
Leo Arnold EUROTEX 2012 & 6CM PROCEEDINGS 101

Multiple documents from one source
LaTEX for lecturers and teachers

Abstract
In general LaTEX will produce only one output
document. This paradigm shifts when harnessing the
power of the so-called shell escape. We will show how
to produce multiple output documents with differing
content from one single source document. The principle
is developed step by step illustrating a typical
application in academic teaching.
Focusing on mathematical problems we then explore
two ways of automating calculations by integrating free
software into the LaTEX run.

Keywords
mathematics, problem sheet, shell escape

The problem with problem sheets
Composing appealing problem sheets and preparing in-
structive solutions is a time consuming task. Further
time is lost when problems need to be altered after type-
setting, requiring updated plots and recalculated solu-
tions. When LaTEX is used, we should optimize our
work�ow and exploit its capabilities to handle as many
tedious tasks as possible.

Set up for failure: bad practice
A typical road to ruin is typesetting problems and so-
lutions in separate �les. That way it is hard to keep
changes in order or notation in sync. For better com-
prehension we would also like to have the problem for-
mulation above its solution, but copying them from the
problem sheet source will just increase the sync prob-
lem.

The exam document class by Philip Hirschhorn [3]
eliminates the need for two source documents. It de�nes
a solution environment that can be included or hidden
via a class option. The solutions are typeset in the source
document right after the problem which makes for a
very natural work�ow and easier debugging. Changes
in notation can now be handled globally using the text
editors “replace all” function.

On the other hand, having just one source document
requires us to pay close attention: without additional ad-
justments both versions will compile to the same output

�le name. In an inattentive moment we might acciden-
tally upload the version with solutions to our website
too early, rendering the homework assignments point-
less. Also exam.cls may not provide the customization
you need, for example if you have to implement a de-
partment’s corporate design or would like to de�ne a
third version of the problem sheet containing additional
notes.

Getting multiple outputs
Multiple outputs would usually be achieved by multiple
invocations of LaTEX. Before each run we would need
to manipulate the source document in order to have
di�ering content. All of this can be done using shell
scripts or MakeFiles, but it

@ requires an additional (script or make) �le
@ requires non-TEX programs
@ requires knowledge beyond TEX
@ may not be platform independent

We will introduce a method that handles these short-
comings using only pdflatex.

Requirements for a unified workflow
As we have already seen, it is crucial to have just one
source document to avoid incongruities and have a nat-
ural way of typesetting.

Typeset problems will most certainly be reused in
future courses. Therefore we would like to be able to
copy & paste parts of the exam with ease. Our approach
should also apply to documents that \input problems
from another source �le.

Finally we want to produce multiple outputs di�ering
in content by a single invocation of pdflatex. Our
derivation will assume the following use cases:

@ student problems only
@ tutor problems and their solutions
@ corrector problems, solutions and instructions on

grading the students work

102 EUROTEX 2012 & 6CM PROCEEDINGS Leo Arnold

Designing a unified workflow
Our goal is to produce multiple output documents with
di�ering content in a single run. Though this might
seem impossible at �rst glance, Ulrike Fischer found
a way [2] to do this using only pdflatex. We will
introduce her approach step by step, keeping an eye on
platform independence.

Since pdflatex Sheet.tex will only produce
Sheet.pdf our task splits into three parts:

1. Find a way to tell LaTEX which parts of the source
�le to use and which to ignore

2. Change the �le name of the output document in
order to be able to produce multiple outputs

3. Produce all versions in just one run of pdflatex

Selectively in- & excluding code
We would like to wrap code into a LaTEX environment
and have some kind of “switch” in the document pream-
ble to control whether to have LaTEX process it or not.
This is exactly what comment.sty by Victor Eijkhout
[1] does.

Usage. The comment package provides us with two sim-
ple commands

@ \includecomment{foobar} de�nes the envi-
ronment foobar whose content will be included

@ \excludecomment{foobar} de�nes the envi-
ronment foobar whose content will be ignored

Example. A nice feature of environments de�ned using
comment.sty will not break the line, so we can use
them in midsentence. The minimal example

1 \ inc ludecomment { t r u t h }
2 \ excludecomment { nonsense }
3

4 Knuth s t a r t e d
5 \ begin { t r u t h }
6 d e v e l o p i n g \TeX { }
7 \ end { t r u t h }
8 \ begin { nonsense }
9 u s i n g WinWord

10 \ end { nonsense }
11 i n 1 9 7 7 .

will just output
Knuth started developing TEX in 1977.

