
Hans Hagen VOORJAAR 2013 3

Does TEX have a future

Introduction
Making the transition from ConTEXt MkII to MkIV
took a lot of time. In the process all kinds of
code were evaluated, improved and, occasionally,
removed. To some extent, the frozen state of MkII
reflects the requirements of automated typesetting
of the past two decades. Today, LuaTEX is advancing
automated typesetting beyond what was previously
possible. But do we really need it? In this article I will
describe several issues we faced while rewriting the
code, the choices, and compromises, we made. I will
not attempt to answer the question whether TEX has
a future, but merely offer you my own observations
and thoughts.1

Media
It is not hard to extrapolate the advance of e-books,
and the demise, in some countries, of paper books.
Less demand for printed books means less need for
typesetting. Of course, real-time rendering is also
typesetting. But since there is no one format compat-
ible with all e-book readers, publishers are unlikely
to producemultiple device-specific versions. Towhat
extent is a shift in the way documents are encoded
important for TEX development? And as publishers
cut quality and costs in an attempt to stay alive, who
will want high quality output? Personally, I think
more and more authors will turn to self-publishing.
In this respect we might see a revival of TEX and
more complex typesetting. It all depends on how
important a particular look and feel is, andwhat price
you are willing to pay to achieve it. Nevertheless, we
cannot deny the fact that times are changing, and
that technological developments will influence how
TEX-like systems evolve.

From the start ConTEXt could produce very com-
plex interactive documents. But apart from its in-
clusion in several projects, this functionality has
never been in any serious demand by the publishing
world. One reason for this is that compared to the
printed product, interactivity is seen as an additional
‘free’ feature. As we enter the age of electronic
books, we see that the features commonly used are

only a portion of those available. Nevertheless, all
this accumulated functionality is available in MkIV.
When a typesetter has an eye for quality, interesting
typographic and navigational details will appear.

Application
It is quite usual to find ConTEXt hidden in a larger
publication workflow. In such cases the input comes
from a database or some online editing environment.
The layout, and therefore the typesetting, are often
relatively simple. A predefined style tells ConTEXt
how to transform input to output. The input may be
predictable, but the user still has significant influence
on the workflow. In this situation, what sets MkIV
apart is its ability to analyze and manipulate data
sets. MkII can also deal with data, but with Lua on
board, MkIV solutions seem more natural. MkII is
sufficient for traditional typesetting situations, but
MkII is a dead end compared to MkIV.

We often talk of TEX users and user groups, but the
more abstract term usage might be a better indicator
of how much TEX is used. The number of TEX users
is not growing, but TEX usage might be on the rise.
Perhaps counting the number of pages produced
with TEX is a better indicator of how prevalent TEX
is rather than counting the number of installed TEX
systems.

Coding
Another observation is that ConTEXt users often pro-
ducemore advanced and demanding documents than
I do as part ofmywork. Forme, the biggest advantage
of MkIV is its support for OpenType. Fonts are easier
to install, and all those encodings disappear. Another
advantage is that MkIV has a flexible xml processor
built in, which can save you time in solving problems.
Of course we continue to use and improve basic
rendering capabilities, but we often have to simplify
solutions when designers fail to see the possibilities
of automated typesetting. Stability is often cited as
the reason to use older combinations of TEX engines
andmacro packages. Ease of use and improvedmain-
tenance might be sufficient reasons to move on.

1. This text was copy-edited for Maps by Michael Guravage, whom I gratefully thank for helping me express my thoughts.



4 MAPS 44 Hans Hagen

In the early days of ConTEXt my colleagues and I
were its main users. One of the nice things with TEX
compared to aword processor —never inmy life have
I had to use one—is that you can automate things.
Imagine that you attend a series of meetings where
several hundred learning objectives are identified,
described, ordered and grouped. If you are in charge
of such a task, it really helps to have a system where
numbering and breaking pages comes for free. We
were often able to get the adapted documents in the
post within a few hours of leaving the meeting. The
authors were impressed when, in the next stage of
the project, we presented them with multiple pro-
fessional looking documents derived from the same
source. No other application could easily handle 500
floating images on 300 pages without crashing. This
was the time that using TEX paid off for us. That was
more than 15 years ago.

