axis: x

cos α +
y

sinα = 1.

x

y

α

(

f(x,y,α)

fα(x,y,α))
= 0 →

(

1
cos α

1
sinα

sinα
cos2 α − cos α

sin2 α)(

x

y)
=
(

1

0)
→

(

x

y)
=
(

cos3 α

sin3 α)

Elimination cosα and sinα in the equation for the line x
cos α + y

sinα = 1 yields
x2/3 + y2/3 = 1, an astroid, also known as hypocycloid with 4 branches.2

My daughter's construction was made differently, not based on a ‘unit length in-
tercepted by the x and y axis’. But… a similar reasoning as above yields the equation
√x +√y = 1; I'll call her construction: astroid alike.

A stringed surface with known equation. If we rotate a line l around the z axis we
obtain a stringed surface. It is a stringed surface because another way to construct it,
is starting from 2 horizontal circular frames and connect points of the circumferences
by straight lines.

Let l be given by ⎛
⎝

x
y
z
⎞
⎠
= ⎛
⎝

1 − t
t

2t − 1
⎞
⎠

t ∈ [0,1]

Squaring and eliminating t yields
2(x2 + y2) − z2 = 1, a hyperboloid

Courtesy: Lauwerier(1987)

Gabo's stringed surfaces are too complex to be described in equations.

Projection
At high school I learned in the stereometry class to draw projections in the spirit of
the drawing in the MetaFont book p113 ex13.7, and as detailed in Lauwerier(1987)
Ch3.

Nowadays, because of the ubiquitous PCs, emulation of a 3D object is generally
done by (oblique parallel) projection, i.e. the object is viewed under (φ, θ), the az-
imuth and inclination (Azimuth φ is the angle between the x axis and the view di-
rection. Inclination θ is the angle between the view direction and the xy plane. In
the picture φ and θ are positive.)

Moving the view direction over φ is the same as the object rotating over −φ,
be aware of confusing the two. Trivial, ubiquitous examples of projection are pho-
tographs. Lauwerier makes the comparison: the shadow of a frame of wire, as e.g. in
a sun dial. The projection plane is orthogonal to the view direction.

Gabo’s Torsion VOORJAAR 2011 73

x
y

z

ϕ
θ

right-screw
coordinate system
with view direction φ,θ
in the main octant

In order to project a 3D curve the brute force method is to sample the curve and
connect the projected samples by linetos. This is done in the SPHERICAL THEME em-
ulation, see Appendix 5. In the LINEAR CONSTRUCTION IN SPACE No 2 emulation, see
Appendix 4, the symmetry of the frame is used. In general when we approximate a
curve by B-cubics we can project more efficiently.

Properties of (oblique parallel) projection

straight lines remain straight lines (2 points on the line are sufficient for project-
ing the line) with preserved ratios
circles become ellipses (for efficient projection see Appendix 1)
Bézier cubics (as used in PostScript) are ‘invariant’ (see Appendix 1)
angles are not preserved, i.e. parallel projection is not conformal
shape of curves are in general not preserved; projections are done by projec-
tions of B-cubic approximations or by projection of sample points.

For drawing 3D objects in PostScript I discern the following spaces

PostScript's Device Space and User Space
the mathematical 3D User Space, the data.

3D data are projected on 2D PostScript US with the paths constructed in the projec-
tion plane. The result I call a 2.5D image.

The projection formula (see Appendix 0 or Lauwerier(1987) p48 (3.7)) reads

(
u
v)

=
(

−sinϕ cosϕ 0
−cosϕ sinθ − sinϕ sinθ cos θ)

⎛

⎝

x
y
z

⎞

⎠
with (x, y, z) ∈ R

3, (u, v) ∈ Projection plane.

For the accompanying illustration of the coordinate system the view direction ϕ =
35∘ θ = 20∘ was used.

A feeling for the formula can be obtained by imagining special cases, such as:
ϕ = 0, θ = 0: view of yz plane, i.e. (1,2,3) → (u,v) = (2,3), etc.

On the occasion of the joint EuroTEX&ConTEXt 2009, I programmed the projection
in PostScript as procedure with name ptp, mnemonics pointtopair.

/ptp{% point x y z ==> u v, the projected point
% example of use: /pair { x y z ptp } def %with deferred execution
% parameters: phi, theta: the viewing angles azimuth and inclination
% xyz coordinate axes: x to you, y right, z up, right-screw

ptpdict%push ptpdict on the operand stack
begin %move the ptpdict dictionary from the operand stack to the d-stack

74 MAPS 42 Kees van der Laan

/z exch def/y exch def/x exch def
x phi sin mul neg y phi cos mul add
x phi cos mul theta sin mul neg y phi sin mul theta sin mul sub

z theta cos mul add
end% pop the current dictionary, ptpdict, from the d-stack

} bind def
/ptpdict 3 dict def % create dictionary with name ptpdict

The use of ptpdict is paramount with such common (local) variable names, like x,
y and z. The ‘global’ parameters ϕ, θ must be initialized in the dictionary, to avoid
mix up and let them behave as locals to the procedure ptp.

Hidden lines.
A side effect in projection are lines which should not be visible, the so called hidden
lines. I use one colour throughout with the pleasing result that I don't have to worry
about hidden lines. In Gabo's transparent perspex objects everything is visible.

In the current object one might handle hidden lines by a judiciously chosen print-
ing order of the elements, with the triangles split longitudinally along the axis. This
works for ϕ ∈ [0,90∘], θ ∈ [−90∘,90∘].

Emulation
My first emulation of TORSION was in 3D with the frame of triplex in the late 80s.
Two sides are broken after so many years.

My emulation of LINEAR CONSTRUCTION IN SPACE No 2, in perspex stringed by nylon
filament, has not stand time, which also has happened to some of Gabo's objects. The
MF emulation and the reverse video picture is published inMAPS 16-28; the picture is
also included in the LaTEX Graphics companion. I improved the MetaFont emulation
on the occasion of the joint EuroTEX&ConTEXt 2009, by thinner strings and showing
all the strings, also the no longer ‘blurring’ hidden ones.

Why in PostScript?
The use of a programming language has two aspects: the richness and power of the
language proper and the ease of working in an IDE.

PostScript language. The language was designed by Adobe, and introduced in 1985,
as a device-independent page description language with powerful graphics capabil-
ities, ≈ 400 operators — i.e. built-in procedures of the system dictionary — in Post-
Script level 1, with substantial more in PS level 3. The extensive graphics capabilities

Gabo’s Torsion VOORJAAR 2011 75

are embedded in the framework of a general-purpose programming language. The
language includes a conventional set of data types, such as numbers, booleans, ar-
rays and strings; control primitives, such as conditionals, loops and procedures; and
some unusual features, such as dictionaries, next to higher-level structures, such
as patterns and forms. These features enable application programmers to define
higher-level operations that closely match the needs of the application and then to
generate commands that invoke those higher-level operations. The LRM version 3
is the defining document for the syntax and semantics of the language, the imaging
model, and the effects of the graphics operators.

Powerful concepts:

A user space which can be altered: ‘the coordinate system's origin may be trans-
lated, moved to any point in user space; the axes may be rotated to any orien-
tation; the axes may be scaled to any degree desired; the scaling may be differ-
ent in the x and y directions.’ Reflection and skewing are also supported. My
favourite illustrations of the US concept are a stylistic flower and the recursive
programming of the Pythagoras tree, which is all about drawing a square in re-
peatedly transformed US.

← Stylistic Flower

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: -26 -26 26 26
%%BeginSetup
%%EndSetup
/r 18 def
10 {0 r r 270 360 arc

r 0 r 90 180 arc
36 rotate} bind repeat

stroke showpage

Pythagoras Tree→
BachoTEX 2011 pearl

Another nice example of the usefulness of transforming US is to create a path of
an ellipse by the use of the arc operator, for example 1 2 scale 0 0 25 0 360
arc (Courtesy the Blue Book, but … be aware of the fact that the pen width has
been scaled too).
To translate the centre of the coordinate system, default in the left lower corner
of the current page, was the first thing I used to do. No longer necessary for my
stand-alone illustrations in an EPSF program, which begin with the 4 lines as
given in the stylistic flower example.
The colour spaces, which notion was introduced in PostScript level 2 of 1991,
and elaborated upon in 1997 in PostScript level 3, with among others much
more efficient shading functionality. In PostScript level 1 there were already the
concepts colour mode and half-tones, with operators setrgbcolor and setgray,
which were generalized in level 2 into setcolorspace with setcolor. The chap-
ter headings of the level 1 Red and Blue Books reflect the gradients, or smooth
shading, functionality.

76 MAPS 42 Kees van der Laan

PostScriptPostScript
L a n g u a g e

Inspired by The Green Book p139
Much can be learned from this example
which was state of the art in 1985
Note, however that
%%BeginSetup
%%EndSetup
are not necessary???
Level 3 features rich colour shading

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 200 36
/DataString 256 string def
/oshow {true charpath stroke} def
/H20 {/Helvetica-Bold 20 selectfont} def
/H8 {/Helvetica 8 selectfont} def
%%EndProlog
0 0 moveto
gsave 175 36 scale
0 1 127 {DataString exch dup 128 add put}bind for
128 1 8 [128 0 0 1 0 0] {DataString} image
grestore
0 0 200 36 rectstroke 1 setgray
H20 95 14 moveto (PostScript) show 0 setgray

95 14 moveto (PostScript) oshow
H8 95 4 moveto 2 0 (Language) ashow
showpage
%%EOF

The number of pages of the PostScript level 3 LRM has increased to 912p, while
the number of pages of the level 1 LRM is 321p. See Appendix A of the LRM 3
for the ways the PostScript language has been extended with new operators and
other features over time. The language versions are upward compatible.
Handy and useful optimizations, such as rectstroke rectfill userpath select-
font …
but … don't use store in library procedures instead of def, with variables which
are intended to have a local scope. Use a dictionary local to the library proce-
dure for variables used more than once.
The graphics state, with commonly used operators gsave grestore … .
The current page, the abstract page, the raison d'être concept behind PostScript,
to be rendered by the interpreter in the rendering device (printer, screen, …),
commanded by the showpage operator.
Variability of fonts by the font transformation matrix as argument of makefont,
with scalability, mirrored fonts (as in X ETEX) smallcaps, and outlines as obvious
examples.
Stacks operand dictionary graphics state execution
Immediately evaluated names, i.e. //name is immediately replaced by its value;
useful for named constants.
bind operator which looks up values of the operator names in the procedure
operand and replaces these by their values, the so-called early binding, and re-
turns the modified procedure. It enhances efficiency and robustness against (un-
intended) change of used operators, especially in library procedures. Optimize
loop bodies too by bind.
Idiom recognition feature of Level 3. A functionality added to the bind operator,
which can be switched on/off by setting the user parameter IdiomRecognition.
Bind can find and replace commonly occurring operators, called idioms by oper-
ators of higher quality and/or better performance. For example PostScript level 2
shading operators are replaced by PostScript level 3 improvements, silently be-
hind the scenes, with new snazzy codes.
execform for repeatedly placing a graphic, e.g. a logo, a fill-in form, … efficiently
(since level 2).
Operator groups, with a few operators named from each group:
− operand stack pop exch dup ...
− arithmetic and math add div ... srand
− array array ... getinterval3

− dictionary dict ...dictstack
− string string ... run ... token

Gabo’s Torsion VOORJAAR 2011 77

− relation, boolean, and bitwise eq ... bitshift
− type, attribute, and conversion type ... cvs
− file file = == ... echo
− virtual memory save restore ...
− miscellaneous bind null usertime version
− graphics state gsave grestore ... currenttransfer
− coordinate system and matrix matrix ... invertmatrix
− path constructing newpath, moveto lineto curveto arcto ... clip eoclip

... charpath ...
Only one path is possible, although by juggling with several graphics states
one may maintain several collateral paths

− painting to the current page of
paths stroke paints lines fill eofill ... fills an area
strings show ...
a sampled image image shshow ...