Implementing our use cases. Knowing the above, we
can easily write a document that matches our use cases,
but we would still have to adjust the in- and exclusions
before compiling.

To reduce such modi�cations to a bare minimum we
will assign a number to each use case. We can then de�ne

a macro \condition that expands to the number and
use \ifcase to make the adjustments for corresponding
case.

Listing 1. Use case implementation

1 \ R e q u i r e P a c k a g e { comment }
2

3 \ inc ludecomment { problem }
4 \ i f c a s e \ c o n d i t i o n
5 % \ c o n d i t i o n = 0 , s t u d e n t
6 \ excludecomment { s o l u t i o n }
7 \ excludecomment { howtograde }
8 \ or % \ c o n d i t i o n = 1 , t u t o r
9 \ inc ludecomment { s o l u t i o n }

10 \ excludecomment { howtograde }
11 \ or % \ c o n d i t i o n = 2 , c o r r e c t o r
12 \ inc ludecomment { s o l u t i o n }
13 \ inc ludecomment { howtograde }
14 \ f i

Now all it takes is de�ning the value of \condition
to control the content of the output.

Coding discipline. One could of course implement the
above using \ifnum instead. I prefer to use \ifcase
here because the cases are “automatically numbered”
in order of appearance. That way I got less confused
about which number represents which use case, saving
me time on debugging.

Rethinking command line calls
We want to control the version of the output without
editing the source document. We could write a wrapper
document that de�nes our \condition macro followed
by the actual document code:

1 \ gdef \ c o n d i t i o n { 0 }
2 \ input S h e e t . t e x

On second thought we can also pass this code on to
LaTEX directly on the command line
pdflatex "\gdef\condition{0} \input Sheet.tex"

avoiding the additional �le.

Changing the output file name
By now we can produce any version of the document
by altering a single value but they will still be written to
the same output �le, thereby overwriting the previous
output.

A quick look at pdflatex’s manpage1 provides
pdflatex --jobname="student" Sheet.tex

which will create student.pdf from Sheet.tex.

Multiple documents from one source EUROTEX 2012 & 6CM PROCEEDINGS 103

Escaping to the Shell
We know that LaTEX can write to auxiliary �les using
output stream. There is also the special stream 18 which
will execute the output on the system shell.
\write18{ping tug.org}

This is called escaping to the shell. Used like this LaTEX
will �rst read to the end of the document before writing
to the shell. If we want the command to be executed
immediately when LaTEX reaches that point in the doc-
ument, we use (see [4], p. 226f)
\immediate\write18{ping tug.org}

In particular this means we can invoke the commands
developed in the previous sections from within one
pdflatex run.

Warning. Giving LaTEX access to the shell is a gateway
for exploits. Hence \write18 is disabled by default. You
can temporarily enable it using
pdflatex --shell-escape Sheet.tex

or permanently by adjusting the con�guration2 of your
TEX distribution.

The UniFlow principle
After introducing all the building blocks we are now able
to understand Ulrike Fischer’s ingenious construction
[2] to produce multiple output documents in one single
run.

We start o� with a document skeleton to demonstrate
the recursive nature of the approach.

Listing 2. General UniFlow template

1 % Beginning of Sheet.tex
2 \ i fx \ c o n d i t i o n \ u n d e f i n e d
3 % Pseudo shell script (listing 3)
4 \ expandafter \ stop
5 \ f i
6

7 % Use case implementation (listing 1)
8

9 % Actual document code begins here

Processing this code will have pdflatex enter the \ifx
block as the macro \condition has not been de�ned
yet. After executing a “pseudo shell script” LaTEX will
�rst expand the token \fi and then \stop reading. Note
that this run will not produce any output.

