
Hans van der Meer VOORJAAR 2013 91

A bit of HTML and a bit of ConTeXt
HTML constructs translated to ConTEXt

Abstract
Described is a module for the typesetting of a subset of
HTML operators. These can be used to build data sets in
XML with HTML as formatting elements and have them
typeset in ConTEXt. Other features are the inclusion of
predefined content and provision for language localized
words and expressions.

Keywords
ConTeXt, HTML, XML, include, vocabulary

Introduction
Let us start with a tiny example, just to get the idea.
For the sake of exposition the content of this example
is enclosed as if it were HTML source. That is not
necessary though, any root node can contain these
elements. For it to work one has to load the module
with \usemodule[hvdm-xml] first. It in turn depends
on modules [hvdm-ctx] (a few general macros) and
[hvdm-lua] (some Lua coded functions). By the way,
note the mandatory XML-notation for the characters
< and > and of course the same will apply to the
ampersand & as these are XML-related (call it)
features. Also note that the example code below can
be rendered in a browser unchanged.

<?xml version="1.0" encoding="UTF-8"?>
<html>
<head>
<body bgcolor="bbccbb"/>
<title>Ignored head</title>

</head>
<body>
Example: <body>
<hr/> <!-- comment: rule -->
<rm>roman</rm>
<i>italic</i>
bold

</body>
</html>

Example: <body>

roman italic bold

Below follows a description of the API of this
module, here and there illustrated with an example.
Many of the nodes are standard to HTML but there
are some extras, primarily because the author needed
them for his work. The idea behind the development
of the module was to stay close to HTML and use its
vocabulary where possible.

Document Structure
These are nodes for structuring your XML document.

 <html>
The well known enclosure of all HTML.

 <head>
The header part of the document. Its content is
ignored because it is not supposed to play a role
in the typesetting process.

 <body>
The body part of the document. The content of
this node can contain all the typeset material.

 <h1 align="" color="" style=""…<h1>
Typeset headers in diminishing size according
to the digit behind the ‘h’. The alignment can be
left, center, middle or right, the color of the
heading as well as its style can be specified. The
possibilities in size are <h1> …<h6>.

<?xml version="1.0" encoding="UTF-8"?>
<root>
<h2 align="center" color="blue"

style="bold">
heading text

</h2>
</root>

heading text

92 MAPS 44 Hans van der Meer

Following are nodes for paragraphs and linebreaks.

Break the line.

 <p height="" color="" align="" style="">
Encloses a paragraph, although <p/> does equally
well as a simple paragraph break. Extra white
can be placed above the paragraph with the
height attribute. The content can be colored ,
aligned and given a specific style, all with attrib-
utes.

 <div>
Just a division as in HTML.

TEX directly
These are nodes for those parts of the document
where one has to resort to using TEX directly. One
such area is the typesetting of math, allthough it is
possible to use MathML here. However, I find that a
tedious business and for quick results am using TEX’s
math directly. MathML translation can come later,
when things have to be tidied up.

 <tex>
Contains pure TEX or ConTEXt.

 <m>
Encloses the node content in pair of $’s.

 <M>
Encloses the node content in pair of $$’s.

 <nohyphens>
Stop hyphenation and put the content inside
a \begingroup-\endgroup pair, as might be ex-
pected.

<?xml version="1.0" encoding="UTF-8"?>
<root>
Formula inline: <m>y=a^2+bx+c</m>

<div/>
Formula displayed: <M>y=a^2+bx+c</M>

</root>

Formula inline: y = a2 + bx + c
Formula displayed:

y = a2 + bx + c

Appearance
These are nodes for making font, style and color
changes.

Does font setup \setupbodyfont[family],
\switchtobodyfont[size] and/or a sim-
ple style change, where appropriate. The
presence of a family attribute triggers a

\setupbodyfont command, a size is effected with
a \switchtobodyfont. The attribute for the size
can be big, small, etc. A style can be something
like normal which is translated into \tf; similarly
for other variants, always under the assumption
that the chosen variant is available.