− device setup and output showpage ...
− character and fonts findfont scalefont setfont (or level 2 onward opti-

mized concatination of the 3 into selectfont) makefont (transforms more
general than scalefont) ... kshow ... cshow ...

− font cache setcharwidth ...
− errors dictfull ...VMerror.

Overwhelming, isn't it?
Let us pick out a few, which I use most of the time, apart from the arithmetic, math

and relation operators, whose use we are already familiar with from our favourite
programming language.

def associates names with procedures or values available on the operand
stack, and stores the associated pair in the current dictionary

moveto creates the starting point of an (internal) path
stroke and ilks, to paint the path to the current page
image to render the (bitmap) image onto the current page
gsave pushes the current graphics state on the gs-stack and creates a new

current one
grestore pops the (top) graphics state off the gs-stack and makes it the current

graphics state, en passant obseleting the graphics state in use
makefont is used by Don Lancaster (and undoubtedly by others) for creating a

variety of fonts from the available ones. He calls his collection ‘fonts
for free’. I love his embossed variant

kshow I used kerning show in my BachoTEX 2010 pearl for the typesetting of
π-decimals along a spiral

forall handy for creating concise code, also used in my BachoTEX 2010 pearl.

The language is stable and flexible, also called extensible, meaning one can add pro-
cedures. It is the industry page description standard language. Programs are inter-
preted, line by line, not compiled, which at the time was important because of small
memories. It is maintained by Adobe — the stewards of PostScript— and already
with us for more than 25 years! Interpreters are generally provided by 3rd parties,
especially the interpreters which come with your printer.

The Red, Green and Blue Books — Reference Manual, PostScript Language Pro-
gram Design, respectively Tutorial and Cookbook — are published by Addison-Wes-
ley and also available for free on theWWW, even the level 1 and 2 (774p) LRM's. The
Blue Book, which was aimed at to set a standard for effective PostScript program-
ming, contains examples of procedures, such as oshow outsidecircletext inside-
circletext pathtext printposter DrawPieChart centerdash smallcaps and arrow, to

78 MAPS 42 Kees van der Laan

name but a few.4 The Red Book is indispensable. The Green Book is about software
engineering in PostScript, not only to get the programs to work, but to create correct,
readable, efficient, maintainable and robust PostScript programs. The underlying
goal is to develop a printer driver. There is also an Adobe White Book about Type 1
fonts, also for free on the WWW. Mnemonics: the RGB-collection of Adobe :-). Post-
Script programs, in ASCII, are generally generated by programs, hardly self-written.
They facilitate exchange of (stand alone EPSF) picture descriptions, and of course
(the pages of) a complete publication. The structuring conventions of Appendix C
of the Red Book level 1 have grown out into an Adobe Technical note #5001, 109p.
Nowadays, illustrations are easily exchanged in .pdf, and everybody can view them
because of the ubiquitous, free Acrobat reader. TheMathematica reader is also freely
available, and facilitates the exchange of Mathematica notebooks. The exchange of
ASCII PostScript is useful.

Although a powerful graphical language, PostScript is considered low-levelish by
the TEX community at large. They favour John Hobby's preprocessor MP, Knuth in-
cluded, with exceptions: TacoHoekwater, me… . Taco includes PostScript on-the-fly
in escrito, his PostScript compatible interpreter in Lua. He is also on the MetaPost
maintenance team and works on extensions of MetaPost. At BachoTEX 2010 he an-
nounced the release of MetaPost 2.000.

‘PostScript is underestimated and underused,’ to quote Taco Hoekwater.
‘I agree with him … I'm not saying he is right ;-),’ well … he is.

IMHO, a little bit of PostScript does not harm. On the contrary, you will benefit
from the general-purpose programming language framework, the imaging model, or
you may extend your knowledge about the interactive system for controlling raster
output devices, but … self-study is dangerous. What we need is a teacher à la John
Deubert who thoroughly understands the PostScript concepts. John in his Acumen
Journal pays attention to among others the relation of PostScript to PDF and XPS, and
gives many nice, good and useful examples, clearly explained line by line.

From the LRM
‘ PDF lacks the general-purpose programming language framework of the Post-
Script language. A PDF document is a static data structure that is designed for
efficient random access and includes navigational information suitable for inter-
active viewing.’

Finally, and in contrast with TEX, a mnemonic
All what you type in PostScript are

comments after %
numbers
operators
names to be looked up in the dictionaries, and at last
strings which contain text.

From the LRM
‘ The interpreter manipulates entities called PostScript objects. Some objects are
data, such as numbers, boolean values, strings, and arrays. Other objects are el-
ements of programs to be executed, such as names, operators, and procedures.’

In TEX the source is the text of the publication, interspersed with as few markup
commands as possible, at least that is what Knuth aims at in his minimal markup
style, which I love and practice too.

Gabo’s Torsion VOORJAAR 2011 79

So …
add def ... are names to be looked up in the dictionaries
(< / [... are operators:

(starts a string, where all is interpreted as text, with \ as escape character;
a TEXies niche

< starts a hexadecimal string, consisting of the ‘digits’ in the hexadecimal
system 0,1, ... 9, a, b, c, d, e, f, commonly used in the executable
array, ie, procedure, as argument for the image operator

/ starts a literal name
[starts an array, which may contain heterogeneous elements, in contrast

with other languages.

Be aware of the difference between name and /name. The first is a name to be looked
up in the dictionaries, while the slash in the second starts a literal name, which is
only pushed on the operand stack, without execution. Unlike other programming
languages such as PASCAL there are no reserved words.

Comments start with %. Comments are used for structuring. Special comments are

%!the start of a PostScript program with %!PS-Adobe-3.0 EPSF-3.0 the complete
line for illustrations to be encapsulated

%%at the beginning of a line starts structural information about the PostScript pro-
gram, as explained in Appendix C of the LRM version 1, or see ATN #5002; syn-
tax %%<keyword>: parameter values.

EPSF Encapsulated PostScript File format. Looking more closely at the .eps, which
resulted from .mp, I found that header comments of a PostScript program starting
with

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: llx lly urx ury
%%BeginSetup
%%Endsetup

yields the image cropped to the supplied BoundingBox: llx lly urx ury, centred
on the page, when processed by Acrobat Pro 7.1.5 Explicit translation of the origin
via ... translate is no longer necessary in an EPSF with a BB around the origin.
Very Handy! Not only very handy … also with better results than my old way via
selecting, copying and the reuse of the copy from the clipboard. The dimensions of
the BoundingBox can be requested for in the program, to create a perfect cropped
illustration.

FromAdobe Technical Note #5001 PostScript LanguageDocuments Structuring Con-
vention Specification, the following about the keyword EPSF-3.0

‘ … EPSF-3.0 states that the file is an Encapsulated PostScript Format, which is
primarily a PostScript language file that produces an illustration. The EPS format
is designed to facilitate including these illustrations in other documents. … ’

Appendix H of the LRM version 2 details on EPSF, which by the way is not in-
cluded in the LRM 3.

PostScript IDE. On the WWW I found the nonfree PSAlter's workbench, a one-win-
dow PostScript IDE. In the PostScript FAQs it is mentioned that they provide visual
debugging.

80 MAPS 42 Kees van der Laan

I use an editor for creating the source and transform .eps into .pdf by Acrobat
Pro 7.1, with 2 windows open:

the editor
the map where the PostScript file resides (right mouse click the .eps file yields
a pop-up menu with option convert to PDF, which converts the .eps into .pdf
and opens the resulting .pdf in my Acrobat Pro 7.1; the %stdout is written to the
messsages.log file in the map of Distiller.)

For me Acrobat is an excellent present day interpreter for daily use on my PC. In the
mid 90s I used the (black and white) Apple Laser writer.
Those who favour Ghostscript might find the overview http://www.ghostscript
.com/doc/7.07/Readme.htm, interesting. GSview does not allow the use of the run
operator, apparently, which I use to include my library file.

I tried in TEXworks the preferences option and added Acrobat Pro. Opening in the
edit window .eps and processing it by pushing the newly created Acrobat button
did open the Acrobat window, yes, but … empty, without the results. What did I do
wrong?

A standing wish: Jonathan Kew, or somebody else, do come up with a nice Post-
Script...MP IDE similar to the TEXworks IDE, with its handy jumping from a line in
the edit window to the corresponding place in the pdf window, and vice versa, its
dictionaries (to be added by the user), and … its promising scripting facilities.

I'm not aware of a MF, respectively MP, pleasing IDE.6 But … TEXies can choose
for ConTEXt processing in TEXworks, with embedded MetaPost processing on the
fly.

The main reasons for me to program in PostScript are:

I like the powerful graphics facilities
it is well-suited for my purposes, and …
I want to experience once more whether it is more difficult to write in my use
of PostScript, which I call minimal PostScript, than in MF or MP, in analogy to
minimal markup in TEX versus e.g. the use of LaTEX.7

For stringed surfaces emulation PostScript lacks MF's, and MP's inherited, point of
operator. No problem, I added the procedure tOnSpline, see later.

A definitely nice feature of MetaFont, respectively MetaPost, I came across while
working on this note, is the flexibility of the path specification. In PostScript only
B-cubics can be added to the current path, obeying the rigid specification of control
points. B-cubics are not provided for by just specifying a set of points lying on the
polynomial. But … with a little bit of Math … maybe, sometime… someday…

The advantage of working in PostScript directly is that viewing PostScript is a
1-step process, while MP, the TEXworld's PostScript preprocessor, requires 2-steps.
Moreover, the resulting .eps from MP is less intelligible and verbose. For example
LINEAR CONSTRUCTION IN SPACE No 2 inMP, took 120 lines with the resulting PostScript
800+ lines (mainly caused by unwinded loops). I expect the hand-written PostScript
to take an odd 100 lines, roughly of equal size and just as intelligible as the MP
version, see Appendix 4.

PostScript output from Adobe Illustrator, which I have used for converting .jpg
into .eps, is really unintelligible: lots of preceding obscure definitions, but… one can
use the ‘meat’ in it as encapsulated PostScript. I'll come back on the matter another
time. For the impatient, see Acumen J. Nov 2004, or better still just use Photoshop,
or … for the conversion.

The super reduction in processing steps, is provided for in Hans Hagen's ConTEXt,
where MP pictures are processed on the fly, while TEXing. The only thing I miss

Gabo’s Torsion VOORJAAR 2011 81

is that he does not explain how he accomplished his tricks, for example shading
and transparency. At the BachoTEX2010 Taco Hoekwater showed the inclusion of
PostScript in LuaTEX, exciting. Note that inclusion of .eps in pdfTEX is not allowed.

My minimal use of EPSF. In the program, given in Appendix 2, I made use of the
PostScript operators
closepath curveto def eofill exch fill lineto moveto run setlinewidth set-
dash showpage translate
next to the self-written procedures
s ptp tOnSpline.
Not so much isn't it?