Such a TEX-based workflow is a sequence of edit,
run and preview cycles; steps recognizable to any
old-time computer user. However, it is not something
that newcomers, like our children, might deem us-
able. It’s not ‘what you see is what you get’, but the
more abstract process of ‘what you key is what gets
done’. Wrapping TEX with a simpler interface would
only hide its power, flexibility and charm. Then, you
might as well use a word processor. Let’s face it,
using TEX directly only pays off when the user can
separate coding from rendering, wants to have full
control and desires to be independent of hard coded
solutions. Try explaining that to a twittering face-
booking kid. Regardless of how we move from MkII
to MkIV, the route from source to result remains the
same, and so does the intended audience. Updating
TEX engines and macro packages will not increase
TEX usage.

For some of our ConTEXt projects, traditional
paper-based books are complemented by content
intended for the web. Consequently, the document
source is often xml. We could encode documents
using a TEX-based coding, which, if they had the
freedom to choose, would likely be more comfortable
for authors to use. I wager that many authors who
have used TEX directly still prefer it as an input
language. Though xml is a widely accepted input and
storage format, it is not ideal for typesetting. xml is
geared toward publishing on the web and is not as
expressive as TEX. However, reusing content is rare,
so we needn’t worry too much about encodings.

Coding in xml has some advantages for processing
by TEX. There are no TEX commands for authors to
misuse or redefine, and valid xml documents produce
no errors. Another advantage is that styling and
coding are completely separate. Of course, relieving
the author of the responsibility of rendering complex

documents can lead to sub-optimal output, unless the
author is willing to adapt his content. The advent
of xml has made people aware of the benefits of
structure. ConTEXt tries to enforce structure, so TEX
can fit nicely into modern publication workflows.
However, for the quick and dirty one-time docu-
ments, the overhead of adding structure might not
be worth the effort. So, even if in MkIV we promote
using \startchapter over \chapter and \startitem
over \item, we keep supporting the less demanding
coding variants.

The styles I write today are a mixture of TEX,
MetaPost and Lua. Solving the same problems with
MkII, if possible, would require considerably more
effort. Just as the faster Internet has become natural,
so has the MkIV mix.

Double-sided
An electronic medium is single-sided. A book is
always double-sided, and in the case of magazines
and newspapers also multi-column. ConTEXt has
quite some code to deal with double-sided layout.
Sometimes TEX collects more content than can fit on
one page. When this happens we have to keep track
of where content should end up. For instance, di-
mensions and alignment conditions for margin notes
must be swapped for odd and even pages.

In a single-sided universe, all the ConTEXt code
that deals with inner and outer positioning and
alignment could go away. Headers and footers could
also be simplified. By removing the distinction be-
tween left and right pages, we could also drop some
page synchronization code. Backgrounds wouldn’t
have to keep track of state either.

Related to this is page imposition. Page imposition
is built into ConTEXt and is rather advanced. New
imposition schemes occasionally appear through the
effort of Willi Egger who not only typesets but also
prints and binds books. The advent of a new folded
paper gadget can be the impetus for adding yet
another variable to control the position of pages.

Some of our projects require that we produce
imposed products as part of an automated workflow.
Cover pages, combined with back pages, are on the
agenda for future integrated support. Since these
features are applied to finalized pages implementing
them is relatively easy, and they do not interfere
much with existing code.



Does TEX have a future VOORJAAR 2013 5

To separate content within electronic documents,
we might end up with all sorts of cover-like pages.
After all, additional e-pages are cheap, and color
comes for free. This means that we might see more
advanced page clustering and numbering schemes
in ConTEXt MkIV. For instance, it might be nice
if chapters had alternating or unique background
colors. It would be even nicer if this property could
be implemented without introducing new user com-
mands in the source document.

Paper size
Paper books have standard page sizes; electronic
books do not. Splitting tables with spans or large cells
is somewhat painful. So why should we split a large
table in an e-document when we could just as well
scroll?

In some way we’re going back in time. Long ago
scrolls were used as a continuous medium. In that
sense, scrolling on a display is not as new as it may
look.