In the pseudo shell script, we will invoke pdflatex
again on this very same document. The �le’s base name
is obtained from \jobname
pdflatex "\string\input\space\jobname"

and we told the parser to interpret \input as a \string,
preventing it from expansion ([4], p. 40).

When we add a de�nition of \condition, LaTEX will
ignore the \ifx block, apply the use case settings and
output the desired version.

Considering all use cases and the change of job name
we arrive at

Listing 3. Pseudo shell script in LaTEX

1 \ immediate \ write 1 8 {
2 p d f l a t e x
3 −−jobname =\ jobname−s t u d e n t
4 " \ gdef \ s t r ing \ c o n d i t i o n { 0 }
5 \ s t r ing \ input \ space \ jobname " }
6 \ immediate \ write 1 8 {
7 p d f l a t e x
8 −−jobname =\ jobname−t u t o r
9 " \ gdef \ s t r ing \ c o n d i t i o n { 1 }

10 \ s t r ing \ input \ space \ jobname " }
11 \ immediate \ write 1 8 {
12 p d f l a t e x
13 −−jobname =\ jobname−c o r r e c t o r
14 " \ gdef \ s t r ing \ c o n d i t i o n { 2 }
15 \ s t r ing \ input \ space \ jobname " }

Combining the UniFlow template (listing 2) with the
implementation of the use cases and the corresponding
pseudo shell script (listings 1 and 3) we have constructed
the single source document Sheet.tex. Enabling shell
escape and processing it with pdflatex will result
in the three output documents Sheet-student.pdf,
Sheet-tutor.pdf and Sheet-corrector.pdf, each
of them with the desired speci�c content. Therefore all
of our initial requirements are met and we have devel-
oped a uni�ed work�ow.

Pitfall. Neither the wrapping pdflatex run nor script
3 will produce an output �le named Sheet.pdf. This
can cause error messages when using text editors with
built-in PDF viewers like TEXmaker and its standard
“quick build” feature.

Exercise. If you would like to check your understanding
of the UniFlow principle, try to write a template for this
scenario:

A school teacher always designs two slightly di�erent
versions A and B of an exam. She would like to produce
the four versions A, B, A with solutions and B with
solutions from a single source document.

104 EUROTEX 2012 & 6CM PROCEEDINGS Leo Arnold

UniFlow in action
The UniFlow principle can also serve to integrate exter-
nal programs into the LaTEX run. Due to the author’s
background the examples are taken from mathematics.

For applications in other subjects see the PythonTEX
gallery [5] or Herbert Voß’s article on general source
code [7].

For the sake of simplicity we now focus on having
only one output document. Nevertheless we will still
have to de�ne the \condition macro (setting it to an
arbitrary string value) whenever we want pdflatex to
ignore the \ifx block. The generalization to multiple
output versions is left to the reader as an exercise.

Linear Algebra using Sage
Sage is a free and open source computer algebra system.
It is best used on Linux since the “Windows version” is
actually an Ubuntu virtual machine image containing
Sage.

We will give a tiny demonstration of the LaTEX inter-
face called SageTEX and its implementation using the
UniFlow principle. Further information on SageTEX can
be found in Günter Rau’s demonstration [6] or on the
Sage homepage3.

How to compile. SageTEX works similar to BibTEX:
First we run LaTEX to extract the Sage commands. These
are then processed externally with Sage and the results
are included in the second LaTEX run.

1 # Extract Sage commands
2 pdflatex Example .tex
3 # Process Sage commands
4 sage Example . sagetex .sage
5 # Include Sage outputs
6 pdflatex Example .tex

Implementing UniFlow.

1 \ i fx \ c o n d i t i o n \ u n d e f i n e d
2 \ immediate \ write 1 8 {
3 p d f l a t e x
4 " \ gdef \ s t r ing \ c o n d i t i o n { 0 }
5 \ s t r ing \ input \ space \ jobname " }
6 \ immediate \ write 1 8 {
7 sage " \ jobname . s a g e t e x . sage " }
8 \ immediate \ write 1 8 {
9 p d f l a t e x

10 " \ gdef \ s t r ing \ c o n d i t i o n { 0 }
11 \ s t r ing \ input \ space \ jobname " }
12 \ expandafter \ stop
13 \ f i