Choice of curves
For each hypotenuse, for each of the inner sides of the triangles and for each of the
legs of the cap and cup, I use just one B-cubic. The (control) points which characterize
the spline have to be chosen, judiciously.

Splines
In PostScript a spline, a Bézier cubic, is characterized by the begin point a0, the
control points a1 and a2, also called handles, and the end point a3. In Java one can
drag the handles and watch the effects, interactively. Nice.

Splines are the important 20th century's Math time-dependent functions,
comparable to the 19th century's Fourier series Math for approximations.
The control point a1 lies on the tangent to the spline in a0, and the control point

a2 lies on the tangent to the spline in a3. The points a0 and a3 and the angles of the
tangents to the spline at these points are not enough to describe the spline uniquely:
the size of the handles also matters, as explained in Manning(1972).8 The control
points stand for the angle of the tangents and the size of the handles and therefore
determine uniquely the spline.

a0 a3

a1 a2 a0 a3

a1 a2

a0 a3

a1= a2

a0 a3

a1a2

a0 a3

a1a2

With a0 as currentpoint a B-cubic, characterized by a0, a1, a2, a3, is appended to
PostScript's (internal) path by a1 a2 a3 curveto.

Mathematical formula of a spline. Splines as used in PostScript, and inMP, are Bézier
cubics. (Adobe in the Red Book of 1985 mentions along with the operator curveto
that Bézier cubics are added to the currentpath).

These 3rd degree polynomials are a linear combination of 3rd degree Bernstein ba-
sis polynomials, which were discovered in 1912 by Bernstein. A nth degree Bernstein
basis polynomial reads Bνn(t) = (nν)t

ν(1 − t)n−ν, ν = 0,1,…, n.
A Bézier cubic — a linear combination of 3rd degree Bernstein basis polynomials

— with begin point a0, control points a1, a2, and end point a3 reads

z(t) =(1 − t)3a0 + 3(1 − t)2t a1 + 3(1 − t)t2 a2 + t3a3
with z, a0, a1, a2, a3 ∈ R

2, t ∈ [0, 1]
(1)

The common representation for evaluation, apart from the Horner scheme, reads

z(t) = A t3 + Bt2 + Ct +D with z,A,B,C,D ∈ R
2, t ∈ [0,1] (2)

82 MAPS 42 Kees van der Laan

The coefficients A,B,C,D are linear in a0,a1,a2,a3

A = a3 − 3a2 + 3a1 − a0
B = 3a2 − 6a1 + 3a0
C = 3a1 − 3a0
D = a0.

The above is implemented in tOnSplineclassic, which yields the point of the spline,
characterized by a0, a1, a2, a3, for the time variable t by the Horner scheme.9

PostScript only paints the paths or regions to the current page, it does not provide
an operator for evaluating the B-cubic.

De Casteljau's algorithm. Bogusław Jackowski drew my attention to this algo-
rithm for evaluating B-cubics, which is (more generally) discussed on http://en
.wikipedia.org/wiki/De_Casteljau's_algorithm.
Formula (1) can be written in the de Casteljau representation

z(t) = (1 − t)
(
(1 − t)

(
(1 − t)a0 + ta1)

+ t
(
(1 − t)a1 + ta2))

+

+t
(
(1 − t)

(
(1 − t)a1 + ta2)

+ t
(
(1 − t)a2 + ta3))

The (vector) value z(t) = a0123, of the B-cubic characterized by a0,a1,a2,a3 for the
value of the (time) variable t can algorithmically also be described as

a0
a1
a2
a3

→
a01 = a0 (1 − t) + a1 t
a12 = a1 (1 − t) + a2 t
a23 = a2 (1 − t) + a3 t

→

→
a012 = a01 (1 − t) + a12 t
a123 = a12 (1 − t) + a23 t

→ a0123 = a012 (1 − t) + a123 t

Implementation of de Casteljau's algorithm by Bogusław Jackowski and Piotr Strzel-
czyk for evaluating a spline at point t.

/mediation {% a b t ==> c
% c = a * (1-t) + b * t, a weighted average of a and b

dup 1 exch sub 4 -1 roll mul
3 1 roll mul add
} bind def

/tOnSpline{{% Purpose: t on spline a0,a1,a2,a3 ==> x y
% implementation of the De Casteljau's algorithm
%
% t: value in [0,1]
% a0 a1 a2 a3: point pairs which characterize the spline
%
% in MF lingo: given pairs a0, a1, a2, a3, and a real number t, 0<=t<=1;
% we want to compute
% t[t[t[a0,a1],t[a1,a2]],t[t[a1,a2],t[a2,a3]]]
% ==>

Gabo’s Torsion VOORJAAR 2011 83

% x(t) y(t)
tOnSplinedict % look up the name and push the dictionary on the operand stack
begin % and move tOnSplinedict dictionary from the operand stack to the d-stack
/a3y exch def /a3x exch def
/a2y exch def /a2x exch def
/a1y exch def /a1x exch def
/a0y exch def /a0x exch def
/t exch def
/a01x a0x a1x t mediation def /a01y a0y a1y t mediation def
/a12x a1x a2x t mediation def /a12y a1y a2y t mediation def
/a23x a2x a3x t mediation def /a23y a2y a3y t mediation def
/a012x a01x a12x t mediation def /a012y a01y a12y t mediation def
/a123x a12x a23x t mediation def /a123y a12y a23y t mediation def

a012x a123x t mediation a012y a123y t mediation
end% pop the tOnSplinedict dictionary off the d-stack
}def
/tOnSplinedict 20 dict def%create dictionary with name tOnSplinedict

Note. The created variables are ‘local’, i.e. only made available in the dictionary tOn-
Splinedict, which is popped off the d-stack on leaving the procedure. All important
for library procedures.

In MP splines can also be characterized by the begin point, end point, and the
tangents at these points (with a wired-in assumption of the smoothness). Even the
concept tension, inherited from MF, is implemented such that wired-in smoothness
can be overruled.

Classically a 3rd degree scalar polynomial

P3(x) = a3x3 + a2x2 + a1x + a0

is specified by 4 points of the polynomial, or by 2 points and 2 derivative values. The
coefficients of the polynomial, a0,a1,a2,a3, are obtained by solving a 4 x 4 system
of linear equations. The latter can be done in MetaPost (and MetaFont) on the fly,
albeit without paying attention to numerical stability, i.e. without pivoting. I have
not written a numerical stable 4 x 4 linear equation solver in PostScript … yet; 3 x 3,
and 2 x 2, yes; they are included in my PSlib library.

Choice of the data
Choose as origin the centre of the foot. Locate the lower triangle in the yz plane. For
the height of the object I decided on 60 pts (nearly an inch), meaning top = (0,0,60),
which entails that the height of the triangle is 30 pts. Below at left the points which
characterize the outer hypotenuse, at right the points which characterize the inner
curves.

For the length of the legs of the triangles I took 25√2 pts, meaning a0 = (0,−25,25),
and a3 = (0,25,25), i.e. −ay = a3y = 25.

84 MAPS 42 Kees van der Laan

For the y coordinates of the control points a1 and a2, I chose the values -12.5 pts,
respectively 12.5 pts. The z coordinates of a1 and a2 follow from the equation (2)
and that the hypotenuse should touch (0,0,30)

z(.5) = Az
8 + Bz4 + Cz

2 + Dz with z(.5) = 30

which yields

a1z = a2z = (4z(.5) − az)/3 = 3123 → a1 = (0,−12.5,3123), a2 = (0,12.5,31
2
3).

The data points for the inner triangle, b0, …b8, must be chosen such that the curves
are pleasing and symmetric around the axis of the object; not critical. The data points
for the upper triangle are rotated and mirrored values of those of the lower triangle.

I chose for cap and cup data point valueswhich yield curveswhich looked pleasing
to me. Visually, the data points are given in the figure below (for the values see the
program in Appendix 2)

By the way, the dots and names above are printed by the following, interesting, mean
and lean PostScript code, where the names of the projected points are supplied as
strings in an array on the stack. The strings are used as such by show and converted
to the name of the data points, which they represent.

/dotsandnames{%[str,..., str]==>
%in the str a name, which stands for a pair, such as in pair moveto
%centershow is my centred show, H10pt stands for Helvetica 10 pts
%already scaled
{dup cvn load exec moveto (.) H10pt setfont centershow

H12pt setfont show}forall
}def
%invoke
[(a0) (a1) (a2) (a3) (top)...] dotsandnames

Gabo’s Torsion VOORJAAR 2011 85

Explanation line by line: In a forall loop each string is duplicated (remember that
each string in the array is put on the stack in turn, in the order as given in the array,
which is different from other languages, where parallel execution of the elements of
the forall loop is allowed, be aware!) after which one copy is converted into a name,
loaded and executed to yield the coordinates of the data point for the positioning,
and the dot is (centered) painted by centershow to the current page; next in the loop
the duplicated string is painted by show to the current page. Neat!

But … sometimes the names can better be shown left, as in the frame of LINEAR
CONSTRUCTION IN SPACE No 1, see Appendix 3.

Implementation I chose for each projected point a definition, which for top, for
example, reads

/top { 0 0 60 s ptp} def% s=scaling, analogue to the use of 60 inch

The advantage is mean and lean correct code with deferred execution. The disad-
vantage is that each point is evaluated each and every time when needed. For my
toy problems, on nowadays PCs, this is not relevant; clear, intelligible, and correct
code is more important than execution speed.

A more efficient, but verbose, version reads

0 0 60 s ptp /topy exch def /topx exch def /top { topx topy } def

The points named by a0, a1, a2,... in the program denote the projected spacial
data a0,a1,a2, … . The (projected) triangles are called lowertorsiontriangle and
uppertorsiontriangle and implemented as follows

/lowertorsiontriangle{origin moveto %outer path
a0 lineto
a1 a2 a3 curveto closepath
b6 moveto %inner path
b7 b8 b0 curveto
b1 b2 b3 curveto
b4 b5 b6 curveto closepath

} def

Stringing
Connecting points of the splines by straight lines yields the stringing, the stringed
surfaces. The points on the spline are obtained by invokes of tOnSpline, see the
procedure dostringing in the program given in Appendix 2.

Results
Below the emulations seen under azimuths 0∘, 30∘, 60∘, 90∘, and inclination 20∘

86 MAPS 42 Kees van der Laan

Variations
Gabo himself constructed variations, where the sides of the triangles are connected
to the outer sides of cap, respectively cup. This can be coded easily, but I expect it to
blur the picture by too many lines.

On closer inspection I noticed that in the centre Gabo had a horizontal metal square
width sides of 10 cm or so. The hypotenuses were split in the middle and connected
to the corners of the square.

Other emulations may use circular arcs as inner sides of the triangles (actually
this was the case in the real thing).

On the other hand, one may vary by using curves instead of lines for the sides of
the triangles.

Below the results of the outline version in reverse video, a fibre figure, which I
consider beyond Gabo, because in the emulations I don't have to worry about con-
struction necessities, although theymuch resemble his LINEAR CONSTRUCTIONs in per-
spex.

Inherent are his variations in the construction process frommodels in card or plastic
to real objects made from wood, metal, perspex, plastic, … of varying size.

Gabo's ultimate variation on the Torsion theme is his fountain in front of the
Thomas hospital in London, opposite the Big Ben on the other bank of the river
Thames.