The list of style changes is:
− normal = \tf
− mono = \tt
− bold = \bf
− italic = \it
− bolditalic, italicbold = \bi
− slant, slanted = \sl
− boldslanted, slantedbold = \bs
− smallcaps = \sc
− mediaeval = \os

 <small step="" min=""> or <smaller>
Typeset content smaller by the step size (usually
in points) but enforce a minimum size given in
the min attribute.

 <big step=""> or <bigger>
Typeset content bigger by the step size (usually
in points).

 <color value="">
Sets content in the color given in the attribute.

<?xml version="1.0" encoding="UTF-8"?>
<root>
Before

Fontswitch

After
</root>

Before – Fontswitch – After

<?xml version="1.0" encoding="UTF-8"?>
<root>
<smaller step="2pt">
smaller

</smaller>
normal
<big step="2pt">
bigger

</big>
</root>

smaller normal bigger

A bit of HTML and a bit of ConTeXt VOORJAAR 2013 93

The common HTML style nodes are present.

 <r>
Typeset content in \tf.

 <u space="yes/no">
Typeset content underlined, the space attributed
governs the breaking of the underlining at word
boundaries.

 <i>
Typeset content in \it.

Typeset content in \bf.

Typeset content emphasized as with \em.

 <sl>
Typeset content in \sl.

 <tt>
Typeset content in \tt.

 <code>
Typeset as in the corresponding HTML.

 <pre>
Typeset as in the corresponding HTML.

Special operations on text.

 <sub>
Typeset content in subscript.

 <sup>
Typeset content in superscript.

 <lohi>
Typeset content both in subscript and in super-
script. The node should contain a <sub> and a
<sup> node, in any order.

 <quote> and <q>
These enclose their content in single and double
quotes, respectively.

Space and Alignment
These are nodes for structuring the typesetting with
horizontal and vertical space.

 <spacer size="" type="">
By default the kind of spacing depends on
whether the typesetting is currently in horizon-
tal or in vertical mode. But its kind can be ex-
plicitely specified by setting the attribute type to
either horizontal or vertical. A third type fill
is evaluated to \hfill or to \vfill respectively.
By default the size values are 1em and
\normalbaselineskip for the horizontal and ver-
tical displacements. The size may also be given as
a percentage, which is applied to \textwidth or
\textheight.

 <center>
Typeset centered.

 <left>
Typeset aligned to the left.

 <right>
Typeset aligned to the right.

 <narrow left="" right="" middle=""
option="">
Narrowed paragraph, the option attribute de-
termines the narrowing as in the command
\startnarrower, middle is default.
The other attributes determine the value of the
narrowing and evaluate to calling command
\setupnarrower.

 <blockquote>
The HTML blockquote behaviour.

<?xml version="1.0" encoding="UTF-8"?>
<root>
<narrow middle="1cm">
abc
<spacer type="fill"/>
abc
<spacer type="fill"/>
abc
<p/>
<spacer type="vertical" size="1cm"/>
abc

</narrow>
</root>

abc abc abc

abc

<?xml version="1.0" encoding="UTF-8"?>
<root>
<center>
Centered

</center>
</root>

Centered

Lists
These are nodes for enumerations, mimicking those
in HTML.

List element.

 <ol sym="" start="" columns="" option="">
Ordered list with attribute sym specifying the
kind of numbering: n, a, A, r, R, g, G for numbers,

94 MAPS 44 Hans van der Meer

letters, roman numerals or Greek letters.
The start attribute determines the number of the
first item, by default 1 as expected. The columns
attribute specifies the number of columns (1 by
default).
Attribute option functions as sort of catch all, be-
cause its content is transferred to the first []-ar-
gument of the typesetting \startitemize macro.

 <ul sym="" columns="" option="">
Unordered list with the symbol having a great
number of variants, switched by a number from
1 to 14 and ranging from bullets to triangles and
lozenges (provided the font has them).