Exercise. Calculate the eigenvalues of the matrix

A =

(
19 30 −20
26 39 −26
61 93 −62

)
Solution. The characteristic polynomial of A is

χ_A(x) = x3 + 4x2 + 3x = x · (x+ 1) · (x+ 3)

hence its eigenvalues are

[0,−1,−3]

Using sagetex.sty we just needed to type
1 % ’ s a g e s i l e n t ’ r e t u r n s no ou t pu t
2 \ begin { s a g e s i l e n t }
3 A = m a t r i x (QQ, [[1 9 , 3 0 , −2 0] ,

[2 6 , 3 9 , −2 6] , [6 1 , 9 3 , − 6 2]])
4 p = A . c h a r p o l y ()
5 \ end { s a g e s i l e n t }
6

7 \ [A = \ sage {A} \]
8 The c h a r a c t e r i s t i c po lynomia l o f

A i s
9 \ [\ chi _A(x) = \ sage { p } = \ sage {

f a c t o r (p) } \]
10 hence the e i g e n v a l u e s o f A a r e
11 \ [\ s age {A . e i g e n v a l u e s () } \]

Note how this assures that the matrix A and the so-
lution will always match in the output document. This
is as foolproof as it gets.

Statistics using R and Sweave
Data plotting techniques play an important role in any
statistics course: histograms, q-q plots, boxplots etc. are
handy tools to analyze measured data.

R is a free statistics software system available for all
common operating systems4. It comes with the plug-
in Sweave which “weaves” R (the free successor to S
statistics) into LaTEX documents.

We will use an easy example from elementary prob-
ability. More advanced examples can be found for ex-
ample in Uwe Ziegenhagen’s demonstration [8] or on
Friedrich Leisch’s Sweave website5.

How to compile. As the output of Sweave will be writ-
ten to Example.tex we change the �le name of our
document to Example.Rnw (Rnw = R noweb). Now
we can use LaTEX code as usual and insert R code as
“chunks” using the noweb syntax. The document is then
compiled as follows.

1 # Have R process Example .Rnw and
2 # create / overwrite Example .tex
3 R CMD Sweave Example .Rnw
4 pdflatex Example .tex

Multiple documents from one source EUROTEX 2012 & 6CM PROCEEDINGS 105

Implementing UniFlow.

1 % Beg i nn i ng o f Example . Rnw
2 \ i fx \ c o n d i t i o n \ u n d e f i n e d
3 \ immediate \ write 1 8 {
4 R CMD Sweave \ jobname . Rnw }
5 \ immediate \ write 1 8 {
6 p d f l a t e x
7 " \ gdef \ s t r ing \ c o n d i t i o n { 0 }
8 \ s t r ing \ input \ space \ jobname " }
9 \ expandafter \ stop

10 \ f i

Editing the Example.Rnw as source �le and using the
above code, the correct command line call is
pdflatex --shell-escape Example.Rnw

If you like to use the tab completion feature of your
system shell, it will probably only o�er you the .tex
�le. Observe that this will generate the same output
because both execute the same pseudo shell script.

Exercise. Roll a dice 100 times in a row recording the
number of pips each time. Visualize their relative fre-
quency as a histogram and a pie chart.

Solution. Since this exercise depends on probability,
everyone will have a di�erent result. Mine looks like
this:

number of pips

re
la

tiv
e

fr
eq

ue
nc

y

1 2 3 4 5 6

0.
00

0.
05

0.
10

0.
15

0.
20

1

2
3

4

5

6

These diagrams where of course generated at compile
time from the following code snippet.

1 # R e l e v a n t p a r t o f Example . Rnw
2 << echo=FALSE , f i g =TRUE >>=
3 par (ps =20)
4 p i p s <− sample (1 : 6 , 1 0 0 , replace=

TRUE)
5 hi s t (p ips , b r e a k s =c (0 . 5 , 1 . 5 ,

2 . 5 , 3 . 5 , 4 . 5 , 5 . 5 , 6 . 5) , col=
" gray " , f r e q =FALSE , main= " " ,
x l a b = " number ␣ o f ␣ p i p s " , y l a b = "
r e l a t i v e ␣ f r e q u e n c y ")

6 @
7

8 << echo=FALSE , f i g =TRUE >>=
9 p i e (t ab le (p i p s) , col=c (" whi te " , "

b l a c k ") , cex =2)
10 @

Here, due to the use of sample(), the output will be
di�erent after every compile run.