Gabo’s Torsion VOORJAAR 2011 87

In this kinetic art fountain the ‘stringed’ surfaces change, because the strings are
water jets squirted under slowly varying pressure. The revolting time is 10 minutes.

In the beginning of this century I got an idea how to emulate this fountain (ma-
terial: white curved plastic electricity tubes and a rotating lawn sprinkler) for my
quarter circle garden pond.

I guess that the construction principle differs: my lawn sprinkler revolves on a water
bed and due to the action=reaction principle.

Conclusions
Though PostScript lacks an explicit path data structure the TORSION object was easily
emulated. The points of a Bézier cubic are calculated by the de Casteljau algorithm
implemented by Bogusław Jackowski and Piotr Strzelczyk. Such an operator is not
provided for in PostScript.

The use of ready-made EPSF procedures is not difficult at all, as can be witnessed
from the included programs; to write robust EPSF procedures is a different story. A
library of correct, intelligible EPSF procedures is what we need.

Bézier cubics are invariant under (oblique parallel) projection, which is according
to Bogusław Jackowski obvious.

To program illustrations in PostScript is no more difficult than to program in MP,
or MF, but … one has to understand the concepts, thoroughly. For me the use of
PostScript is easier than the use of MP.

Starting an EPSF program with
%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox ...
%%Beginsetup
%%Endsetup
yields .pdf pictures, cropped to the specified BoundingBox, centred.
The handling of hidden lines is circumvented.
The use of pdf optimizer of Acrobat Pro 7.1 resulted in a ≈ 30 times smaller .pdf

file of this note.10

In TEXworks' editor window I use the monotype Lucida console font, where all
characters have the same width (it is default in MS Wordpad) in order to keep ver-
batim texts vertically aligned, but it did not work as expected; 16 pts is a convenient
magnification for me. Bookman Old Style (gave good results with respect to align-
ment in verbatims) and Baskervile Old Face are also monotype and pleasant for the
eyes. The pdf viewer used by TEXworks is not so good as Acrobat: sometimes anno-
tations in my illustrations don't show up.

Never throw data away, even after 15 years they may still be of value; beware
when you replace your computer.

TEXing this document required little, minimal plain TEX markup. Interesting, al-
though not suitable for full-automatic typesetting with its shrinking and stretch-
ing, its automatic splitting into pages, … is the inclusion of a picture next to the
verbatim listing. (A practice borrowed from the Blue Book. I did not use Phil Tay-
lor's \parshape preprocessor for flowing text around illustrations, presented at Ba-
choTEX 2009, because I was only after placing illustrations in the open space at the
right of (narrow) verbatim listings.) A way how to do this is essentially explained in

88 MAPS 42 Kees van der Laan

the TEXbook on p389, which I implemented in the macros \insertjpg, respectively
\insertpdf. The TEXnique I used earlier in my plain TEX Turtle Graphics macros,
which are not suited for graphics in TEX: EPSF is much better and more general
for the description of (single) illustrations, to be included in AnyTEX documents. I
used the wrong tool for my graphics: TEX as American screwdriver, to paraphrase
A. Perlis.

When I think I'm finished it turns invariably out that I'm only halfway.
I don't expect you, kind reader — who does not suffer of the disease of our times:

lack of time — to come up with a Gabo of your own (not that difficult just design
a frame and do the stringing), but … you may profit from the projection technique,
the examples of EPSF programming, the communicated experiences, and hopefully
you have become familiar with some of Gabo's works and last but not least enjoy
the illustrations.

Æsthetics and effectiveness of the message, cultural contexts? My message: PostScript
can be used gracefully, æsthetically, and effectively to emulate a class of Gabo's ob-
jects, and undoubtedly some more. TEXies should catch up.

Wouldn't it be nice
to have holographic
3D projections of Gabo's
constructions?

Afterthoughts
The projected frame resembles a font character.Would the program, orme inwriting
the program, have benefited from ‘subscripting’ more in the spirit of MF's general
suffix? I might have used ai, inner a, instead of b and subscripted it by numbers:
i.e. have used variables a0i, a1i,… instead of b0, b1, … . I did do this for cap and
cup and followed Knuth's convention in LINEAR CONSTRUCTION IN SPACE No 1 to begin
with, see Appendix 3.

A standing wish An IDE for PostScript, and MP, in the spirit of TEXworks I would
welcome. Why not distribute it on the TEXlive DVD?

Daydreaming If only I could handle gradients in PostScript gracefully, I might em-
ulate Gabo's CONSTRUCTION HEAD No 3 (Head in a Corner Niche, which I watched in
MOMA, NY) although it has a much different character than the stringed surfaces.
Gradients I do for the moment by the PostScript level 1 technique. In PS3 really ef-
ficient shading gradients are accounted for. Quite substantial, looks complex. Work
to do!

Further reading
Instead of a bibliography a selection which I experienced useful:

Adobe's Red, Green and Blue books, an absolute must.
http://www-cdf.fnal.gov/offline/PostScript/
From the preface of the Green Book: PostScript Language Program Design is
intended to provide a solid background for developing software in the Post-
Script language — not just getting a program to work, but thoroughly designing
it from top to bottom …
…The sample programs contained in each chapter are intended to be directly
usable. They are examples, but they are not trivial ones. Each program has been

Gabo’s Torsion VOORJAAR 2011 89

carefully designed and debugged and should provide an excellent foundation for
an industrial-strength printer driver …
Disclaimer: For EPSF usage not so appropriate.
Adobe PostScript 3 Fonts Set … come standard with 136 distinctive and stylish
fonts, including those packaged with the leading operating systems…
Disclaimer: I did not succeed in finding these fonts in Acrobat Pro 7.1.
Puzzling message to %stdout: Helvetica not found, using Font Substitution. Font
cannot be embedded.
Digital Acumen Journal: http://www.acumentraining.com, by John Teubert, for
free. Top!
Adobe Technical Note #5002, Encapsulated PostScript File Format Specification
http://partners.adobe.com/public/developer/en/ps/5002.EPSF_Spec.pdf
Don Lancaster's PostScript use: http://www.tinaja.com, for free. Informative.
PostScript FAQ http://en.wikipedia.org/wiki/Wikibooks:PostScript_FAQ

On the other hand, I myself have published in MAPS a few articles on, cq related to,
PostScript:

Just a little bit of PostScript, MAPS 17, contains nice, if I may say so, examples
you don't see that often.
Stars around I & Stars around II, MAPS 18, after Jackowski's MetaFont lectures.
Jacko's example of the creation of the 2 character OK font is much in the spirit
of the creation of an analytic font in PostScript as given in the Blue Book Pro-
gram 20.
Tiling in PostScript and MetaFont—Escher’s wink MAPS 19.
TEX education—a neglected approach MAPS 39. Presented at the Eu-
roTEX&ConTEXt 2009 and rehearsed at the BachoTEX 2010.
Circle Inversions MAPS 40, where I introduced among others my PSlib.
à la Mondriaan MAPS 41. Presented at BachoTEX 2010.
Programming Pearls 2010: π-decimals along a spiral and `The mouse's tail and
Alice's tale'.
Programming Pearls 2011: Pythagoras Tree.

For the Math:

Lauwerier, H.A.(1987):11Meetkunde met de Microcomputer. Epsilon 8. (Projec-
tion, hidden lines, projection of crystals, inside-outside, sphere with meridians,
toroid … . However … no projection of B-cubics. How to project circles and el-
lipses efficiently was developed while working on this note.)
Manning J.R.(1972): Continuity conditions for spline curves. Computer Journal,
17,2, p181-186.

For those who want to pass by (La)TEX and do it all in PostScript might find the
following interesting

http://www.cappella.demon.co.uk/bookpdfs/pracpost.pdf
NTGprovides a printing on demand service http://www.boekplan.nl for among oth-
ers copies of MAPS articles.

Acknowledgements
Thank you Naum Gabo for your inspiring art, Hans Lauwerier for your lectures on
projection and some more, Adobe for your good old PostScript and Acrobat to view
it, Don Knuth for your stable plain TEX, Jonathan Kew for the TEXworks IDE, Hàn
Thế Thành for your pdfTEX, Bogusław Jackowski for your thorough review, your
communicating de Casteljau's algorithm and sending me a copy of Manning's paper,

90 MAPS 42 Kees van der Laan

Piotr Strzelczyk for the implementation of de Casteljau's algorithm, Jos Winnink for
comments on an early version of this paper, Henk Jansen for stressing the point to
coddle data, whichmight still be of use after ≈15+ years,WimWilhelm for prompting
the formula for the curve on the tennis ball, MAPS editors, especially Frans Goddijn,
for improving my use of English, and Taco Hoekwater for suggestions and procrust-
ing this note into MAPS format.

Notes

1. Naum Gabo, 1890–1977. Born Naum Borisovich Pevsner. Bryansk. Russian Constructivist.
An excellent book about him and his works: Naum Gabo 60 years of Constructivism. Pres-
tel-Verlag 1985, which appeared on the occasion of the retrospective exhibition with the same
name at the Dallas Museum of Art, the Art Gallery of Ontario, the Guggenheim Museum NY,
the Akademie der Künste Berlin, the Kunstsammlung Nordrhein-Westfalen, the Tate Gallery
London. Wikipedia contains a short biography.
2. Courtesy: Courant, R (1936) Differential and Integral calculus II, p175. The astroid was
already discussed by J. Bernouilli in 1691.
3. Note that there is no automatic type conversion. For example the index of an array a must
be of type integer eventually converted by cvi: a <real expression> cvi <value> put. This
also holds for the integer operands of idiv.
4. The procedure texts and the examples are available on the WWW as a UNIX shell archive.
I have assembled the procedures into a BlueBook.eps library, which is system independent.
5. An undocumented feature? Non-universal?
6. Onmy PowerMac andMacClassic of ≈ 1992 (still alive, mind you!), I could viewMF pictures
on the screen in Blue Sky's MF. I don't have that functionality on my PC. No longer relevant
because the resulting bitmaps are outdated.
7. Obeying the famous 80-20% adage: 20%, or less, of the needed energy with 80%, or more,
of the results. It is true that LaTEX comes with a wealth of packages. John Hobby has donated
the powerful boxes for flowcharts, and graph for drawing graphs in MP.
8. This is different from a scalar (3rd degree) polynomial P3(x), where 2 values and 2 deriva-
tives determine the polynomial uniquely.
9. Well-known time representations of curves are the Lissajous figures defined by (A sin(at+δ),
B cos(bt)).
10. Courtesy Péter Szabó, EuroTEX 2009.
11. For Lauwerier's biography see the general site about Dutch mathematicians: http://bwnw
.cwi-incubator.nl/cgi-bin/uncgi/alf

My case rests, have fun and all the best.