 <dl compact="yes/no">
As in HTML, encloses <dt> and <dd> elements.

 <dt>
As in HTML.

 <dd>
As in HTML.

<?xml version="1.0" encoding="UTF-8"?>
<root>
<ul sym="3" columns="2">
first item
second item
third item
fourth item

</root>

first item
second item

third item
fourth item

Tables
These are nodes for tables, mimicking those in HTML
and translated to XML-table macros of ConTEXt.

 <table foregroundstyle="" offset=""
columndistance="" spaceinbetween=""
location="" option="">
The setup attributes implemented here are
foregroundstyle corresponding to HTML’s
style, offset corresponding to cellpadding,
columndistance to cellspacing, spaceinbetween
to rowspacing and location for placement top,
left or middle. The catch all option attribute can
be used to set frameoffset, backgroundoffset,
textwidth, textheight, leftmargindistance,
rightmargindistance.

 <thead>
As in HTML.

 <tfoot>
As in HTML.

 <tbody>

As in HTML.
 <tr>
As in HTML.

 <td>
As in HTML.

 <th>
As in HTML.

Images and graphics
These are nodes for typesetting images and pictures.

 <framed many-attributes>
Frame the contents of the node. There are a great
many of attributes here, corresponding with
the most important ones from \setupframed. To
name them without further explanation: height,
width, offset, color, bgcolor, frame, framecolor,
framecorner, frameradius, rulethickness,
strut, align, valign, corner, radius, bgcorner,
bgradius, option. The last one option can be any-
thing and its value is passed on to the underlying
setup call.
Frame parts may be specified with HTML-like
attributes for the frame attribute and has values

− on,t,above,vsides is topframe=on
− on,b,below,vsides is bottomframe=on
− on,l,lhs,hsides is leftframe=on
− on,r,rhs,hsides is rightframe=on

Place an image file through \externalfigure.
Separate attributes are height, width, scale,
frame, corner, radius, rotation, option. They
are passed on in the second []-argument to
\externalfigure.

 <mpgraphic name="" [file="" buffer=""]
parameters="">
Execute METAPOST on an MPgraphic de-
finition and place this in the document. The
node must contain a \startuseMPgraphic
\stopuseMPgraphic pair.
Other sources for the definition of the graphic
may be specified with the file and buffer
attribute.
The attribute parameters is used to transfer
variable values via the \MPvar macro to the
METAPOST code. Note that the name on the
\startuseMPgraphic must be the same as the one
on the <mpgraphic>.

Example where the graphic is defined in a separate
ConTEXt buffer.

A bit of HTML and a bit of ConTeXt VOORJAAR 2013 95

\startbuffer[graphic]
\startuseMPgraphic{graphic1}{color}
pickup pencircle scaled 1mm;
draw unitsquare scaled 1cm

withcolor \MPvar{color};
\stopuseMPgraphic
\stopbuffer

<?xml version="1.0" encoding="UTF-8"?>
<root>
<center>
<mpgraphic buffer="graphic" name="graphic1"

parameters="color=darkblue"/>
</center>
</root>

Examplewhere the graphic is defined in the <mpgraphic>
node itself.

<?xml version="1.0" encoding="UTF-8"?>
<root>
<center>
<mpgraphic name="graphic2"

parameters="color=darkgreen">
\startuseMPgraphic{graphic2}{color}
pickup pencircle scaled 1mm;
draw unitcircle scaled 1cm

withcolor \MPvar{color};
\stopuseMPgraphic

</mpgraphic>
</center>
</root>

Include and definition nodes
Instead of repeatedly copying the same code over and
over, one can define these common parts separately
(includes.xml in the example below) in a file.This file
must contain a root node in which the definitions of
the common code parts are put. The particular name
of this node is not significant, it is merely a container
for the <define> nodes inside. In the example below
<includes> was chosen.

Each of the definitions contained in the file should

be given a name whereby it can be called up for
insertion. Loading the file with definitions is done
with the <include> node carrying the path of the file
to read.