Aftermath
Of course we could have achieved all of this in a one-
call fashion using some kind of shell script, make6 or its
LaTEX analogs latexmk7 or rubber8. On the other hand
the UniFlow principle provides a platform independent,
script-like alternative without additional (Make)�les or
non-TEX executables.

The future of UniFlow
To enable anyone to implement the UniFlow principle
with ease I will work on developing it into a LaTEX
package.

Versatility is UniFlow’s biggest asset and every reader
will by now have his or her special use case in mind – and
most certainly be struggling with the inconvenient syn-
tax of the corresponding \write18 statement. Hence
designing an intuitive command structure will be key
and your TEXnical comments and pieces of advice are
always welcome.

One step further we could think about a uni�ed inter-
face to integrate virtually any program into the LaTEX
run. Herbert Voß [7] already showed how general source
code can be extracted from a document and reincluding
the output after processing. His approach works with
any kind of batching method, allowing for an integration
into UniFlow (once developed).

Acknowledgments
Many people have directly or indirectly contributed in
the development of the UniFlow principle.

First and foremost I want to thank Ulrike Fischer who
provided the core concepts in her short and e�ective
post on StackExchange.

When I was struggling with selectively showing or
hiding content, Rolf Niepraschk pointed out the fasci-
nating simplicity of comment.sty to me.

Marcus Bitzl is an avid reader of “Die TEXnische
Komödie” and drew my attention to the articles on the
integration of free math software. He was also the �rst
to encourage the development of a UniFlow package.

The articles by Günter Rau (SageTEX) and Uwe
Ziegenhagen (Sweave) were invaluable primers to me
and made the vivid demonstrations of UniFlow in action
possible.

Finally I would like to express my gratitude to the
EuroTEX 2012 organizers for arranging a wonderful and
inspiring conference and giving me the opportunity to
present the UniFlow principle.

106 EUROTEX 2012 & 6CM PROCEEDINGS Leo Arnold

References
[1] V. Eijkhout. comment.sty: Selec-

tively include / excludes portions of text.
CTAN:macros/latex/contrib/comment:
http://www.ctan.org/tex-archive/
macros/latex/contrib/comment.

[2] U. Fischer. Answer to “Can one
TeX �le output to multiple PDF �les?”
http://tex.stackexchange.com/a/5265.

[3] P. Hirschhorn. exam.cls: Pack-
age for typesetting exam scripts.
CTAN:macros/latex/contrib/exam: http:
//www.ctan.org/tex-archive/macros/
latex/contrib/exam.

[4] D. E. Knuth. The TEXbook. Addison-Wesley,
Eighth printing, August 1986.

[5] G. Poore. PythonTEX: Fast Access to Python from
within LaTEX. github:gpoore/pythontex:
https://github.com/gpoore/pythontex.

[6] G. Rau. SageTEX. Die TEXnische Komödie,
1/2011: http://archiv.dante.de/DTK/PDF/
komoedie_2011_1.pdf:17–21.

[7] H. Voß. Einlesen und Ausführen von Quell-
code. Die TEXnische Komödie, 1/2011: http:
//archiv.dante.de/DTK/PDF/komoedie_
2011_1.pdf:40–54.

[8] U. Ziegenhagen. Datenanalyse mit Sweave, LaTEX
und R. Die TEXnische Komödie, 4/2010: http:
//www.dante.de/DTK/Ausgaben/dtk104.
pdf:35–45.

Weblinks
1. http://linux.die.net/man/1/pdflatex
2. http://wiki.contextgarden.net/Write18
3. http://www.sagemath.org
4. http://www.r-project.org
5. http://www.statistik.lmu.de/~leisch/Sweave
6. http://www.gnu.org/software/make
7. CTAN:support/latexmk: http://ctan.org/
tex-archive/support/latexmk/
8. https://launchpad.net/rubber

Leo Arnold
tex@arney.de