The concept of a page is derived from the medium
— but what if we ignore this? For instance, if each
chapter of a book were a separate entity, we could
have one long page per chapter. This is problematic
since TEX sets a limit on how high a page can be.
But imagine that instead of thinking vertically we
go horizontal. Headers and footers go away or get
a new meaning, and the edges would give some
indication of where we were. Perhaps we need a
floating indicator; we’ve seen stranger things. Would
this require a programmable viewer that we could
control from our document, or could we anticipate
standard features in viewers and viewing devices?
Luckily for us we can adapt the TEX backend for
either eventuality; at least we have done so for over
three decades.

Floats
Floats are nice for paper. It is interesting to notice
that in ConTEXt’s early years floats were very preva-
lent in the documents we produced. In fact, theywere
a selling point. In educational documents especially,
graphics need to appear near to where they are men-
tioned in the text. In a purely electronic document we
don’t need to struggle with fitting graphics on a page.
Relaxing this requirement would simplify designs.
Removing the corresponding ConTEXt code would
definitely make the codebase leaner and meaner. But
don’t worry, we have no plans to delete anything.

What if we combine the previously mentioned
vertical layout with horizontal extensions? Again
with a finger we swipe our way down the page,
where we run into an indicator denoting a larger
image. Swiping our finger to the left displays the
image; whichmight be accompanied by texts, images
or animations. Another swipe and we’re back in the
main thread. It is amazing that we can do this with
TEX. In fact we can proceed to multi-dimensional
or even parallel documents. I remember turning the
MetaFun manual into a QuickTime 360 movie. I
must have a ConTEXt presentation style somewhere
that implements this one page presentation where
clicking on areas exposes different parts of the page.
TEX is and will always be a fine playground for such
concepts. MkIVwith Lua andMetaPost makes it even
finer.

Margins
The first step from a paper document to, for example,
an e-book device is to get rid of margins. Due to
technical limitations all devices shipped around 2012
have rather hard-coded physical margins. Perhaps
one day we will have devices that have matte dis-
plays running from edge to edge. Imagine a device
without buttons, logos or stickers proudly mention-
ing the internal chip sets or operating system.

The current tendency is to remove margins. In the
near future wemight see them coming back. Margins
provide structure, and also room for various indica-
tors and navigation aids.This is a good thing. Support
for putting things in margins is quite important. In
MkIV we already go further than in MkII and more
will come.

Accessibility
A table of contents still makes sense in an electronic
document, but what about an index? An index’s
usefulness is proportional to how carefully it was
prepared. In many cases a search option works just
as well. The concept of a table of contents can be
expanded to include local tables and navigation aids
that help the reader find what he wants. Similarly,
we can collect information in multiple indexes. We
added multiple interactive indexes to ConTEXt while
involved in a project that produced quality assurance
manuals. In another project we needed index entries
arranged in a linked list, which is why this function-
ality exists in MkII. This cross-linked variant is not



6 MAPS 44 Hans Hagen

yet available in MkIV – simply because I don’t know
anybody who needs it. Interestingly, implementing it
in MkIV is far easier than in MkII.

A great deal of functionality, some of it even
documented, is there because we once needed it.
Take, for instance, flow charts. We can make really
big ones. Selected cells can become hyperlinks —
allowing us to jump through the document. Again,
this functionality was a side effect of making those
interactive QA manuals.

Mechanisms like these have always been part of
ConTEXt, even when they make no sense for pa-
per documents. They are more coding issues than
demanding typographical challenges. They do not
interfere with other typographical components, so
simplifying or removing this functionality has no
benefits. We can do much more in MkIV, but some-
times I get the feeling that less is more.

A lot of code in ConTEXt deals with structure. It
makes sense to think about ways to improve how we
gain access to it: linked lists, pop ups, summaries,
reading routes, etc. MkII has several mechanisms
that make controlled reading possible, but they never
took off. In MkIV most mechanisms that structure
data also retain part of it for re-use. Because we store
data for use in a second or subsequent typesetting
pass, information can be used multiple times.

Some mechanisms also support user data. For
instance, when starting a chapter, besides setting its
title, you can also name a variable that stores the
name of an image — a sort of visual title. As this
name is carried around, the image can appear as an
icon in the table of contents and on the first page
of the chapter. We needed this a long time ago in
MkII. This is one reason why in MkIV we can now
set user variables in commands that start chapters
and sections.