<?xml version="1.0" encoding="UTF-8"?>
<includes>
<define name="mypart">
.. code to include ..

</define>
.. other definitions ..

</includes>

<?xml version="1.0" encoding="UTF-8"?>
<root>
<include file="includes.xml"/>
.. other nodes ..

</root>

A <define> node carrying content is a definition
node. If more than one <include> file is loaded, then
later inclusions have priority above the earlier ones.
The first match of a definition breaks off the search.

A <define name="name"/> node not carrying con-
tent implies retrieval of the definition. Thus the pres-
ence or absence of the node’s content determines its
role. In the following example code the definition
mypart is substituted for <define name="mypart"/>.

<includes>
<define name="mypart">
.. code of mypart ..

</define>
</includes>
<text><define name="mypart"/></text>

The <define> can have a type attribute if it is
a definition node. In that case some special action
depending on its value is taken when called up. The
preprogrammed actions are:

1. type="image"
When the <define>’s content resolves to the lo-
cation of a file, this is put into the document as
an \externalfigure.

2. type="mpgraphic"
The <define> must resolve to code for a graphic.

For example a definition can be

<define type="mpgraphic" name="example"
parameters="color=green,variant=0">

\startuseMPgraphic{example}{color,variant}
if \MPvar{variant} = 0:
draw (0,0) -- (10,10)

96 MAPS 44 Hans van der Meer

withcolor \MPvar{color};
else:
draw (0,0) .. (10,10);

fi
\stopuseMPgraphic
</define>

We then call this definition with

<define name="example"
parameters="color=orange"/>

On the call the defined default color green is replaced
by orange, while the variant keeps its default of 0.
Note that the names on the <define> and the graphic
definition must be the same.

Other attributes provided for are height and width
or scale for its dimensions, the former having pri-
ority above the latter. The dimensions might be
given of a percentage, which is taken as a frac-
tion of \textheight and \textwidth respectively.The
rotation attribute specifies a rotation of the figure
given in degrees.

Beware. The inclusion of a <define> is not the
same as macro substitution in a programming lan-
guage as for instance C. Complicated formulas in
MathML are good candidates for a definition.

Vocabulary
It is not uncommon to program in English for all
terms that can appear in the typeset document.
However, it would be nice if instead these could
be customized and typeset in the target language
selected with the ConTEXt macro \language[]. The
<vocabulary> node can help to enlighten this task.
With it one defines for a chosen series of words the
equivalent in each of several languages. The next
example defines the English word file, the Dutch
bestand and the German Datei as equivalents. Note
the use of the two letter language designators.

<vocabulary>
<word>
<language name="en">file</language>
<language name="nl">bestand</language>
<language name="de">Datei</language>

</word>
</vocabulary>

One of the languages will function as the ref-

erence language in which the program specifies
the terms (English by default). The macro calls
\translate{file} and \Translate{file} are typeset
as bestand and Bestand for either the ’nl’ or the ’de’
current language. The same is accomplished with the
nodes <word> and <Word>.

Further customization is the possibility to specify
another language as the reference language than the
default English. Give the reference language as its
two letter value on the vocabulary attribute:
<vocabulary referencelanguage="">

The vocabulary can be placed in a file or in a buffer
whose name must be given as attribute:
<vocabulary file="" buffer="">

Convenience Nodes
Not HTML but probably useful now and then. A
save-restore, current time and date macros are pro-
vided for.

 <currendate/>
Typesets the current date in European style.

 <currenttime/>
Typesets the current time in a 24-hour clock.

 <store name="">
Store content of the node under name.

 <restore name="">
Call up content stored under name.

<?xml version="1.0" encoding="UTF-8"?>
<root>
store then
<store name="test">
stored text

</store>
restore:
<restore name="test"/>
<div/>
current date: <currentdate/>
<div/>
current time: <currenttime/>
</root>

store then restore: stored text
current date: 12-07-2013
current time: 11:27

Hans van der Meer
H.vanderMeer@uva.nl