Kees van der Laan
Hunzeweg 57, 9893PB Garnwerd, Gr, NL
email: kisa1@xs4all.nl

Gabo’s Torsion VOORJAAR 2011 91

Appendix 0 Projection formula
Let us choose a Cartesian orthonormal (projection) coordinate system uvw, with thew axis in the direction (ϕ,θ),
the v axis in the wz plane orthogonal to the w axis. Because the v and w axes are in the plane wz the u axis is in
the xy plane, with direction according to the right-screw rule.

u

v

w

x
y

z

ϕ
θ

uvw coordinate system
with eu, ev, ew unit vectors
ew in the direction (ϕ,θ)
ev in the zw plane, ev⊥ew
eu in the xy plane, eu× ev = ew

(Puvw)

A point P can be described in the coordinate systems as

P = xex + yey + zez = ueu + vev +wew

If the unit vectors ex, ey, ez are projected in the uvw coordinate system we obtain

P = x(a11eu + a21ev + a31ew) +
y(a12eu + a22ev + a32ew) +
z(a13eu + a23ev + a33ew)

= ueu + vev +wew

Rearranging terms and equating coefficients yields the change of coordinates: (x,y,z) → (u,v,w), which in matrix
notation reads

⎛
⎝

u
v
w
⎞
⎠
= ⎛
⎝

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞
⎠
⎛
⎝

x
y
z
⎞
⎠

Deleting the w component yields the projection coordinates in the uv plane, the projection plane. Substituting
the values for aij in terms of ϕ and θ yields the projection

(
u
v)

=
(

−sinϕ cosϕ 0
−sinϕcos θ − sinϕ sin θ cos θ)

⎛
⎝

x
y
z
⎞
⎠

Properties

because of the orthonormal coordinate systems the coefficients of the matrix A obey the relations

3

∑
k=1

aikajk = δij
{

0 if i ≠ j
1 if i = j

92 MAPS 42 Kees van der Laan

because a similar reasoning can be applied to transforming the uvw system into the xyz system, the inverse

matrix equals the transposed matrix, i.e. A−1=At.

Factorization of the projection matrix

(
1 0 0
0 1 0)

⎛
⎝

1 0 0
0 sin θ cos θ
0 −cos θ sin θ

⎞
⎠
⎛
⎝

−sinϕ cosϕ 0
−cosϕ −sinϕ 0
0 0 1

⎞
⎠
=
(

−sinϕ cosϕ 0
−cosϕ sinθ − sinϕ sinθ cos θ)

The left factor is rotation over θ − π
2 ; the other factor

⎛
⎝

−sinϕ cosϕ 0
−cosϕ −sinϕ 0
0 0 1

⎞
⎠
= −⎛

⎝

cos(π2 −ϕ) −sin(π2 −ϕ) 0
sin(π2 −ϕ) cos(π2 −ϕ) 0

0 0 1
⎞
⎠
⎛
⎝

1 0 0
0 1 0
0 0 −1

⎞
⎠

is a composition of inversion of the z coordinate and rotation over π
2 −ϕ.

Background: rotation over ϕ in xy plane The coordinates (x′,y′) of a point Pr θ(x,y) = (r cos θ,r sin θ) rotated over
ϕ read

(
x′
y′)

=
(
r cos(ϕ + θ)
r sin(ϕ + θ))

=
(
r(cosϕ cos θ − sinϕ sin θ)
r(cosϕ sin θ + sinϕcos θ))

=
(
cosϕ −sinϕ
sinϕ cosϕ)(

x
y)

Y

X

P

Pr

ϕ
θ

Lauwerier used the projection matrix
(
−39 52 0
−20 −15 60)

because he was after a pleasant projection, and his

μ-computer was not powerful enough to facilitate animation, even in BASIC.

Gabo’s Torsion VOORJAAR 2011 93

Appendix 1 Projection of curves
Invariance of Bézier cubics under projection

Observation A projection of a Bézier cubic can be obtained by projecting the begin point, the control points, and
the end point, and use these to build the (projected) spline.

Proof A Bézier cubic is characterized by four points z1,z2,z3,z4, the begin point, the control points and the end
point. A point on the curve, z1234 the third-order midpoint, is obtained by

z1
z2
z3
z4

→
z12 = 1

2 [z1, z2]
z23 = 1

2 [z2, z3]
z34 = 1

2 [z3, z4]
→
z123 = 1

2 [z12, z23]
z234 = 1

2 [z23, z34]
→ z1234 = 1

2 [z123,z234]

where 1
2 [z1,z2] means the midpoint of the line through z1 and z2.

To get the remaining points of the curve, for eample for the time variable t = 1
3 , determined by z1,z2,z3,z4

repeat the same construction on z1,z12,z123,z1234 and z1234,z234,z34,z4, ad infinitum (Courtesy The MF book
p13).

1

2

3

4

12

23

34

123 2341234

t = .5 1

2

3

4

12

23

34

123

234

1234

t = .3333

If we project the four initial points and construct the polynomial in the projection plane from the projected
points, the same curve will result as if we had projected each point of the original polynomial, because the con-
struction lines and their midpoints are invariant. qed.

Note the above shows that Knuth was already aware of what became known as the de Casteljau algorithm for
evaluation of B-cubics.

Projection of circles and ellipses
A point on a circle obeys

(x,y) = (r cos t,r sin t) t ∈ [0,2π] with x2 + y2 = r2 r the radius and (0,0) the centre.

The above circle is in PostScript constructed as path by 0 0 r 0 360 arc.
A point on an ellipse obeys

(x,y) = (a cos t,b sin t) t ∈ [0,2π] with
x
a
2
+ yb

2
= 1 with a and b half the axes.

From this we can understand that the an elliptical path can be obtained in PostScript by
a b scale 0 0 1 0 360 arc (Courtesy the Blue Book p55, MetaFontbook p123).

94 MAPS 42 Kees van der Laan

The projection (u,v) of a point (x, y, z) on a circle in 3D obeys

(u,v) = (−x sinϕ + ycosϕ, x cosϕ sinθ − y sinϕ sinθ + z cos θ)

which does not look like a composition of scaling and/or rotation, but actually it is, as communicated by Bogusław
Jackowski

Projection of a circle or ellipse can be done by sampling and connecting the sample points in the projection
plane by linetos, of course. But … what if we project B-cubic approximations? (I did not find time yet to go for
the approach suggested by Bogusław Jackowski: find the corresponding transformation matrix.)

Projection of approximated circles and ellipses Sampling of a circle for projection requires 360 samples, say,
dependent on the wanted accuracy. What if we approximate the circle by 4 suitably chosen B-cubics?

...
% .5 1 scale
0 0 100 0 360 arc 12 setlinewidth stroke %circle
4{-100 0 moveto -100 57 -57 100 0 100 curveto
90 rotate}repeat% 4 B-cubics approximation of circle

1 setgray 4 setlinewidth stroke
...

The white approximation of the black circle, respectively ellipse, is good enough, for my projection purposes.

Why Handles of size 57? This value results from the requirement that the circle with radius 1 should pass through
1
√2
(1,1), see below. It demonstrates that a user should have some knowledge of B-cubics.

Conclusion The projection of a circle, respectively ellipse, can be efficiently approximated by projection of 4
suitably chosen B-cubics. Instead of 360 sample points, say, only 12 points have to be projected. Not that relevant
formy toy problems— I did not notice the difference inmy LINEAR CONSTRUCTION IN SPACE No 1& 2— and nowadays
PCs, but … it is a factor 30, or so, more efficient, and no more cumbersome than the full sampling approach.

A nice example of
repeatedly drawing
projected circles
is the toroid impression

A professional starts where an amateur ends In the MetaFont book p263 Knuth approximates the quarter circle by

quartercircle=(right{up}..(right+up)/sqrt2..up{left}) scaled .5

which is better, because he attacks the point of the greatest deviation by requiring that the spline should pass
through 1

√2
(1,1), unscaled. For the full circle (with unit diameter) he splices rotated copies of the quarter circle.

In PostScript we don't have such a path construction operator.
The requirement that the B-cubic, see Bézier formula (1), specified by (1,0), (1,δ), (δ,1), (0,1) should pass for

t = .5 through 1
√2
(1,1) yields δ ≈ .573.

Gabo’s Torsion VOORJAAR 2011 95

Appendix 2 TORSION emulation in EPSF
Conceptually the program, the script in PostScript lingo, is a handful of lines.

/theta 20 def /phi 45 def /scalingfactor 4 def
.5 setgray 0.5 setlinewidth %settings
foot fill
lowertorsiontriangle eofill cap eofill
uppertorsiontriangle eofill cup eofill
stringing stroke% paint the stringed surfaces to the current page
0 setgray annotations
showpage %print the current page

preceded by %!PS-Adobe-3.0 EPSF-3.0, DSC Comments, the Prolog (with the inclusion of the library, the ad hoc
procedures cq data), and eventually followed by the Trailer part and closed by %%EOF.

ϕ = 30o θ = 20o

%!PS-Adobe-3.0 EPSF-3.0
%%Title: Emulation of Naum Gabo Torsion
%%Creator: Kees van der Laan, kisa1@xs4all.nl
%%CreationDate: Februari 2011
%%BoundingBox: -35 -10 35 65
%%BeginSetup
%%EndSetup
(C:\\PSlib\\PSlib.eps) run %used from lib: ptp , tOnSpline, s (scaling) and default scalingfactor 1
%Specification of data in 3D and projections in 2D, dependent on phi, theta and scaling
%lowertorsiontriangle data
/a0 { 0 -25 s 25 s ptp} def %outer points
/a1 { 0 -12.5 s 31.67 s ptp} def
/a2 { 0 12.5 s 31.67 s ptp} def
/a3 { 0 25 s 25 s ptp} def
/origin { 0 0 } def
/b0 { 0 -17.5 s 23.5 s ptp} def%inner points
/b1 { 0 -7.5 s 29.5 s ptp} def
/bm { 0 0 28 s ptp} def
/b2 { 0 7.5 s 29.5 s ptp} def
/b3 { 0 17.5 s 23.5 s ptp} def
/b4 { 0 15 s 13.5 s ptp} def
/b5 { 0 9 s 8.5 s ptp} def
/b6 { 0 0 5 s ptp} def
/b7 { 0 -9 s 8.5 s ptp} def
/b8 { 0 -15 s 13.5 s ptp} def
%uppertorsiontriangle, 90 rotated, upside down data
/ua0 { -25 s 0 35 s ptp} def%outer points
/ua1 { -12.5 s 0 28.34 s ptp} def
/ua2 { 12.5 s 0 28.34 s ptp} def
/ua3 { 25 s 0 35 s ptp} def
/top { 0 0 60 s ptp} def
/ub0 { -18.5 s 0 36.5 s ptp} def%inner points of uframe
/ub1 { -7.5 s 0 30.5 s ptp} def
/ub2 { 7.5 s 0 30.5 s ptp} def
/ub3 { 18.5 s 0 36.5 s ptp} def
/ub4 { 15 s 0 46.5 s ptp} def
/ub5 { 9 s 0 51.5 s ptp} def
/ub6 { 0 0 55 s ptp} def
/ub7 { -9 s 0 51.5 s ptp} def
/ub8 { -15 s 0 46.5 s ptp} def
/ubm { 0 0 32 s ptp} def
%cap outer
/t1 { 0 -2.5 s 60 s ptp} def
/t2 { 0 2.5 s 60 s ptp} def
/t3 { 0 6 s 50 s ptp} def
/t4 { 0 7 s 40 s ptp} def