In one project we participate in, a free math
method, the content is first published on the web.
Given the nature of electronic documents, it went un-
noticed that, when typeset for the printed page, the
document was quite large. Selective use of content,
multiple products, and efficient typesetting are solu-
tions to this. The e-book version is not constrained
by the number of pages. Information can be repeated
when needed; complemented with the necessary
navigational aids. I’m confident that ConTEXt can
deal with both variants.

There has been a time, probably due to the fact
that I gave presentations showing pdf on a projector,
that ConTEXt was promoted as a system for creating
electronic documents in pdf format. This is just one
feature, but interaction has always been integrated
in the core — never an add-on. However, there is a
fundamental difference between interaction in MkII

andMkIV. Using different techniques in MkIV, we no
longer have interfering status nodes. This makes the
whole mechanism more robust, although internally
it has become pretty complex.

Columns
Columns make sense in broadsheet newspapers and
journals where one wants to put as much as possible
on a page. But I wonder if columns make sense
in electronic documents. After all, electronic pages
are cheap, and getting rid of multi-columns makes
typesetting much easier. In TEX the mechanisms that
deal with columns, e.g., page builder, floats and notes,
are often complex. The code can be pretty messy. It
would be nice to get rid of this legacy.

A good application of columns can be found in
parallel bible translations. Not only must the text be
synchronized in multiple columns, it also has to be
broken across pages in a reasonable way. Footnotes
are another complication.

Will such products be made in the future? The
production of printed encyclopedias has already
stopped, and concordances might soon follow. On
the other hand, the fact thatThomas Schmitz typesets
sophisticated documents for tablets, notebooks, pro-
jectors, and paper indicates that, for critical editions,
the future is not yet determined. And I know several
TEXies who typeset catalogs for conferences and fes-
tivals where a proper paper version is the only way
to provide an effective overview. All these documents
share a mixture of one column, multi-column and
specially composed pages.

ConTEXt currently has two mechanisms that deal
with columns. The first mixes well with single col-
umn mode, the second is more powerful and en-
capsulated. In MkIV the pluggability of the output
routine has been improved; so if needed we can sup-
port yet unforeseen page building schemes. Parallel
streams are first on the agenda.

Move on
If we consider only paper documents, do we antic-
ipate needing more typesetting functionality than
we already have? Does it make sense to develop
macro packages any further? Of course, it is not diffi-
cult to make a wish list including more support for
complex critical editions and parallel typesetting of
translations. For those who use a simple input format
such as Markdown, existing ConTEXt functionality is
more than sufficient. In fact, as long as we can deal
with the concepts found in html we’re okay. Most of
these documents consist only of running text, tables,
images, a bit of sectioning, itemized lists and maybe
descriptions.



Does TEX have a future VOORJAAR 2013 7

TEX is over thirty years old. It is still maintained
and kept up-to-date. It provides users with a lot of
freedom. It has an active user community. It is often
chosen for long term use. It is boringly stable. With
these attributes, we can safely assume that TEX will
be around for a while. The same is true for macro
packages. They will stay and evolve. But how will
TEX change along the inexorable path from paper to
electronic media? Typesetting habits change slowly,
so we still have some time to ponder these questions.

On the other hand, look at how quickly the web
is evolving, and how quickly younger generations
adapt to new electronic devices. When using TEX it
is natural to think in book-related categories. But
just as a computer desktop is not a real desktop, an
e-book is not a real book. Real books have a physical
presence; we can hold them in our hands and turn
each page as we read. E-books try to mimic these

physical characteristics with ridiculous results. For
example, you can choose an e-book from an e-book-
shelf, and turning pages is simulated by showing the
binding and a moving cut edge. But will we want or
need these visual clues in the future when we have
instant access to everything from anywhere on any
device we choose? Why carry around a book when
we can have its contents projected on our retina, or
hear it spoken in our ear? Regardless of how TEX
and its attendant macro packages evolve, we’d best
refrain from predicting the future, let alone promote
TEX as the ultimate and last word on typography. We
can only hope that future hardware and software will
allow us to TEX like we allow printers to use printing
presses.

Hans Hagen