96 MAPS 42 Kees van der Laan

/t5 { b2 } def
/t6 { b1 } def
/t7 { 0 -7 s 40 s ptp} def
/t8 { 0 -6 s 50 s ptp} def
%cap inner
/it1 { 0 -2.5 s 57.5 s ptp} def
/it2 { 0 2.5 s 57.5 s ptp} def
/it3 { 0 6 s 46 s ptp} def
/it4 { 0 6.5 s 36 s ptp} def
/it5 { 0 6.5 s 30 s ptp} def
/it6 { 0 -6.5 s 30 s ptp} def
/it7 { 0 -6.5 s 36 s ptp} def
/it8 { 0 -6 s 46 s ptp} def
%cup outer; mirrored vertically around z=30 and rotated
/u1 { -2.5 s 0 0 ptp} def
/u2 { 2.5 s 0 0 ptp} def
/u3 { 6 s 0 10 s ptp} def
/u4 { 7 s 0 20 s ptp} def
/u5 { ub2 } def
/u6 { ub1 } def
/u7 { -7 s 0 20 s ptp} def
/u8 { -6 s 0 10 s ptp} def
%cup inner
/iu1 { -2.5 s 0 2.5 s ptp} def
/iu2 { 2.5 s 0 2.5 s ptp} def
/iu3 { 6 s 0 14 s ptp} def
/iu4 { 6.5 s 0 24 s ptp} def
/iu5 { 6.5 s 0 30 s ptp} def
/iu6 { -6.5 s 0 30 s ptp} def
/iu7 { -6.5 s 0 24 s ptp} def
/iu8 { -6 s 0 14 s ptp} def
%frame, formally in x- and y-components of the points
/lowertorsiontriangle{origin moveto %outer path

a0 lineto
a1 a2 a3 curveto closepath
b6 moveto %inner path
b7 b8 b0 curveto
b1 b2 b3 curveto
b4 b5 b6 curveto closepath} def

/uppertorsiontriangle{top moveto %outer path
ua0 lineto
ua1 ua2 ua3 curveto closepath
ub6 moveto %inner path
ub7 ub8 ub0 curveto
ub1 ub2 ub3 curveto
ub4 ub5 ub6 curveto closepath} def

/foot{-7.5 s 0 0 ptp moveto
0 -7.5 s 0 ptp lineto

7.5 s 0 0 ptp lineto
0 7.5 s 0 ptp lineto

closepath} def
/cap{ t1 moveto t2 lineto %outer

t3 t4 b2 curveto
b1 lineto
t7 t8 t1 curveto closepath

it1 moveto it2 lineto %inner
it3 it4 it5 curveto
it6 lineto
it7 it8 it1 curveto closepath

}def
/cup{ u1 moveto u2 lineto %outer

u3 u4 u5 curveto
u6 lineto
u7 u8 u1 curveto closepath
iu1 moveto iu2 lineto %inner
iu3 iu4 iu5 curveto
iu6 lineto

Gabo’s Torsion VOORJAAR 2011 97

iu7 iu8 iu1 curveto closepath
}def
%build the paths for stringed surfaces
/dostringing{ 0 0.05 1.01{/t exch def

t b0 b8 b7 b6 tOnSpline moveto
t 2 div ub0 ub1 ub2 ub3 tOnSpline lineto

%
t 2 div b0 b1 b2 b3 tOnSpline moveto
t ub3 ub4 ub5 ub6 tOnSpline lineto

%
t b3 b4 b5 b6 tOnSpline moveto
t 2 div ub3 ub2 ub1 ub0 tOnSpline lineto

%
t 2 div .5 add b0 b1 b2 b3 tOnSpline moveto
t ub6 ub7 ub8 ub0 tOnSpline lineto

%cap
t it1 it8 it7 it6 tOnSpline moveto
t it2 it3 it4 it5 tOnSpline lineto

%cup
t iu1 iu8 iu7 iu6 tOnSpline moveto
t iu2 iu3 iu4 iu5 tOnSpline lineto

}for} bind def %end dostringing
%
/annotations{-32 -25 moveto
S12pt setfont (j) show (=) H12pt setfont show phi () cvs show %note the use of phi for its value

gsave 0 5 rmoveto (o) H7pt setfont show grestore
8 0 rmoveto
S12pt setfont (q) show (=) H12pt setfont show theta () cvs show %note the use of theta for the value

0 5 rmoveto (o) H7pt setfont show} def
%%EndProlog
%
%---Program--- the script
%
/theta 20 def /phi 45 def /scalingfactor 4 def
.5 setgray 0.5 setlinewidth %settings
foot fill
lowertorsiontriangle eofill cap eofill
uppertorsiontriangle eofill cup eofill
dostringing stroke% paint the stringed surfaces to the current page
0 setgray annotations
showpage
%%EOF

The annotations end all the emulation programs and are not repeated in the other listings, though they differ a
little.

98 MAPS 42 Kees van der Laan

Appendix 3 Linear Construction in Space No 1 emulation in EPSF
In one afternoon I rewrote the following program as emulation of LINEAR CONSTRUC-
TION IN SPACE No 1 from scratch in PostScript as EPSF, with subscripting conventions
à la MetaFont for the points which determine the frame: the suffix f is a mnemonic
for in front of the yz plane, the suffix b for behind the yz plane. The interior ellipse,
which I neglected previously in the MetaFont code, has been accounted for (Gabo
needed the interior slab for solidity. The elliptic hole for beauty?).

The program comprises 85 lines (roughly the same as the older .mp). The .eps
result from the 1996 MP source takes 233 lines and is less intelligible.
The listing of the code is in the spirit of the Blue Book: the illustration along with the
commented code. For the reader's convenience I have also included the frame with
the data points, visually.

y

z

.a0

.a1

.a2

.a3

.a4

.a5

.a6

.a7

.
a8

.
a9

.a10 .a11

ϕ = 0o

x

z

.a0b

.a1b

.a2b

.a3b.a3f

.a0f

.a1f

.a2f

ϕ = 90o

ϕ = 30o θ = 5o

%!PS-Adobe-3.0 EPSF-3.0
%%Title: Emulation of Naum Gabo Linear Construction in Space No 1
%%BoundingBox: -130 -135 130 135
%%BeginSetup
%%EndSetup
%%Creator: Kees van der Laan
%%CreationDate: Februari 2011
%%DocumentFonts: Helvetica System
%%EndComments
(C:\\PSlib\\PSlib.eps) run
/reversevideo{-130 -135 260 270 rectfill}def%Mimics the BoundingBox
/origin { 0 0 } def
/a0f { .1 s -2 s -2 s ptp }def%y constant
/a1f { .6 s -2 s -1 s ptp }def
/a2f { .6 s -2 s 1 s ptp }def
/a3f { .2 s -2 s 2 s ptp }def

/a4f { .2 s 2 s -2 s ptp }def%y constant
/a5f { .6 s 2 s -1 s ptp }def
/a6f { .6 s 2 s 1 s ptp }def
/a7f { .2 s 2 s 2 s ptp }def

/a8f { .6 s -1 s -2 s ptp }def%z constant
/a9f { .6 s 1 s -2 s ptp }def

/a10f { .6 s -1 s 2 s ptp }def%z constant
/a11f { .6 s 1 s 2 s ptp }def

/a0b { -.2 s -2 s -2 s ptp }def%y constant
/a1b { -.6 s -2 s -1 s ptp }def
/a2b { -.7 s -2 s 1 s ptp }def
/a3b { -.2 s -2 s 2 s ptp }def

/a4b { -.2 s 2 s -2 s ptp }def%y constant
/a5b { -.6 s 2 s -1 s ptp }def
/a6b { -.6 s 2 s 1 s ptp }def
/a7b { -.2 s 2 s 2 s ptp }def

/a8b { -.6 s -1 s -2 s ptp }def%z constant
/a9b { -.6 s 1 s -2 s ptp }def

/a10b { -.6 s -1 s 2 s ptp }def%z constant
/a11b { -.6 s 1 s 2 s ptp }def
%
/frame{
a0f moveto a1f a2f a3f curveto

a10f a11f a7f curveto
a6f a5f a4f curveto
a9f a8f a0f curveto closepath

Gabo’s Torsion VOORJAAR 2011 99

a0b moveto a1b a2b a3b curveto
a10b a11b a7b curveto
a6b a5b a4b curveto
a9b a8b a0b curveto closepath

a0f moveto a0b lineto
a3f moveto a3b lineto
a4f moveto a4b lineto
a7f moveto a7b lineto
}def
%
/approxellipsestroke{gsave % project approximated ellipse (by 4 B-cubics)
-45 rotate
.6 1.2 scale%kind of ellips
/a0 {0 -2 s 0 ptp} def
/a1 {0 -2 s 1.1 s ptp} def
/a2 {0 -1.1 s 2 s ptp} def
/a3 {0 0 2 s ptp} def
/a4 {0 1.1 s 2 s ptp} def
/a5 {0 2 s 1.1 s ptp} def
/a6 {0 2 s 0 ptp} def
/a7 {0 2 s -1.1 s ptp} def
/a8 {0 1.1 s -2 s ptp} def
/a9 {0 0 -2 s ptp} def
/a10{0 -1.1 s -2 s ptp} def
/a11{0 -2 s -1.1 s ptp} def
a0 moveto a1 a2 a3 curveto

a4 a5 a6 curveto
a7 a8 a9 curveto
a10 a11 a0 curveto
closepath

stroke grestore} def

%
/dostringing{.02 .02 .5001{/t exch def
t a0f a1f a2f a3f tOnSpline moveto
2 t mul a3b a10b a11b a7b tOnSpline lineto% note the cross-over
2 t mul a3f a10f a11f a7f tOnSpline lineto
t a0b a1b a2b a3b tOnSpline lineto
closepath
t a7f a6f a5f a4f tOnSpline moveto
2 t mul a4b a9b a8b a0b tOnSpline lineto
2 t mul a4f a9b a8f a0f tOnSpline lineto
t a7b a6b a5b a4b tOnSpline lineto
closepath}for}bind def %end dostringing
%%EndProlog
%
%---Program--- the script
%
/phi 30 def /theta 5 def /scalingfactor 50 def
reversevideo 1 setgray %white further on
3 setlinewidth frame stroke
2 setlinewidth approxellipsestroke
.5 setlinewidth dostringing stroke
showpage
%%EOF

Gabo has made variations of the LINEAR CONSTRUCTION No 1, where the sides of the frame are varied.

100 MAPS 42 Kees van der Laan

Appendix 4 Linear Construction in Space No 2 emulation in EPSF
A MetaFont program has been published in MAPS in 1996, where use
is made of path p[], dir, down, left, hide, point ... of, for ... end-
for, xpart, ypart, drawoptions(withcolor white), draw, fill ... re-
verse ... cycle withcolor black. Still a nice program after so many
years. I paid attention this time also to the elliptic cut outs in the perspex
frame in the yz slab as well as in the xz slab.

I had difficulties in passing along the circumference of the frame in
equidistant steps: after flattenpath {}{}{}{}pathforall did not give me an
equidistant set of points on the stack, because of too much change in cur-
vature.

Moreover, MetaFont/MetaPost's part of the frame path

p1:= (0, 3size){right}..{down}(1.1size, 1.75size)..
(.175size, .375size)..{left} origin;

I could not precisely transcribe into PostScript. How to mimic the direc-
tions left, down and ilks? Of course in the direction of the tangents of
the curve at the point, but how far, taking into account scaling? Further-
more, in PostScript you can't apparently supply a point without the con-
trol points for drawing a B-cubic through the point.

The Frame of the object consists of a BarbaPapa-like shape in perspex, with an elliptic cutout, intersected with a
copy rotated over 90∘ along the vertical axis.

y

z

.a1

.a2

.a3

.a4

.a5

.a6

.a7

.a8.b1

.b2

.b3

.b4

.b5

.b6

.b7

.b8

%!PS-Adobe-3.0 EPSF-3.0
%%Title: Linear Construction in Space No 2, Frame in yz plane
%%Creator: Kees van der Laan, kisa1@xs4all.nl
%%CreationDate: Februari 2011
%%BoundingBox: -115 -15 125 355
%%BeginSetup
%%EndSetup
%%DocumentFonts: Helvetica
%%Pages: 0
%%EndComments
(C:\\PSlib\\Pslib.eps) run % used: origin arrow dotsandnames s H12pt
/y-axis { origin 1 s 0 .1 5 10 arrow } def
/z-axis { origin 0 3.5 s .1 5 10 arrow } def
1 s 0 moveto -5 -12 rmoveto (y) H10pt setfont show

0 3.5 s moveto 7 -10 rmoveto (z) show
%yz plane
/a0 {0 0 } def
/a1 { .1 s 0 } def
/a2 { .175 s .15 s } def
/a3 { .175 s .375 s } def
/a4 { .175 s 1 s } def
/a5 { 1.1 s 1.35 s } def
/a6 { 1.1 s 2 s } def
/a7 { 1.1 s 2.75 s } def
/a8 { .75 s 3 s } def
/a9 { 0 3 s } def
%mirrored and upside down, -yz plane
/b0 { 0 3 s } def
/b1 { -.1 s 3 s } def
/b2 { -.175 s 2.85 s } def
/b3 { -.175 s 2.625 s } def
/b4 { -.175 s 2 s } def

Gabo’s Torsion VOORJAAR 2011 101

/b5 {-1.1 s 1.65 s } def
/b6 {-1.1 s 1 s } def
/b7 {-1.1 s .25 s } def
/b8 {-.75 s 0 s } def
/b9 { 0 0 } def
%
/frame{
a0 moveto
a1 a2 a3 curveto
a4 a5 a6 curveto
a7 a8 a9 curveto
%b0 moveto
b1 b2 b3 curveto
b4 b5 b6 curveto
b7 b8 b9 curveto
closepath} def
%
/ellipse{gsave

0 1.5 s translate
.3 1.1 scale
0 0 1 s 0 360 arc stroke

grestore}def
%%EndProlog
%
%Program
%
/scalingfactor 100 def
frame ellipse stroke
[(a1) (a2) (a3) (a4) (a5) (a6) (a7) (a8)
(b1) (b2) (b3) (b4) (b5) (b6) (b7) (b8)] dotsandnames
y-axis z-axis .6 setgray stroke
showpage

Stringing is more difficult.
The origin is chosen at the foot of the object. The (unprojected) circumference in the first quadrant of the yz

plane consists of three B-cubics, with varying curvature. Roughly equidistant points are sampled and stored on
the stack. Each point is and projected and transformed into the x−z quadrant, i.e. the plane through the negative x
axis and the positive z axis, and also projected. Both projected points are connected by a line (wire). Schematically,
for each point on the stack

(0, y, z)ptp<-string->(−y, 0, size − z)ptp with size = 3s,s = 100.

This is repeated for the y−x+ quadrant, and programmed with the sample points on the stack (too low-levelish,
yes I know, but … interesting; for the other quadrants the sample values on the stack are copied into an array,
for easy multiple access, not difficult at all).

%!PS-Adobe-3.0 EPSF-3.0
%%Title: Emulation of Naum Gabo Linear Construction in Space No 2
%%Creator: Kees van der Laan, kisa1@xs4all.nl
%%CreationDate: Februari 2011
%%BoundingBox: -125 -30 125 355
%%ProgramFonts: Helvetica
%%BeginSetup
%%EndSetup
%%Pages: 0
%%EndComments
(C:\\PSlib\\Pslib.eps) run %used: origin dotsandnames s ptp tOnSpline
/reversevideo{-125 -30 250 385 rectfill}def%Mimics BoundingBox
/rope{0 355 moveto

0 0 0 3 s ptp 5 add 5 90 450 arc}def %ring
%%EndProlog
%In yz plane data points for the frame
/a0 {0 0 0 ptp} def

102 MAPS 42 Kees van der Laan

ϕ = 30o θ = 10o

/a1 {0 .1 s 0 ptp} def
/a2 {0 .175 s .15 s ptp} def
/a3 {0 .175 s .375 s ptp} def
/a4 {0 .175 s 1 s ptp} def
/a5 {0 1.1 s 1.35 s ptp} def
/a6 {0 1.1 s 2 s ptp} def
/a7 {0 1.1 s 2.75 s ptp} def
/a8 {0 .75 s 3 s ptp} def
/a9 {0 0 3 s ptp} def
%
%Roughly Equidistant Sampling of frame part in yz plane, with phi=0 and theta=0
/sampleframe{/phi 0 def /theta 0 def %results on the operand stack
0 .175 .95{ a0 a1 a2 a3 tOnSpline }for
0.02 .028 .99{ a3 a4 a5 a6 tOnSpline }for
0 .025 1 { a6 a7 a8 a9 tOnSpline }for
}def
%rotated -xz plane data points for frame
/a0r { 0 0 0 ptp} def
/a1r { .1 s 0 0 ptp} def
/a2r { .175 s 0 .15 s ptp} def
/a3r { .175 s 0 .375 s ptp} def
/a4r { .175 s 0 1 s ptp} def
/a5r { 1.1 s 0 1.35 s ptp} def
/a6r { 1.1 s 0 2 s ptp} def
/a7r { 1.1 s 0 2.75 s ptp} def
/a8r { .75 s 0 3 s ptp} def
/a9r { 0 0 3 s ptp} def
%mirrored and upside down, -yz plane data points for frame
/b0 {0 0 3 s ptp} def
/b1 {0 -.1 s 3 s ptp} def
/b2 {0 -.175 s 2.85 s ptp} def
/b3 {0 -.175 s 2.625 s ptp} def
/b4 {0 -.175 s 2 s ptp} def
/b5 {0 -1.1 s 1.65 s ptp} def
/b6 {0 -1.1 s 1 s ptp} def
/b7 {0 -1.1 s .25 s ptp} def
/b8 {0 -.75 s 0 ptp} def
/b9 {0 0 0 ptp} def
%rotated -xz plane data points for frame
/b0r { 0 0 3 s ptp} def
/b1r { -.1 s 0 3 s ptp} def
/b2r { -.175 s 0 2.85 s ptp} def
/b3r { -.175 s 0 2.625 s ptp} def
/b4r { -.175 s 0 2 s ptp} def
/b5r {-1.1 s 0 1.65 s ptp} def
/b6r {-1.1 s 0 1 s ptp} def
/b7r {-1.1 s 0 .25 s ptp} def
/b8r { -.75 s 0 0 ptp} def
/b9r { 0 0 0 ptp} def
%
/frame{%executed with user projection angles
a0 moveto
a1 a2 a3 curveto
a4 a5 a6 curveto
a7 a8 a9 curveto
a0r moveto
a1r a2r a3r curveto
a4r a5r a6r curveto
a7r a8r a9r curveto
b0 moveto
b1 b2 b3 curveto
b4 b5 b6 curveto
b7 b8 b9 curveto
b0r moveto
b1r b2r b3r curveto
b4r b5r b6r curveto

Gabo’s Torsion VOORJAAR 2011 103

b7r b8r b9r curveto
closepath
}def %end frame
%
/dostringing{count %83 number of samples x and y on the stack
/n exch def
n copy %for stringing 2 quadrants
%Stringing +yz<->-xz
n 2 div cvi {2 copy % y z y z on stack

0 3 1 roll % y z 0 y z
ptp % y z projected point
moveto % y z
exch neg exch% -y z
3 s sub neg % -y 3s-z
0 exch % -y 0 3s-z
ptp % projected pair
lineto
}repeat

%Stringing +xz<->-yz
n 2 div cvi {2 copy % y z y z on stack

0 2 1 roll % y z y 0 z
ptp % y z projected point
moveto % y z
0 3 1 roll % 0 y z
exch neg exch% 0 -y z
3 s sub neg % 0 -y 3s-z
ptp % projected pair
lineto
}repeat

%other quadrants
%stringing +xZ<->+yz
/np1 n 1 add def%n-1 last element of samples array
/cnt 0 def%first element of samples array
n 2 div cvi {/cnt cnt 2 add def
% in +yZ plane
0 %x=0 inserted
samples n cnt sub get %y value from samples array
samples np1 cnt sub get %z value
ptp moveto
% rotate to +xz plane
samples cnt 2 sub get %y value from samples array --> x
0 %y=0 inserted
samples cnt 1 sub get %z value
ptp lineto
}repeat
%stringing -xz<->-yz
/np1 n 1 add def%n-1 last element of samples array
/cnt 0 def%first element of samples array
n 2 div cvi {
/cnt cnt 2 add def
% in +yZ plane
0 %x=0 inserted
samples n cnt sub get neg %y value from samples array
samples np1 cnt sub get 3 s sub neg %mirrored z value
ptp moveto
% rotate to +xz plane
samples cnt 2 sub get neg %y value from samples array -> x
0 %y=0 inserted
samples cnt 1 sub get 3 s sub neg %mirrored z value
ptp lineto
}repeat
} bind def %end dostringing
%
/yz-approxellipseNo2stroke{gsave%implicit in yz plane, phi, theta must be given
0 1.5 s translate
.3 1.1 scale%kind of ellipse
/a0 {0 -1 s 0 ptp} def

104 MAPS 42 Kees van der Laan

/a1 {0 -1 s .55 s ptp} def
/a2 {0 -.55 s 1 s ptp} def
/a3 {0 0 1 s ptp} def
/a4 {0 .55 s 1 s ptp} def
/a5 {0 1 s .55 s ptp} def
/a6 {0 1 s 0 ptp} def
/a7 {0 1 s -.55 s ptp} def
/a8 {0 .55 s -1 s ptp} def
/a9 {0 0 -1 s ptp} def
/a10{0 -.55 s -1 s ptp} def
/a11{0 -1 s -.55 s ptp} def
a0 moveto a1 a2 a3 curveto

a4 a5 a6 curveto
a7 a8 a9 curveto
a10 a11 a0 curveto closepath stroke

grestore} def %end yz-approxellipseNo2stroke
%
/xz-approxellipseNo2stroke{gsave%implicit in xz plane, phi, theta must be given
0 1.5 s translate
.3 1.1 scale%kind of ellipse
/a0 {-1 s 0 0 ptp} def
/a1 {-1 s 0 .55 s ptp} def
/a2 {-.55 s 0 1 s ptp} def
/a3 { 0 0 1 s ptp} def
/a4 { .55 s 0 1 s ptp} def
/a5 { 1 s 0 .55 s ptp} def
/a6 { 1 s 0 0 ptp} def
/a7 { 1 s 0 -.55 s ptp} def
/a8 { .55 s 0 -1 s ptp} def
/a9 { 0 0 -1 s ptp} def
/a10{-.55 s 0 -1 s ptp} def
/a11{-1 s 0 -.55 s ptp} def
a0 moveto a1 a2 a3 curveto

a4 a5 a6 curveto
a7 a8 a9 curveto
a10 a11 a0 curveto closepath stroke

grestore} def %end xz-approxellipseNo2stroke
%
%---Program--- the script
%
/scalingfactor 100 def
reversevideo 1 setgray %white lines, further on
sampleframe %with phi=theta=0!
/phi 30 def /theta 10 def% viewing angle
.5 setlinewidth dostringing stroke
3 setlinewidth frame stroke
2 setlinewidth yz-approxellipseNo2stroke

xz-approxellipseNo2stroke
rope stroke

showpage
%%EOF %Of my most complete Linear Construction in Space No 2 emulation

ϕ = 20o θ = 10o

The .eps result fromMetaPost comprises 800+ lines and is, alas, not intelligible. I can't even recognize the created
path.

Note the flexible way of specifying a path in MetaFont/MetaPost. In PostScript we can just construct piecewise
B-cubics. A general curve is approximated after projection of the sample points by lineto's. Of course we can
write procedures of our own, to imitate MetaPost's flexibility. Another difference with respect to `hidden lines' is
that MetaPost has an undraw macro while in PostScript we must explicitly draw in the colour of the background.

Gabo has made LINEAR CONSTRUCTION IN SPACE No 2 in 1949, 1958, 1962-64, 1972-73, and 1976.
My 1996, simplified, pseudo-animated version was on my WWW of old, and is included below. It does not

show all lines; nevertheless nice in its simplicity.

Gabo’s Torsion VOORJAAR 2011 105

Variations
Gabo has made variations among others based on an octahedral frame. I made a variation with a twisted lemnis-
cate frame —lemniscate in polar coordinates r2 = 2a2 cos 2θ — in an hour or two. The octahedral variant would
take another hour to emulate.

ϕ = 30o θ = 20o

The architectural variation, he never realized, was a commission for the Esso Company NY: above each of 2
revolving entrance doors a Linear Construction No 2 revolving at a slower speed than the doors.

The wall between was a relief in itself: a set of perspective lines that seem to break the wall into a deeper space,
and within these lines, a large construction of spiralling arcs around a vertical axis.

106 MAPS 42 Kees van der Laan

Appendix 5 Emulation of a Spheric Theme in EPSF
Spheric Themes demonstrate another way of how Gabo constructed (the idea of) surfaces: by planes orthogonal
to the surface.

He called it the stereometric method of representing surfaces.

Stereometry is a branch of mathematics concerned with the descrip-
tion of 3D objects and calculations related to these. For Gabo a cube
is not represented by its 6 surfaces, but by top, bottom, and the inter-
secting diagonal planes, making the inside visible

Famous are his constructed head series, such as the earlier shown Head in a Corner Niche, and the Head ... on
the book cover. In the Spheric Theme we are about to emulate both ways of representing surfaces: stereometric
and stringed surfaces are integrated in one object.

Gabo invented how to model his Spheric Theme curves:

`The basic form was made by taking two identical flat pierced circles or broad
rings and making a single cut in each along the line of a radius. The two discs
are bent in a serpentine curve and butt-jointed to each other at both ends. The
resulting figure fits exactly into a sphere and the outer edges of the discs form
the interlocking curves like those that divide the pieces of felt covering the
tennis ball.'

Frame
The outer circumference of the frame is the curve on the tennis ball, a little deformed. The four parts of the tennis
ball curve are given by the formulas

{(x, y, z)|(1, sin t, cos t)}
{(x, y, z)|(−1, sin t, cos t)}
{(x, y, z)|(− sin t, 1,− cos t)}
{(x, y, z)|(−1,− sin t,− cos t)}

t ∈ (−π2 ,
π
2)

I modified the tennis ball curve by the deformation 1 → (1−d) sin2 t + d, d = .25, see figure below, which comes
close to Gabo's. For the inner circumference I took the outer scaled by a factor 3.

Gabo’s Torsion VOORJAAR 2011 107

Curve Tennis ball ϕ = θ = 10o Mod: 1 -> .75sin2 (t)+.25, ϕ = θ = 10o

ϕ = 0o θ = 0o

ϕ = 0o θ = 10o

ϕ = 90o θ = 10o

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: -90 -90 90 90
%%BeginSetup
%%EndSetup
%%Title: Emulation of Naum Gabo Spheric Theme
%%Creator: Kees van der laan, kisa1@xs4all,nl.
%%CreationDate: feb 2011
%%DocumentFonts: Helvetica Symbol
%%EndComments
(C:\\PSlib\\PSlib.eps) run %used: s ptp
%
/reversevideo{-90 dup 180 dup rectfill}def %Mimics the BoundingBox
%
/sphericthemestroke{%
%%%part upper front x>0 {t|(ft, sin t, -cos t)}, f(-90)=1
1 s -1 s 0 ptp moveto
-89 1 90{/t exch def
ft s t sin s t cos s neg ptp lineto
}for stroke
%%%part upper back x<0 {t|(-ft, sin t, -cos t)}
-1 s -1 s 0 ptp moveto
-89 1 90{/t exch def
ft neg s t sin s t cos s neg ptp lineto
}for stroke
%%%part right y>0 {t|(-sin t, ft, cos t)}
1 s 1 s 0 ptp moveto
-89 1 90{/t exch def
t sin neg s ft s t cos s ptp lineto
}for stroke
%%%part left y<0 {t|(-sin t, -ft, cos t)}
1 s -1 s 0 ptp moveto
-89 1 90{/t exch def
t sin neg s ft neg s t cos s ptp lineto
}for stroke
} bind def %end sphericthemestroke
%
/dostringingstroke
{%%%part upper front x>0 {t|(ft, sin t, -cos t)}, f(-90)=1
/v {.333 mul} def /step 2 def% implies number of strings
-90 step 90{/t exch def
ft s t sin s t cos s neg ptp moveto
ft s v t sin s v t cos s v neg ptp lineto
}for
stroke
%%%part upper back x<0 {t|(-ft, sin t, -cos t)}
-90 step 90{/t exch def
ft neg s t sin s t cos s neg ptp moveto
ft neg s v t sin s v t cos s v neg ptp lineto
}for
stroke
%%%part right y>0 {t|(-sin t, ft, cos t)}

108 MAPS 42 Kees van der Laan

-90 step 90{/t exch def
t sin neg s ft s t cos s ptp moveto
t sin neg s v ft s v t cos s v ptp lineto
}for
stroke
%%%part left y<0 {t|(-sin t, -ft, cos t)}
-90 step 90{/t exch def
t sin neg s ft neg s t cos s ptp moveto
t sin neg s v ft neg s v t cos s v ptp lineto
}for
stroke
} bind def %end dostringingstroke
%%EndProlog
%
%---Program--- the script
%
reversevideo 1 setgray /d .25 def
/ft { 1 //d sub t sin dup mul mul //d add} def
/phi 90 def /theta 10 def
/scalingfactor 25 def sphericthemestroke
/scalingfactor 75 def sphericthemestroke
.1 setlinewidth dostringingstroke
showpage
%%EOF

ϕ = 10o θ = 10o

Appendix 6 Linear Construction in Space: Suspended
One of Gabo's favorites, which he used to display on retrospective exhibitions.

Frame The frame consists of 2 identical, `triangular' slabs of clear plastic orthogonal (rotated and mirrored) to
each other, suspended on a metal arc with a wooden base.

What motivated Gabo to create just these triangular shapes? What were the restrictions? Did the balance of
the object play a role, in choosing the rotation symmetry axes? I don't think so, just his feeling for beauty, I guess.
The unbalance creates tension.

Gabo’s Torsion VOORJAAR 2011 109

.a1

.a2

.a3

.a4

.a5

.a6
.a7

.o

.a0

.a1r

.a2r

.a3r

.a4r

.a5r

.a6r.a7r

.a0r

.o

ϕ = 90o θ = 0o

Left the frame part in the yz plane, right the (rotated and mirrored) frame part in the xz plane. The frame part in
the yz plane is realized by 2 splines: a0 moveto a1 a2 a3 curveto a5 a5 a7 curveto closepath.

For the first B-cubic the data points are a0,a3 with control points a1,a2. For the second B-cubic the data points
are a3,a7 with control points a5,a6; not critical. The axis of rotation is the line from a4 to a7. The suffix r denotes
the mirrored and rotated triangle points.

ϕ = 10o θ = 0o

I did not include the program, because the rotation required details, which I expect too boring for the casual
reader.

Appendix 7 Torsion (interactive) MetaFont program of old
For the MetaFont aficionados: the program below still works on my PowerMac. Not so difficult to adapt for those
fluent in MetaPost, I presume.

%Gabo's torsion example. December 1995, CGL
%
tracingstats:=proofing:=1;screenstrokes;
"Torsion from different viewpoints";
string yorn;
message "Gabo's Torsion.";
message "Do you wish simplest variant? (y or n):";
yorn:= readstring;
size=50;
def openit = openwindow currentwindow

from origin to (screen_rows,screen_cols) at (-size,300)enddef;
pickup pencircle scaled .005pt;
pair aux[];
path po[], pi[];
if yorn="n": d=.1size

else: d=0 fi;
r=.2size;
for b= 20:%15step10until45:
for a= 0 step30until90:

110 MAPS 42 Kees van der Laan

currentpicture:=currentpicture shifted (2size,0);
%The following def must be included or a, b, must be supplied as arguments.
def ptp(expr x,y,z)=(-x*cosd a +y*sind a, -x*sind a *sind b -y*cosd a *sind
b+ z*cosd b)enddef;
po1:=ptp(0,-size,2d)--ptp(0,0,size+2d)--ptp(0,size,2d)&

ptp(0, size,2d)..ptp(0,0,0)..ptp(0,-size,2d)..cycle;
aux0:=.5[ptp(0,-size,2d),ptp(0,0,size+2d)];
aux1:=.5[ptp(0,size,2d),ptp(0,0,size+2d)];
pi1:=ptp(0,-size+2.5d,2.5d)..controls aux0..

ptp(0,0,size-d)..controls aux1..
ptp(0,size-2.5d,2.5d)...
ptp(0, size-2.5d,2.5d)...ptp(0,0,d)...ptp(0,-size+2.5d,2.5d)..cycle;

po2:=ptp(-size,0,-2d)--ptp(0,0,-size-2d)--ptp(size,0,-2d)&
ptp(size,0,-2d)..ptp(0,0,0)..ptp(-size,0,-2d)..cycle;

aux3:=.5[ptp(-size,0,-2d),ptp(0,0,-size-2d)];
aux4:=.5[ptp(size,0,-2d),ptp(0,0,-size-2d)];
pi2:=ptp(-size+2.5d,0,-2.5d)..controls aux3..

ptp(0,0,-size+d)..controls aux4..
ptp(size-2.5d,0,-2.5d)...
ptp(size-2.5d,0,-2.5d)...ptp(0,0,-d)...
ptp(-size+2.5d,0,-2.5d)..cycle;

%Foot
po3:=ptp(r, 0,-size-2d)..ptp(.706r, -.706r,-size-2d)..

ptp(0,-r,-size-2d)..ptp(-.706r, -.706r,-size-2d)..
ptp(-r,0,-size-2d)..ptp(-.706r, .706r,-size-2d)..
ptp(0,r,-size-2d)..ptp(.706r, .706r,-size-2d)..cycle;

%
if yorn="n":fill po1; unfill pi1;fill po2; unfill pi2

;draw ptp(0,0,-size+d)--ptp(0,0,-size-2d)
;draw ptp(0,0,size-d)--ptp(0,0,size+2d)

else:draw po1; draw po2; draw pi1; draw pi2 fi;
fill po3;
for k=0 upto 20:
draw point .1k of pi1--point 5-.1k of pi2;
endfor
for k=0 upto 20:
draw point 3+.1k of pi1--point 2-.1k of pi2;
endfor
showit;
endfor
endfor
end

